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Preface

In spite of the fact that parallel-vector computational (equation solution) algorithms have
been receiving a lot of attentions for over 20 years, and a large number of research
articles have been published during this period, a limited number of texts and research
books have been written on the subject. Most (if not all) existing texts on this subject
have been written by computer scientists, and/or applied mathematicians. Majority of
existing texts have been over-emphasizing on theoretical developments of new, and/or
promising parallel (equation solution) algorithms (for varieties of applications in
Engineering and Science disciplines). Materials presented in most existing texts are
either too condense (without enough important detailed explanations), or too advance
for the typical senior undergraduate and/or graduate engineering students. It should be
emphasized here that while many important theoretical developments, which have
significant impacts on highly efficient existing parallel-vector (equation solution)
algorithms, have been carefully discussed and well-documented in current texts,
important detailed computer implementations of the developed algorithms, however,
have been usually omitted. Furthermore, it should be kept in minds that while few
existing texts in this subject (direct equation solution algorithms for parallel and/or
vector computers) have been written by computer scientists, and/or applied
mathematicians, truly large-scale models (which require parallel and vector capabilities
offered by modern high-performance computers) are often generated, solved, and
interpreted by the engineering communities.

This book is written to address the concerns mentioned above and is intended
to serve as a textbook for senior undergraduate, and graduate "engineering" students. A
number of state-of-the-art FORTRAN codes, however, have been developed and
discussed with great details in this textbook. Special efforts have been made by the
author to present the materials in such a way to minimize the mathematical background
requirements for typical senior undergraduate, and graduate engineering students. Thus,
compromises between rigorous mathematics and practical simplicities are sometimes
necessary.

This book has several unique features that distinguish it from other books:
1. Simplicity: The book has been written and explained in simple
fashion, so that senior undergraduate and first year graduate students (in Civil,
Mechanical, Aerospace, Electrical, Computer Science and Mathematic departments) can
understand the presented materials with minimum background requirements. A working
(undergraduate) knowledge in FORTRAN codings is helpful to understand the "detailed
codings" of the presented materials. Some (undergraduate) linear algebra background
should be useful, although it is NOT a requirement for reading and understanding the
materials in the book. Undergraduate background in Matrix Structural Analysis and/or
Finite Element Analysis should be useful, only for the materials presented in Chapter 3.
Graph theories have not been traditionally introduced in the undergraduate/graduate
engineering curriculums and therefore graph theories are not required to understand the
materials presented in this book.

2. Algorithms are discussed for different parallel and/or vector computer platforms:

Parallel and/or vectorized algorithms for various types of direct equation solvers are

vii
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presented and discussed for both "shared memory" (such as the Cray-2, Cray-YMP,
Cray-C90, Convex) and "distributed memory" (such as the Intel i860, Intel Paragon,
IBM-SP2, Meiko) computer platforms. The vectorized algorithms can also be
"efficiently" executed on IBM-R6000/590 workstations. The vectorized algorithms
and their associated FORTRAN codes can also be executed (with less efficiency)
on other workstations and/or personal computers (P.C.) without having vectorized
capabilities.

3. More emphasis on important detailed FORTRAN computer implementations:
Efforts have been made to explain to the readers on important detailed FORTRAN
computer implementations of various algorithms presented in the book. Thus, the
readers should be able to incorporate the presented computer codes, subroutines
into his/her application codes.

4. Several state-of-the-art FORTRAN equation solvers are discussed: While great
amounts of effort have been spent to explain the detailed algorithms in a “simple
fashion,” many state-of-the-art equation solvers have been developed and presented
in the book. Many of the presented solvers have been used by universities, large
aerospace corporations and government research laboratories in the U.S., Europe
and Asia.

5. Large-scale practical engineering finite element models are used: For derivations
and explanations of various algorithms described in the book, small-scale examples
are used to simplify and to facilitate the discussions. However, several medium to
large-scale, practical engineering finite element models are used to demonstrate the
efficiency and accuracy of the presented algorithms.

6. Algorithms are available for different types of linear equations: Different types of
algorithms for the solutions of various types of system of simultaneous linear
equations are presented in the book. Symmetrical/unsymmetrical, positive
definite/negative definite/indefinite, incore/out-of-core, skyline/variable
bandwidth/sparse/tridiagonal system of equations have all been treated in great
detail by the author.

The book contains 11 chapters. Chapter 1 presents a brief review of some basic
descriptions of shared and distributed parallel-vector computers. Measurements for
algorithms’ performance, and commonly “good practices” to achieve vector speed are
also discussed in this chapter. Different storage schemes for the coefficient (stiffness)
matrix (of system of linear equations) are discussed with great details in Chapter 2.
Efficient parallel algorithms for generation and assembly of finite element coefficient
(stiffness) matrices are explained in Chapter 3. Different parallel-vector “skyline”
algorithms for shared memory computers (such as Cray-YMP, Cray-C90 etc...) are
developed and evaluated in Chapter 4. These algorithms have been developed in
conjunction with the skyline storage scheme, proposed earlier in Chapter 2. Parallel-
vector “variable bandwidth” equation solution algorithms (for shared memory
computers) are presented and explained in Chapter 5. These algorithms have been
derived based upon the variable bandwidth storage scheme, proposed earlier in Chapter
2. Out-of-core equation solution algorithms on shared memory computers are considered
in Chapter 6. These algorithms are useful for cases where very large-scale models need
to be solved, and there are not enough core-memories to hold all arrays in the in-core
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memories. Parallel-vector equation solution strategies for “distributed-memory”
computers are discussed in Chapter 7. These equation solution strategies are based upon
the parallel generation and assembly of finite element (stiffness) matrices, suggested
earlier in Chapter 3. Unsymmetrical banded system of equations are treated in Chapter
8, where both parallel and vector strategies are described. Parallel algorithms for tri-
diagonal system of equations on distributed computers are explained in Chapter 9.
Sparse equation solution algorithms are presented in Chapter 10. Unrolling techniques
to enhance the vector performance of sparse algorithms are also explained in this
chapter. Finally, system of sparse equations where the coefficient (stiffness) matrix is
symmetrical/ unsymmetrical and/or indefinite (where special pivoting strategies are
required) are considered with great details in Chapter 11.

The book also contains a limited number of exercises to further supplement and
reinforce the concepts and ideas presented. The references are listed at the end of each
chapter.

The author would like to invite the readers to point out any errors that come to their
attention. The author also welcomes any comments and suggestions from the readers.

Duc Thai Nguyen

Norfolk, Virginia
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1 Introduction

1.1 Parallel Computers

Modern high performance computers have multiple processing capabilities. The
Convex, Sequent, Alliant, Cray-2, Cray-YMP {1.1] and Cray-C90 [1.2], parallel
computers, for example, belong to the broad class of “shared memory” computers. The
nCUBE, Intel i860, Intel Paragon, Meiko, and IBM-SP2 [1.3, 1.4] parallel computers,
however, belong to the broad class of “distributed memory”, or “message passing”
computers. Shared memory computers, in general, consist of few (say 20, or less)
processors. Each processor has its own local memory. Different processors, however,
can be communicated to each other through shared memory area, as shown in Figure
1.1.

Shared Memory Area
Local Mem. Local Mem. Local Mem. Local Mem.
Processor 1 Processor 2 Processor 3 Processor 4

Figure 1.1 Shared memory parallel computers

Distributed memory (or message passing) computers, in general, consist of many
(say hundreds, or thousands) processors (or nodes). Each processor has its own local
memory, but the processor itself usually is less powerful (in terms of computational
speed and memories) than its counterpart shared memory processor.

Communication amongst different nodes can only be done by message passing, as
shown in Figure 1.2. Designing efficient algorithms, which can fully exploit the parallel
and vector capabilities offered by shared memory computers have already been
challenging tasks. It is generally safe to state that it is even more difficult to develop and
to implement efficient parallel-vector algorithms on distributed memory computers!
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[ LoctlMem,
/\ Processor 2

(or Node 2)

——
Message passing /
— Local Mem.
{ |
Processor 4 /

/ \
(T

Figure 1.2 Distributed memory (or message passing) parallel computers

Processor 1
(or Node 1)

1.2 Measurements for Algorithms’ Performance
The performance of parallel-vector algorithms can be measured by parameters, such as
MFLOPS (Millions of FLoating point Operations Per Second), speed-up factor, and

efficiency. Definitions of the above parameters are given in the following paragraphs.

Total Number of Operations of a Given Algorithm

MFLOPS = (1.1)
10° = Time (in seconds, forexecuting a given algorithm)

In Eq. (1.1),
an operation is defined as a multiplication, division, addition, or subtraction.

Time Obtained By Executing The Best Sequential Algorithm

SPEED-UP FACTOR = 1.2)
Time Obtained By Executing the Algorithm Using NP Processors :

In Eq. (1.2), NP represents the total number of processors used by a parallel
algorithm

EFFICIENCY = SPEED-UP FACTOR (1.3)

NP

Assuming 300*10° operations, and 20 seconds (and 4 seconds) are required to execute
the best sequential algorithm on a single processor (and 8 processors), respectively, then
using Eqs (1.1 -1.3), one obtains

6 .
MFLOPS = 300 10> operations _ 15 MFLOPS (1.4)
108 20 seconds
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SPEED-UPFACTOR = 20Seconds _g

4 Seconds .5)

5
EFFICIENCY = < = 62.5% (1.6)

Typical curves for Time versus # Processors, and Speed-up-Factor versus # Processors
are given in Figure 1.3. In practice, it is quite possible to see in Fig. 1.3 that time will
increase (or speed-up factor will decrease) as the number of processors exceed, say 8
processors (as shown in Figure 1.3).

20‘\_ A
7 | 63
g 3
: &
\gIU“ §
. ®
3 5k —18.

1 1 1 1

v

1
1 2 4 6 8
no. processors

Figure 1.3 Typical curves for time and speed-up factor versus number of processors

1.3 Vector Computers

Vector computers utilize the concept of pipelining, which basically divides an arithmetic
unit into different segments, each performs a subtask on a pair of operands (see Fig.
1.4).

A | Qi | Q3 | B | Qs | Qie | @17y | iss

a;, bi
° bll blz b13 s bls bl6 bI7 blB

=$a +b,

Fig. 1.4 Pipelining for vector addition

The main advantage of having several segmentations is that the results can be
obtained at a rate 8 times faster (or more, depending on the number of segmentations),
provided the data must reach the arithmetic unit quickly enough to keep the pipeline full
at all time.
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(a) Register-to-Register Processors

For register-to-register processors, the operands can be obtained directly from very fast
memory, called vector registers, and store the results back into vector registers (see Fig.
1.5).

a EEm———
W Vector
arb < Addition
Main Memory Vector Registers Vector Operations

Figure 1.5 Register - to - register processors

(b) Vector Start-up Times

Vector operations do incur some overhead penalty, the amount of overhead cost
depends on several factors, such as the vector lengths, the start-up time (time for the
pipeline to become full), the time interval at which results are leaving the pipeline
(related to the cycle time, or clock time of a particular computer).

(c) Sparse Matrix Computation

For sparse matrix computation, the following FORTRAN loop is often required (as
shown in Figure 1.6)

DO 1I=1,N

K =INDEX (I)

Y(K)=a* X )+ Y(K)

X X
g \Gather'ff Scatter a?z"/' 5
X X X X
"“"m_* /,.,o-"
X X X X
5 h-\“ ._.__x + i _'_/-V ]
X —_— X X —_— X
0 0
¥ ¥

Figure 1.6 Sparse matrix loop

(d) Avoid Putting Subroutine and/or Function Calls Within DO LOOPS
It is not a good idea, in general, to put subroutine(s) and/or function(s) calls within the
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DO Loops (see Table 1.1), since it may prevent the compiler for vectorizing. Good
vectorization will be realized, however, if the algorithm shown in Table 1.1 is modified,
as shown in Table 1.2. It should also be noticed here that the index J (instead of I) is
used for the inner loop in Table 1.2 to avoid any dependencies within the inner loop. In
other words, for the fixed value of I, the inner-loop (shown in Table 1.2) does not have
any dependencies on the index J.

Table 1.1 Vectorization can be prevented if subroutine call
is placed inside DO LOOP

DO 1 J=2,N
DO 1 I=2,N
CONSTI = VEL (1, J)
CONSTO = VEL (I-1, J)
CONST2 = VEL (I+1, J)
CALL ABC (CONST1, CONSTO0, CONST2)
VEL(LJ) = SQRT (CONSTI)

1 CONTINUE

SUBROUTINE ABC (CONST1, CONST0, CONST2)
CONSTI =3.8 * CONST1 + 2.7 * (6.2 + CONSTO + CONST2)
RETURN

END
Table 1.2 Vectorization can be realized if subroutine call
is removed from D0 LOOP
DO11=2,N

| VEL(LJ)=38* VEL(J)+2.7* (62 + VEL (I-1, J) + VEL(I + 1, J))
| VEL(,J)=SQRT(VEL(,J))
!

l
DO1J=2,N |
|
'l CONTINUE |

(e) Using Few Loops (with more work loads) Rather Than Using Many Loops (with
less work loads)

The algorithm shown in Table 1.3 (a) basically involved with vector addition, to be
followed by vector multiplication, and again by vector addition. While this algorithm
will be vectorized, better vectorization can be realized by rewriting the algorithm into
the form shown in Table 1.3 (b).
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Table 1.3 Many loops (with less work loads) versus
few loops (with more work loads)

(a) 3 Loops Are Used (b) 1 Loop Is Used
CALL ADDV (N, A, B, RESULT1) DO1I1=1,N
CALL MULV (N, RESULTI, A, RESULT2) A =A®D +B®@))*AD+B(D)
CALL ADDV (N, RESULT2, B, RESULT1) 1 CONTINUE

(f) Innermost DO-LOOP Should Have Long Vector Length

The algorithm shown in Table 1.4 has poor vector performance, since the innermost DO
LOOP only has the vector length of 8. Substantial improvements in the vector
performance can be realized, however, simply by reversing the order of the I and J
loops.

Table 1.4 Avoid using short vector length for inner-most DO LOOP

D0 11=1, 4000
D01J=1,8

1 AQ D) =A@y + B * AQ, J) + BAY)

(g)_Using Compiler Directive if Necessary

The appearance of the FORTRAN code segment, shown in Table 1.5, seems to indicate
the dependency of the inner-most loop index L, and hence vectorization may not be
recognized by the compiler. Careful examinations on the innermost loop computation,
however, will reveal that for the fixed value of index K, the “even-values” for innermost
loop index L (on the left hand side) depend only on the “odd-values” for index L. Thus,
there is no dependency on the innermost index L, and therefore, usage of compiler
directive (see CDIR$ IVDEP in Table 1.5) is appropriate. The compiler directive
statement may be different for different computers. However, some modern (high-
performance) vector computers do have compiler directive statements.

Table 1.5 Compiler directive should be used appropriately

i DO 3 K=2,N,2
| CDIRS IVDEP
DO 3 L=2,N,2
] A(L, K) = 7.8 * (A(L-1, K) + A(L+1, K) +A(L,K-1)+A(L, K+1)
|3 CONTINUE

(h) Avoid to Use If Statement within Innermost DO-LOOP

Intrinsic functions may be used to replace If statement within innermost do-loop, as
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illustrated in Table 1.6.

Table 1.6 Avoiding IF statement by using intrinsic functions

(a) Avoid IF Statement (b) Use Intrinsic Statement i
DO22K=1,N DO 22K=1,N |
IF (C(K). LT.0.) C(K)=0. C(K) = AMAX1 (C(K), 0.)

22 AK)=SQRT(CK))*... 22 Ak)=SQRT(C(K)) *...

(i) Avoid too Use Temporary Arrays
Even though both cases shown in Table 1.7 will be vectorized, case 2 will have better

vector performance than case 1, because the former avoids using temporary array T(-)

Table 1.7 Avoid using temporary array

Case 1 Case 2
DO1J=2,N DO1J=2,N
T(J) = D@-1) D(J) = E(J)
DJ)=E(J) F(J)=D(-1)
FO)=T(J) 1 CONTINUE
1 CONTINUE |

(j) Avoid Scalar Variable Which are Computed before the Execution of the Containing

Loop
Segments of the FORTRAN codes, shown in Table 1.8, can be used to illustrate the

disadvantage of calculating scalar variables before the execution of the containing loop.

Table 1.8 Avoid computing scalar variables
before execution of the containing loop

Case 1 Case 2

(No Vectorization) (With Vectorization)
C=0 c(hH=o0
DO1K=2N DO 1 K=2,N
D =E (K) *F(K) C(K)=E (K) * F(K)
G(K)=D+C 1 G(K)=C(K)+ C(K-1)

1 C=D

(k) “Vector Unrolling” and Dot Product Operations

Assuming a square matrix [A]yy and a vector {x}y, are given, and the objective is to
compute matrix-vector multiplications ([A] * {x}), and to store the results into vector
{y}n.1- Algorithm based upon dot product operations (for matrix-vector multiplications)
is given in Table 1.9, while better (load and store) vector performance can be obtained
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by using dot product operations in conjunction with “vector unrolling,” say level 2 (see
the increment for the index I), is illustrated in Table 1.10.

Table 1.9 Dot-product operations

DO211=1,N
DO21J=1,N
21 Y(1) = Y(I) + A(LY) * X(J)

Table 1.10 Dot-product operations with “vector unrolling” level 2

DO211=1,N,2

DO21J=1,N

Y1) = Y(I) + A, J) *X(J)
21 Y(I+1) = Y (I+1) +A(I+1, J) * X(J) |

For the fixed value of index I, the innermost loop operations (shown in Table
1.9) A(1,]) * X(J) is essentially the dot product of 2 vectors A(I,J) and X(J).

() “Loop Unrolling” and Saxpy Operations

2 -1 0
1
Given the matrix [A] = [-1 2 -1|, and the vector X ={% } , the product of
0 -1 1

[A}*{X}
= {y} can be computed by the following steps.

Step 1: “Partial” answer for vector {y} can be obtained by multiplying the first
column of [A] with
the first component of {X}

47 b -%}-{9} .7
02 (@ {1 1 =13 .

Step 2: Multiplying the second column of [A] with the second component of {X},
then adding the results into the “partial” answer of {y}, in order to obtain the “updated”
answer for {y}.

I SR
Ot = 5 1) = o} (1.8)

Step 3: Multiplying the third (or the last) column of [A] with the third component of
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{X}, then adding the results into the “updated” answer for {y}, in order to obtain the
“final” answer for {y}

0 0 0
b} = {-11 }*(3) +{_3 } = { 0 } (1.9)

The operations involved in Egs. (1.8) and (1.9) can be recognized in the form of
Summation of a constant “a” times a vector {x} plus a vector {y}. Thus, the above
operations are called Saxpy operations!

Algorithms based upon saxpy operation (for matrix-vector multiplications)
is given in Table 1.11, while better (load and store) vector performance can be obtained
by using saxpy operations in conjunctions with “loop unrolling,” say level 2 (see the
increment for the index J), is illustrated in Table 1.12.

Table 1.11 Saxpy operations

| DO22J=1,N |
| DO221=1,N
22 YD) = YD)+ A(, J) * X()

Table 1.12 Saxpy operations with “loop unrolling” level 2

: DO22J=1,N,2
} DO221=1,N
22 YO =YD+ALD* XD +ALI+D*XJ + 1)

For many computers, such as the Cray-2, Cray-YMP and Cray-C90 etc...,
saxpy operations can be substantially faster than dot product operations. It is also
important to emphasize here the key differences between dot product operations (and
its associated vector unrolling operations), and saxpy operations (and its associated loop
unrolling operations). The former will give the “final” results, while the latter will only
give the “partial” results. Furthermore, “vector unrolling” operations involve with
several FORTRAN statements within the inner-most DO LOOP, whereas “loop
unrolling” operations involve with a single FORTRAN statement (but with more
calculations attached) within the inner-most DO-LOOP.

(m) Stride

For a given 3x3 matrix [A], as discussed in the previous section, and
assuming the matrix [A] is stored in a row-by-row fashion, then the basic dot-product
operations (in Table 1.9) will have the stride to be equal to 3. The matrix [A] will be
internally stored in a column-by-column fashion. Thus, for the given data, matrix A can
be internally represented as a “long” vector;
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21 1st column
0| |-o-___-___
-1
[A] = { % b = J 2"column  } (1.10)
-6_ _________
-1
1 3™ column

Corresponding to a fixed I'- row, say I = 1, the operations inside the
innermost DO-loop will involve with the dot-product between the 2 vectors

A = {2,-1,0} and X= {é} (1.11)

The first vector in Eq. (1.11) can be retrieved from the data shown in Eq.
1.10, at the 1%, 4" and 7™ locations, respectively. The “distance” between any 2
consecutive numbers is called the “stride.” Thus, in this example (for algorithm shown
in Table 1.9), one obtains:

stride = 4™ location - 1 location = 7™ location - 4" location

stride =3

However, if saxpy operations are used for the same matrix-vector
multiplications (as indicated in Eq. 1.7), then the stride will be equal to 1. The reason

2
is because the 3 consecutive numbers used in Eq. (1.7), such as {~(} }, can be retrieved

from the 1%, 2™, and 3 ™ locations, respectively (see Eq. 1.10). Thus:

stride = 2™ location - 1* location = 3™ location - 2™ location

stride = 1.
For better vector performance, the smallest stride (such as stride = 1) is the most
desirable!

1.4 Summary

Modern high-performance computers (Cray - C90, Intel Paragon, IBM - SP2 etc...)
offer both parallel, cache, and vector processing capabilities. Thus, efficient algorithms
need to exploit both parallel, cache, and vector capabilities. For nested do-loops (such
as matrix factorization), effective vectorization need to be done at the innermost do-
loop, while effective parallelization need to be done at the outermost do-loop.
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1.5 Exercises

1.1 Given the coefficient matrix [A] and the vector {x} as following:
4 1 2 0 1
-1 5§ 1 1 2

Ml =], 1 3 of adix} =13
0 -1 2 8 -1

Using a hand calculator,
(a) find the product of [A]* {x} by employing “Dot Product” operations.
(b) find the product of [A]*{x} by employing “saxpy” operations.

1.2 Write a general purpose Fortran computer program to compute the product
of [B] * {y}, using “saxpy” operations with loop-unrolling level 3, where:

A

[B] = AAA and {y} =
A

R R

20%20 30%]

The matrix [A],,, and vector {x},., has been defined in Problem 1.1 (Hint: Algorithm
shown in Table 1.12 needs to be modified slightly) ’

1.3 Same as described in Problem 1.2, but using loop-unrolling level 8

1.6 References

I.1 Cray-YMP manuals

12 Cray-C90 manuals

1.3 IBM-SP2 manuals

14 IBM-R6000/590 manuals



2 Storage Schemes for
the Coefficient Stiffness Matrix

2.1 Introduction

For many important engineering and science applications [2.1, 2.2], the coefficient
matrix [A] involved in the system of linear simultaneous equations

(4] {x} = {b} @1

is usually symmetrical, positive-definite and sparse. In structural engineering
applications [A], {X} and {b} represent stiffness matrix, nodal displacement vector and
nodal load vector, respectively.

Consider, for example, a 9 x 9 (stiffness) matrix [A] of the type:

A, | 0 | A, ] O 0 0 0 0
A, Ay, | © 0 0 0 0 0
0 | Ay ALl Al 0 | A, O 0 0
A, 0 A Ags A 0 0 0
[Al=] o 0 0 | A, A, | 0 Az ] 0 |22
0 0 A36 A46 A56 A67 0 A69
0 0 0 0 0 | A, A | 0
0 0 0 0 | A, | 0o | A, Ago
0 0 0 0 0 | Ao | 0 | A [[As

There are several different storage schemes that can be used for the matrix
expressed in Eq. (2.2). Different storage schemes will lead to different storage
requirements. Furthermore, as will be explained in subsequent chapters, the choice for
the appropriate storage scheme will be influenced (or dictated) by the equation solution
strategies to be employed for solving the unknown vector {X} from Eq. (2.1).

Since effective equation solution algorithms are heavily influenced by the storage
scheme used to store the coefficient matrix [A] (shown in egs. 2.1-2.2), the objective
of this chapter is to describe some common storage schemes used in many practical
engineering and science applications.

13
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2.2 Full Matrix

This is the simplest way to store matrix [A] of Eq. (2.2). The entire matrix is stored,
thus 81 (=9x9) words of memory is required to store matrix [A].

2.3 Symmetrical Matrix

In this storage scheme, only the upper triangular portion (including diagonal terms) of
matrix [A] needs to be stored (due to the symmetrical property of [A]). Thus, this
storage scheme only requires 45 (=9x10/2) words of memories.

2.4 Banded Matrix

By observation, the maximum bandwidth (the maximum “distance” between the
diagonal term and the last non-zero term in each row) of the matrix [A] is 4 (including
the diagonal term). Furthermore, taking the advantage of symmetry, matrix [A] can be
stored as

A4, 4, 0 A4,
A22 A23 0 0
Ay Ay 0 Ay
Ay Ays Ay 0
[4] = Ass Asg 0 Ag 2.3)
Agg Ay 0 Ag
Ay Ay 00
Agg A89 0 0
Ay 0 0 O

It should be noted here that the diagonal terms of matrix [A] in Eq. (2.2) are shifted to
become the first column of the rectangular matrix [A] in Eq. (2.3). This banded storage
scheme requires 36 (9x4) words of memory.

2.5 Variable Banded Matrix [2.3]

In this storage scheme, the matrix [A] shown in Eq. (2.2) is stored as a /-dimensional
array according to the following row-by-row fashion

A= 1A, |A: |0 Ay |Ax |Ax |0 Aun |Au o Ay A JAs |Ax A A«

Io |A“|Aﬁ IA” |o |A‘“’ lAﬁlAn |0 IA,, |Aw |Aw|

The above 1-dimensional (row-by-row) array corresponds to the following 2-
dimensional array (or matrix) representation:
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An A12 0 Au
Azz A23 0
A33 A34 0 Azg
A44 A45 A46
[4] = Ass Ass 0 Ass 2.9
Ass A67 0 Ago
S Y M A77 A78 0
Ass As9
A

99
It should be observed that in Eq. (2.4), the (imaginary) vertical (see bold face numbers)
enveloped lines always keep shifting toward the right direction. The lower triangular
portion of [A] in Eq. (2.4) is not shown due to the symmetry of [A]. As it will be
explained with more details, this variable banded (row-by-row) storage scheme requires
28(=4+3+4+3+4+4+3+2+1) words of memory.

2.6 Skyline Matrix [2.1, 2.4]

In this storage scheme, the matrix [A] shown in Eq. (2.2) is stored as a /-dimensional
array according to the following column-by-column fashion.

A(1) AQ3) A(9)
A(2) A(5) A(8)
A4 A7) A(15)
A(6) A(11) A(14)
[4] = AC10) 4(13) A1) (2.5)
A(12) A(17) AQ0) AQ25)
S Y M A(16) A(19) A(24)
A(18) A(23)
A(22)

The “height” of each column (including the diagonal term)
of [A] in Eq. (2.5) is usually referred to as the “skyline” of matrix [A]. It can be
observed from Eq. (2.5) that the original values of A(8), A(20) and A(24) are all
zeroes, since these numbers correspond to A,,, Ag and A,,. As it will be explained with
more details in subsequent chapters, these initial zero values may become non-zero
values later on (during the factorization phase). In the literature, the non-zero values
for A(8), A(20) and A(24) are commonly referred to as “fills-in.” This skyline (column-
by-column) storage scheme requires only 25(=1+2+2+4+2+4+2+4+4) words of memory
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2.7 Sparse Matrix [2.5]

In this storage scheme, only non-zero terms of matrix [A] are stored according to the
following 1-dimensional, (row-by-row), integer and real arrays:
Thus, the integer array IA (N+1), where N is the size of the matrix, describes the

4 (2.6)

SOV DAL —
|
—
o

starting locations of the first non-zero, off-diagonal term in each row. The number of

non-zero, off-diagonal terms in each row of matrix [A] can be easily computed from the

IA(N+1) array, for example:
the number of non-zero, off-diagonal terms in the 1st row is IA(2)-1A(1) =2
the number of non-zero, off-diagonal terms in the 2nd row is IA(3)-1A(2)=1
the number of non-zero, off-diagonal terms in the 6th row is IA(7)-1A(6)=2
the number of non-zero, off-diagonal terms in the 7th row is IA(8)-IA(7)=1
the number of non-zero, off-diagonal terms in the 8th row is 1A (9)-IA(8)=1
the number of non-zero, off-diagonal terms in the 9th row is IA(10)-IA(9)=0

The column numbers of the non-zero, off-diagonal terms in each row can be
described by an array JA(NCOF), where NCOF is the total number of non-zero, off-
diagonal terms of matrix [A] (before factorization). For the matrix data given by Eq.
(2.2), one has:

NCOF =1A (N+1) -IA(1)=14-1=13

1 2
2 4
3 3
4 4
5 6
6 5
JA| 7| =46t Q.7
8 6
9 8
10 7
11 9
12 8
13 |9
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The numerical values of diagonal terms of [A] can be described by the array D(N),
where N=9, and:

F IR Y]
S LN

(2.8)

~N
~N

lw]
O O~IANAWN B WA —
[}
':kwlh\lmﬁxlklk

N4
o

The numerical values of off-diagonal terms of [A] can be described by the
array AN (NCOF), where NCOF = 13, and:

X
A,
1 E
2 Ay
?1 A3,
A
5 36
6 Ays
AN | . =y . 7 2.9
13
Ago

In this truly sparse storage scheme, the number of storage requirements for
matrix [A], see Eq. (2.2), is only 22 ( =9 for storing diagonal terms +13 for storing off-
diagonal terms). For large-scale engineering and science applications, sparse storage
scheme is the most efficient one.

2.8 Detailed Procedures for Determining the Mapping Between 2-D Array and
1-D Array in Skyline Storage Scheme

The stiffness matrix [A] can be expressed either in a 2-dimensional array, or in a 1-
dimensional array, as indicated by Eq. (2.2), or Eq. (2.5), respectively. The key issue
that needs to be discussed in this section is evolved around the following question:

How can we find the mapping between Eq. (2.2) and Eq. (2.5) 7? In other
words, how do we know that A, and A, in Eq. (2.2) will be mapped into A, and A,;
in Eq. (2.5), respectively ??
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Let’s first define the “column heights” of a given symmetrical matrix [A], such
as shown in Eq. (2.2), as following:

Column height of the i column of a matrix A is defined as the “distance”
between the diagonal term and the furthest non-zero term of the same i column. The
diagonal term itself, however is NOT included in the calculation for the distance.

With the above definition, the column heights of the symmetrical matrix [A],
shown in Eq. 2.2, can be defined by the integer array ICOLH(N) as following;:

ICOLH (2.10)

OO WNDWN —
1
WW—WeW—=—=O

Thus,  column height of column 1 of [A] is 0
column height of column 2 of [A] is 1
column height of column 8 of [A] is 3
column height of column 9 of [A] is 3

Once the column heights array ICOLH(N) is known, we can easily determine
the mapping of the diagonal terms’ locations between Eq. (2.2) and Eq. (2.5), through
the integer array MAXA (N+1), where:

MAXA (1) = 1 (2.11)
MAXA (I+1) = MAXA(I) + ICOLH(I) + 1 2.12)
Using the known column height information (shown in Eq. 2.10), the mapping

of the diagonal locations, array MAXA(N+1), can be determined (by referring to Egs.
2.11 and 2.12) as:

MAXA - {10t @2.13)

SOV RWN =

From Eq. (2.13), we can easily see that the diagonal terms A |,, A,,, A and
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Ay, (of the 2-dimensional array, shown in Eq. 2.2) will be mapped into the locations
1, 2, 18 and 22, respectively (of the 1-dimensional array, shown in Eq. 2.5).

The total number of storages, NTERMS, required to store the entire stiffness
matrix [A], in a skyline format, is given as

NTERMS

i

MAXAN+1)- MAXA(1)

(2.14)
MAXA(10)- 1=26-1 = 25

Finally, the mapping between the 2-dimensional stiffness array [A], shown in
Eq. (2.2), and the 1-dimensional stiffness array [A], shown in Eq. (2.5), can be
established as:

A,; = AlMaxa) +j - i] (2.15)

Using Eq. (2.15), the term A, ; will be stored in the 1-dimensional array as
A =A[Maxa(5) +5 - 5]
A, s = A [Maxa(5)] = A(10)

Similarly, the term A4, can be mapped into the 1-dimensional array as
Ago=A[Maxa(9) +9 - 6]
Ag, = A[Maxa(9) + 3] = A(22+3)
A6_9 = A(25)

2.9 Determination of the Column Heights (ICOLH) of a Finite Element
Model

Figure 2.1 represents a simple structure which is modeled by 4 rectangular elements
(with 2 translational degree-of-freedom at each node) and 9 nodes. Nodes 1 through
3 are constrained by the pin support boundary conditions. Thus, there are no
translational motions in these three nodes. To specify the boundary conditions at each
node, the following conventions are adopted:

If a particular degree-of-freedom (dof ) of a node is fixed (due to support
boundary condition), then this dof is assigned a value 1. If a particular degree-of-
freedom (dof) of a node is free to move, then this dof is assigned a value 0.

Since at each node, there are usually at most 6 dof (3 translational dof, T,, T,
& T, and 3 rotational dof R,, R, & R, about the three coordinate axis), one can construct
the integer array ID(6, NUMNP) from Figure 2.1 as:
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1 2 3 4 5 6 7 8 9
T, |1 1 1 0 0 o 0 0 0
T, |1 1 1 0 0o 0 0 0 0
[ID]eo = T, [1 1 1 1 1 1 1 1 1 2. 16)
R, /1 1 1 1 1 1 1 1 1
R, {1 1 1 1 1 1 1 1 1
R, |1 1t 1 1 1 1 1 1 1

Since there are 9 nodes in the finite element model, shown in Figure 2.1, the
integer array ID in Eq. (2.16) has 9 columns.

dof dof 12

3 OVTI B
@ dotd @ dof 10

: Ts_HMs B dot9
@ dof 2 ® dot 8

: 11’10” Hdot7

Figure 2.1 Finite element model with 4 rectangular elements

It is obvious from Eq. (2.16) and from Figure 2.1 that there are two (free to move)
translational dof at nodes 4 to 9, while the rests of the dof at these nodes are fixed. All
dof at nodes 1 to 3 are also fixed.

Thus, the ID array in Eq. (2.16) can be modified to become:
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1 2 3 4 5 6 71 8 9
.o o o 1 3 5 7 9 11
T,/]0 0 0 2 4 6 8 10 12
M= T,[0 0 0 0o 0 0o 0 0 0|17

S
(=]
(=]
(=]
(=]
(=]
S
(=]
o
(]

N

Equation (2.17), therefore, will give us the global dof (or global equation) associated
with each node. Since each of the rectangular element (shown in Figure 2.1) is
associated with 4 nodes, there are 8 dof associated with each rectangular element.

Since the nodal numbers associated with each rectangular elements are known
(refer to Figure 2.1), the global dof, (array LM), associated with each element can be
defined (with the help of Eq. 2.17) as:

Rectangular element 1 is connected by nodes 5, 2, 1 & 4, hence

3

4

0
LMD = 8 2. 18)

0

1

2

Rectangular element 2 is connected by nodes 6, 3,2 & 5, hence

LM©D = (2.19)

PLOOOOOWM

Rectangular element 3 is connected by nodes 8, 5, 4 & 7, hence
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LMC™ =

0N — WSO

Rectangular element 4 is connected by nodes 9, 6, 5 & 8, hence

LM®©® =

— ——
SobhwaLGD

(2.20)

2.21)

The total structural stiffness matrix {[A] of Figure 2.1 has 12 active dof (refer
to Eq. 2.17), which can be obtained from the contributions of 4 rectangular element
stiffness, as shown in the following Figure 2.2.

1] 2 3 lals e 789wl
1poe oo |poe |oe @ |lo oo
2 o0 jpo |oe @ |loe oo
3 heo [ve|ee [po]l @ |0 po pao |o |e
4 oo oo oo @ | @ po po @ |e
5 e lo® @ |lo oo
[A] = 6 @@ @ |o oo
7 @ loe oo
8 @ |lo o
9 o po | |[@
10 vo (@ |@
11 @ |®
12 @

Figure 2.2 Total stiffness matrix of 4 rectangular finite element model

The column heights, ICOLH, of matrix [A] shown in Figure 2.2 can be

identified as
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ICOLH (2.22)

PV A WN —
i
CROVRAIAWN LN —D

2.10 Computer Implementation for Determining Column Heights

In the previous section, a simple finite element model has been used to illustrate detailed
steps to obtain the assembled, structural stiffness matrix. Once the structural stiffness
matrix has been assembled, the column heights (refer to Eq. 2.22) and diagonal
locations (refer to Eqs. 2.11 and 2.12) can be easily determined.

The purpose of this section is to present and explain a simple algorithm (in the
form of “pseudo” FORTRAN coding, shown in Table 2.1) to obtain the column heights
information directly from element connectivity data and without the need to assemble
the structural stiffness matrix.

It should be emphasized here that for parallel-vector skyline (column-by-
column) equation solution strategies (to be discussed in Chapter 4), column heights
information is crucially important, since it contains enough information to describe the
non-zero terms required during the factorization phase.

Table 2.1 Algorithm to find column heights

1 C...... NEQ = number of equations

2 C...... NEL = number of elements (say = 4)

3 C...... NDOFPE = number of degree-of-freedom (dof) per element
4 C++++ Initialized column height array

5 DO 11=1,NEQ

6 ICOLH(I)=0

7 1 CONTINUE

8 C++++ Looping through all finite elements

9 DO 2J=1,NEL

Looping through all dof per element to find min. dof
MINDOF = 10000000
DO 3 K=1, NDOFPE (say = 8)

=S
)
+
+
+
+

N
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13 C...... LM(K) = global dof (or equation) associated with each element
14 IDOF = LM(K)

15 If IDOF.EQ.O0) GO TO 3

16 If IDOF.LT.MINDOF) MINDOF = IDOF

17 3 CONTINUE

18 C++++ Begin to find and update column heights

19 DO 4 K =1, NDOFPE

20 IDOF = LM(K)

21 IF (IDOF.EQ.O) Go to 4

22 ICH = IDOF - MINDOF

23 IF (ICOLH(IDOF).LT.ICH) ICOLH(IDOF) = ICH
24 4 CONTINUE

25 2 CONTINUE

In Table 2.1, lines 10 through 17 will determine the minimum degree-of-
freedom number (=MINDOF, see line 16) associated with each finite element. It is
assumed that all the degree-of-freedoms (dof) associated with each element (=LM(K),
see lines 14, 20) is known before using the algorithm shown in Table 2.1.

The IF statements on lines 15 and 21 will skip those dof with zero prescribed
displacement boundary conditions. These boundary conditions are also referred to as
Dirichlet boundary conditions.

Lines 18 through 24 (in Table 2.1) will find and update the column heights of
all dof associated with each finite element. The IF statement on line 23 will assure that
the “old” column height be updated only if its old value is less than its current (column
height) value.

For the data shown in Figure 2.1 and Eqs. (2.18-2.21), the column heights
after processing element 1 (the smallest dof = MINDOF = 1) can be computed as (refer
to Table 2.1):

IcoL

N = BW
N—= AW

-1
-1
-1
-1

—_—O W

After processing element 2 (the smallest dof = MINDOF = 3), we have

5 5-3 2

6 _l6-3y _}3 previous values were
ICOLH 3| =13-3( =)o ~ 2 | kept, see IF statement

4 4-3 1 - 3 | on line 23 of algorithm

given in Table 2.1



Duc T. Nguyen 25

After processing element 3 (the smallest dof = MINDOF = 1), we have

ICOLH

00N — KW S\O
1

[}
N = OWN\O

After processing element 4 (the smallest dof = MINDOF = 3), we have:

11 11-3 8
12 12-3 9
5 5-3 2
6 6-3 3
ICOLH | 3| =453t =10l -y
4 4-3 1| -3
9 9-3 6| -8
10)  {10-3 7) ~9

It should be noticed here that after processing all 4 elements (using the algorithm
presented in Table 2.1), the final updated column height array ICOLH (-) will have the
corrected values as indicated earlier in Figure 2.2 and Eq. (2.22).

2.1 Summary

In this chapter, various storage schemes for storing the coefficient stiffness matrix have
been discussed. The detailed algorithm and computer implementation of the column-by-
column (skyline) storage scheme has also been presented, since this skyline storage
scheme will lead to the development of efficient parallel-vector skyline equation solver
in Chapter 4. The variable bandwidth storage scheme will be further discussed in
Chapter 5, since it has direct impact on the development of efficient parallel-vector
variable bandwidth equation solver. The use of sparse storage scheme will be discussed
with more details in Chapter 10, where efficient sparse equation solver will be
presented.
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2.12 Exercises

2.1 Given the following 9x9 symmetrical stiffness matrix [A]:

1 10
2 11
3 12 13
4 14

A= S 15

6 16.
S Y M 1 17
_8 18
9

(a) Using the 1-D array B(-) to store the above matrix A in a “variable
banded” fashion (Hint: read section 2.4) ??

(b) How many “real” words of computer memory required by the above 1-D
array B(-) to store the given matrix [A] ??

2.2 Using the data, shown in Problem 2.1, for matrix [A]:
(a) Usingthe 1-D array C(-) to store the matrix [A] in a “skyline” fashion??
(b) How many “real” words of computer memory required by the above 1-D

array C(-) ?7?

(c) Construct the integer (column heights) array ICOLH (-) for this
example??

(d) Construct the integer (diagonal locations) array MAXA(-) for this
example ?7?

2.3 Using the data, shown in Problem 2.1, for matrix [A]
(a) Using the 1-D arrays D(-) to store the matrix {A] in a “sparse” fashion??
(b) Construct the 1-D arrays IA(-), JA(-), D(-) and AN(-) for this example
(Hint: see Eqs. 2.6-2.9) 7?
(c) How many “real” words of computer memory required by the above 1-D
array AN(-) 7?7
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3 Parallel Algorithms for

Generation and Assembly of
Finite Element Matrices

3.1 Introduction

The solution of simultaneous linear equations or eigenvalue equations can be
considered as a major component of many existing finite element codes, since it
represents a major fraction of CPU time for the solution process in statics, free
vibration, transient response, structural optimization, and control structure interaction
(CSI) of large-scale, flexible space structures. Researchers are endeavoring to develop
efficient parallel algorithms for solving large systems of linear equations, eigenvalue
equations, and much progress has been recently reported in the literature [3.1-3.7].

Since the time for solving large system of linear equations has been reduced
significantly by using the recently developed parallel-vector equation solvers [3.1-3.7],
generating (complicated) element (stiffness and mass) matrices and assembling the total
(structural) matrices may now represent a significant amount of the total CPU time for
many practical engineering applications [3.4, 3.8-3.9]. This is especially true for
nonlinear structural analysis [3.8, 3.10], structural optimization and CSI [3.11, 3.12],
since in these application, new element matrices need to be generated and assembled in
an iterative procedure.

The objective of this chapter is to develop algorithms for parallel generation and
assembly of element matrices which exploit advanced computer with multiple
processors (such as Cray-C90, Cray-J90, Cray-T90, Cray SV 1, Intel Paragon, Mieko,
and IBM-SP2). The derivation of the new methods are presented, and practical
examples are given to demonstrate the effectiveness of the new methods.

3.2 Conventional Algorithm to Generate and Assemble Element Matrices

In this section, a conventional assembly procedure for generating and assembling
element matrices is described. To facilitate the discussions, a simple three-bar truss
structure, shown in Figure 3.1, is used in this section.

In Figure 3.1, each (truss) element stiffness matrix has the dimension of a 4-by-4
matrix, since each truss element is connected by 2 nodes (node i and node j), and each
node has 2 degree-of-freedom (dof). For example, element @ is connected by node i
=1 and node j=3. Also, the 4 dof associated with element @ are u,, u,, us, and u,.

The total (or structural) stiffness matrix has the dimension of a 6-by-6 matrix,
since the structural stiffness matrix has a total of 6 dof (u,, u,, ..., ug).

27



28 Parallel-Vector Equation Solvers for Finite Element Engineering Applications

Figure 3.1 Three bar truss example

In the conventional procedure, the element stiffness (or mass) matrices are
generated and their contributions to the total (structural) stiffness (or mass) matrix can
be obtained in a form of a pseudo-Fortran code, as shown in Table 3.1

Table 3.1 Conventional generation and assembly structural stiffness matrix

DO 1 e=1, 3 elements
® generate element stiffness matrix [k]
® add contribution of [k®] to structural matrix [K] = T k®©

1 Continue

Upon executing the algorithm shown in Table 3.1, each of the (4 by 4) element
stiffness matrix [k] will have its contribution to the (6 by 6) total (or structural)

stiffness matrix [K], as shown in Eq. (3.1)

1 2 3 4 5 6
1 (@@ [ [ @ ® @ @
2 e | ® ® ® ®
[Kles - 3 2@ | @@ | © @
4 @ | @ @
5 S Y | ™M @D | @D
6 @D

@.1

In Eq. (3.1), only the upper triangular portion of the structural stiffness matrix
[K] is presented, since matrix [K] is symmetrical and positive definite. At this stage, it
is only important to see the contributions of each element stiffness matrix into the total
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stiffness matrix [K]. Thus, only the element numbers (shown in circles) are shown in
Eq. (3.1), and their actual numerical values are NOT shown in Eq. (3.1).

Referring to Figure 3.1, one can clearly see that elements @ and @ both have
contributions to node 2 (or degree-of-freedoms u, and u,), while elements @ and @, for
example, both have contributions to node 1 (or degree-of-freedoms u, and u,). These
observations are also reflected in Eq. (3.1).

In a parallel computer environment, however, synchronization is a problem. This
can be demonstrated by the simple 3-bar truss of Figure 3.1. In Table 3.1, if each e*
finite element is assigned to a separate processor, then at node 1 (see Figure 3.1), for
example, both elements @and ® will often need to write their element stiffness
contribution to the structural stiffness matrix at the same locations, simultaneously! In
other words, generating all three element stiffness matrices (for elements @, @ & @)
simultaneously and independently will be a trivial task. Assembling these element
stiffness matrices simultaneously, however, do have complications and problems!

This synchronization problem can be partially overcome by either setting the
local locks in the common shared memory pool, or by special numbering of the
elements throughout the entire structure [3.10]. The first method, setting the local locks,
reduces the speed of parallel assembly considerably. The second method (special
numbering of the elements), while improving the speed of parallel assembly, is not
general since the method will not work if a large number of processors are used and the
number of substructures is small.

To alleviate the above synchronization problem, new alternative methods are
proposed and discussed in the following sections.

3.3 Node-By-Node Parallel Generation and Assembly Algorithms [3.8-3.9]

In this new algorithm, element matrices will be generated and assembled in a node-by-
node fashion. For a two-node (node i and node j) truss element (refer to Figure 3.1),
for example, a two dimensional, 4x4 element stiffness matrix [k‘] can be symbolically
represented as:
(e (@
k"f ki/
(k@] = © o (3.2)
kji k./,'i

In Eq. (3.2), k,.(,.e) and k,f,e) refer to the 2x2 sub-matrices which represent a
portion of an element stiffness matrix attached to node i and node j, respectively. The
coupling effect between nodes i and j of an element stiffness matrix [k‘] is represented

by a 2x2 sub-matrix k,.j(,e) (or its transpose 2x2 sub-matrix kl.(,.")). Using the three-

bar truss structure (shown in Figure 3.1) as a simple illustration, the new node-by-node
algorithm can be described in the following step-by-step procedure:

Step 1: Element Connectivity Data
The standard element connectivity data of the three-bar truss structure (see Figure 3.1)
can be readily obtained as shown in Table 3.2.
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Table 3.2 Element connectivity

Element Number Node-i Node-j
1 2 3
2 1 3
3 2 1

In general, a truss element is connected by nodes i and j. The selection of nodes
iand j are arbitrary.

Step 2: Node Connectivity Information

In this step, elements which are attached to nodes i and nodes j of the entire structure
need to be identified. The global degree-of-freedom (dof) associated with each node can
be readily identified. For the three-bar truss structure shown in Figure 3.1, the node
connectivity information can be generated as shown in Table 3.3

Table 3.3 Node connectivity for 2-D truss elements

Node Global Elements with “Node Number”
Number dof Node i Node j
1 ) 2 3
2 2 13 None
3 2 None 1,2

In Table 3.3, element 2 for example, appears in the last 2 columns because
element 2 is connected by node i = 1 and node j = 3. Similarly, element 1 also appears
in the last 2 columns because element 1 is connected by node i =2 and node j = 3. It
should be emphasized here, however, there are no elements attached to node j = 2.
Similarly, there are no elements attached to node i = 3. This step represents an
additional overhead cost of the proposed new algorithm, since the information generated
in this step is usually not required in conventional finite element codes. In actual
computer implementation, the additional cost (in terms of computer CPU time),
however, has been found to be negligible.

Step 3: Parallel Generation and Assembly (G&A) of Element Stiffness Sub-
matrix k" for Each Node of a Structure

Considering a typical truss member, such as truss member 2 as shown in Figure 3.1, this
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member is connected by 2 nodes (node i = 1, and node j = 3). The four dof associated
with this member are u,, u, (associated with node i) and u 5 & u ¢ (associated with node
j). The element stiffness matrix [k®] for this 2-dimensional truss is a 4 x 4 symmetrical
matrix, which can be partitioned as (refer to Eq. 3.2).

nodei nodej

Uy Uy Us Ug
“ PIORIC!
o node i @3.3)
T
5
© 4@
u ki™ K node j
6

In this step, the portion K, = E k(e)of the structural (or global) stiffness (or
mass) matrix K is generated and assembled in a parallel computer environment. From
the nodal connectivity information generated in the previous step, each node can be
assigned to a separate processor. Thus, in the three-bar truss structure (see Figure 3. 1?
node 1 will be assigned to processor 1. Processor 1, therefore will generate k
portions of element e=2 (see the 3rd column of Table 3 3), and add the contrlbutlon to
appropriate locations (dof 1 and 2). Simultaneously, node 2 is assigned to processor 2
which will generate k portions of elements e=1 and 3 in a sequential fashion, and
add its contribution to approprlate locations (dof 3 and 4) of the structural stiffness
matrix K. At the same time, processor 3 is assigned to node 3 (associated with dof 5
and 6). In this particular three-bar truss example, processor 3 is idle, as there are no
elements with node i=3 (refer to the 3rd column of Table 3.3). The parallel generation
and assembly (G & A)of K, = E k(‘ for each structural node can be represented as
shown in Table 3.4. ¢

Table 3.4 Parallel generation and assembly of k,.f,e)

nodei=1, i=2, i=3

1 2 3 4 5 6
1 @ @ nodei=1,
2 @
3 DR | O® node i =2,
4 DA |
5 nodei=3,
6

It is important to realize that in Table 3.4, processors 1 and 2 simultaneously
generate their own contributions to different locations of K;. There is no overlapping
between processor 1 (which is assigned to dof 1 and 2), processor 2 (which is assigned
to dof 3 and 4, and processor 3 (which is assigned to dof 5 and 6). Thus, in this step,
parallel G & A computation can be done without any communication among
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processors. The actual numerical values of K; are NOT given, since they are NOT
important in this discussion. Thus, only the element numbers which have contribution
to K; are given (see numbers in circle of Table 3.4). In this particular example (refer
to Figure 3.1), work-balancing is not good, since processors 1, 2 and 3 have to process
1, 2, and 0 element stiffness matrices, respectively.

As will be seen later in this chapter, however, for real, practical, large-scale
structural problems, the work-balancing among processors are quite good, and therefore
excellent parallel speed up factors can be achieved.

Step4: Parallel Generation and Assembly (G & A) of Element Stiffness Sub-matrix kl.f.”)
for Each Node of a Structure.

In this step, the portion K = y k‘”) of the structural stiffness matrix K is
generated and assembled in a parallel computer environment. Each node is again
assigned to a separate processor, and the information in the last column of Table 3.3 is
used here. Processor 1, which is assigned to node 1, will generate k” of element e=3,
and add its contrrbutlon to appropriate locations (dof 1 and 2) of the structural stlffness
matrix [K]. Simultaneously, processor 3 which is assigned to node 3, will generate k”
of elements e = 1 and 2, and add its contribution to appropriate locations (dof 5 and 6)
of the structural stiffness matrix [K]. At the same time, processor 2 is assigned to node
2 (associated with dof 3 and 4). In this particular example (refer to Figure 3. 1)
processor 2 is idle, since there are no elements withnode j=2. The parallel G & A of k
for each structural node is shown in Table 3.5

Table 3.5 Parallel generation & assembly of kzg,e)

1 2 3 4 5 6

1 ©) ® node j =1
2 9 ]

3 node j =2
4

5 O | ©@ nodej=3
6 D

Step 5: Parallel Generation & Assembly (G & A) of Element Stiffness Sub-matrix k,.ﬁ.”)
for Each Node of a Structure ’

In this step, the portion K, = Y k(e) of the structural stiffness matrix K is
generated and assembled in a parallet computer environment. To find out what
elements are attached to a given node of a structure, information on either node i (see
the 3rd column of Table 3.3) or node j (see the 4th column of Table 3.3) can be used to
generate the portion K;; of the structural stiffness matrix K.

In this section, the information for nodes j is used in this step. Thus, processor
1 is assigned to node 1 to process element e = 3. Element 3 is connected to dof 1, 2, 3
and 4, and its contribution to K;; and K; have already been done in step 3 and step 4,
respectively.

In this step, processor 1 will generate k(e »and add its contribution to the
appropriate locations of K;. Simultaneously, processor 3 is assigned to node 3 to
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process elements 1 and 2. Processor 3 will therefore, generate k;e) for elements e = 1
and 2, and add its contribution to the appropriate locations of K;. In this particular
example, processor 2 is idle since there are no elements with node j=2. The parallel
G & A of k for each structural node is conveniently represented in Table 3.6.

Table 3.6 Parallel generation & assembly of kl.ff)
1 2 3 4 5 6

1 ®|® [ @]
2 3 (O K&
3 [OF KO)
4 1 1
5

6

Since the structural stiffness matrix K is symmetric, only the upper-half of K,
K; and K are considered in step 3, step 4 and step 5, respectively.

The above five-step procedure to generate and assemble element stiffness
matrices in parallel is quite general, since there is no assumption on the type of element
used in the finite element model. For a more convenient and efﬁc1ent computer
implementation, the execution in step 5, for the coupling terms k and k,, , can be and
should be included in steps 3 and 4. Thus, the overhead cost due to the re-calculation
of some parameters for generating the element stiffness matrix can be reduced.

The actual computer implementation of Baddourah-Nguyen's algorithm for
generation and assembly of two-dimensional truss elements (see Figure 3.1, and Table
3.3) can be shown with a “pseudo-Fortran” code in Table 3.7. The variable NEL(n),
shown in Table 3.7, represents the number of elements to be processed by the n™
processor.

Table 3.7 Actual computer implementation for G & A
of two-dimensional truss elements

For each n* processor:
DO 1e=1,NEL (n)

Covnn Step 3 and Step 5 combined
C..n. Generate & Assembly k' andk(”) (where j > i)

1 23 456 1 2 3 4 56 1 23456
1@ |® @ |® 1 1
2 @ @ |® 2 2
3 3 @ |oo]o o] 3
4 4 DO @] 4
5 5 5
6 6 6

Processor 1 Processor 2 Processor 3 (idle)
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1 Continue

DO 2 e=1, NEL (n)
C.... Step 4 and Step 5 combined
c.... Generate & Assemblyk[f.e) and k,.f.e) (where i> j)

123456 123456 1234 5 6
1|@9[®]|®|® 1 1
p2l (6] [O][©) 2 2
3 3 3
4 4 4
5 5 5 @0 |@®
6 6 6 o)
Processor 1 Processor 2 (idle) Processor 3
2 Continue

For a three-node triangular element (with 2 translational dof at each node, refer
to Figure 3.2), a two dimensional, 6x6 element stiffness matrix k can be symbolically

represented as:

© L@ L@
kii kl[ kim

(e) - (e) (o)

ke = ki" K

k(L')

mm
¥
4

u
i
u3— ) m—ug
bos bes
I X

Figure 3.2 Three-node triangular element

(3.4)
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Figure 3.3 Triangular elements

In Eq. (3.4), k,.(,."), k];") and k,(ne,z, refer to the 2x2 sub-matrices which represent a
portion of an element stiffness matrix attached to node i, node j and node m,
respectively. The coupling effect between nodes i, j and m of an element stiffness
matrix k is represented by the sub-matrices k;."), k,.f,‘;) and k_,(,f,). Thus, for athree-
node triangular element, an additional step needs to be inserted before the last step (step
5) for parallel generation and assembly of k,ff”), for each node m of the structure. As
an illustrative example, a four triangular element structure is shown in Figure 3.3. The
corresponding node connectivity for this structure is shown in Table 3.8 (Similar to

Table 3.3)

Table 3.8 Node connectivity for 2-D triangular elements

Processor Global Elements with “Node Number”
(or Node) Number dof Node i Node j Node m
1 1,2 ®,® None None
2 3,4 6] @ None
3 5,6 @ (©) None
4 7,8 None @ V)
5 9,10 None 6)) 2,0,®

The actual computer implementation of Baddourah-Nguyen’s algorithm for

generation and assembly of two-dimensional triangular elements (see Figure 3.3 and
Table 3.8) can be shown with a “pseudo-Fortran” code in Table 3.9.
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Table 3.9  Actual computer implementation for G&A
of two-dimensional triangular elements
For each n processor:
DO 1 e=1, NEL (n)
c... Generate & Assembly k' k;.”) and £ (wherej, m> i)

i

c...  Processors 4 and 5 are idle

1 2 345678 910 12345678910 123452673829 10

1 2] 2|2 111212
2 12212 1|1 fi2]12
3 3]3)3]3 33
4 3[3]3 3] 3
5 alal4|a]4a] 4
6 afalal4] 4
7
8
9
10
Processor 1 Processor 2 Processor 3
1 continue

DO 2 e=1, NEL (n)
Generate & Assembly £\, k' andk,” (where m,i> j)
c..  Processor 1 is idle : ’

12345678910 123456718910 123456782910

O 00 N0 N AW N —
w
w
w
w

(=]

Processor 2 Processor 3 Processor 4



Duc T. Nguyen 37

Processor 5

2 continue
DO 3 e =1, NEL (n)
c... Generate & Assemble £

mm?>

kY and kS (where i, j>m)

Coveue Processors 1, 2 and 3 are idle
1. 2.3 4 5 6 7 8 9 10 1 23 45 67 8 0 10
1
2
3
4
5
6
7 1 {1 1]1
8 11 ]!
9 2,3&4 2,3 &4
10 2.3.844]
Processor 4 Processor 5
3 continue

3.4 Additional Comments on Baddourah-Nguyen’s (Node-by-Node) Parallel
Generation and Assembly (G&A) Algorithm

In general, the overhead cost is increased with elements which have more nodes
attached to them. For example, examining Table 3.3 carefully (2-D truss elements), one
can see that the proposed G&A algorithm requires generating each element stiffness
matrix TWICE (refer to the 3rd and 4th columns of Table 3.3). However, due to perfect
parallel computation (without any communication required) of three processors used,
the “net gain” in parallel speed-up is still = = 1.5. This parallel speed-up will be
significantly better for large finite element mddel with larger number of processors.
Similar observation in Table 3.8 (2-D triangular elements) will reveal that each
element stiffness matrix is generated THREE TIMES (refer to 3%, 4™ and 5 * columns
of Table 3.8). However, since 5 processors have been used (without any communication
between processors), the “net gain” in parallel speed-up is still =. This parallel speed-
up will be scalable for large finite element model with larger number of processors.
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Practical finite element models have a large number of degree-of-freedom. For
these large models, many finite elements need to be processed. Furthermore, there are
fewer processors available as compared to the number of elements in a large finite
element model. Thus, a balance of the work load among the processors is well
preserved. The idle time of the processors, therefore, is significantly reduced through
this generation and assembly process.

3.5 Applications of Baddourah-Nguyen’s Parallel G & A Algorithm

The proposed parallel algorithm [3.9] for G & A the element stiffness matrices has been
coded using a parallel Fortran language FORCE [3.13] (FORtran with Concurrent
Extension). It should be emphasized here that FORCE is used merely for convenient
purpose, other parallel software language such as PVM, or MPI (Message Passing
Interface) can also be used for parallel implementation of the proposed G & A
algorithm. Four structural examples were used to evaluate the numerical performance
of the new algorithm. In all examples considered in this section, elapsed (or wall clock)
time in a multiuser (non-dedicated) computer environment are reported. The times given
include the overhead cost in step 2 (of Section 3.2), and the G & A of the structural
stiffness matrix. The computation speed-up is defined in most parallel algorithms as

time for 1 processor

speed-up = (3.5)

time for N processsor

While parallel implementation of the “conventional” method for G & A of the structural
stiffness matrix has not completely resolved the synchanization problem [3.10], this new
parallel G & A algorithm is quite general, and a significant reduction in elapsed time
has been observed (see Tables 3.10 — 3.13) when multiple processors are used.

Even better speed-up factors can be expected in all these examples in a dedicated
computer environment, where the required processors are NOT shared by different
users.

Example 1: Three-Dimensional Truss Structure

A pattern of a three-dimensional truss structure is shown in Figure 3.4. The 5 story x
150 bay structure has 3416 three-dimensional truss elements, 612 nodes with 3 dof per
node. The elapsed time for this example using the new algorithm is presented in Table
3.10.
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Figure 3.4 Three-dimensional pattern of truss structure

Table 3.10 3-D Truss: speed-up on Cray Y-MP

Number of Generate/Assemble Speed-up
Processors Stiffness Matrix (sec)
1 0.1057 1.0000
2 0.0544 1.9418
4 0.0285 3.7052
6 0.0205 5.1619

For this example, the elapsed time using the conventional algorithm (on a single
processor) is 0.0855 seconds. As can be expected on a single processor, the new method
is a little slower than the conventional method. This is due to the overhead cost (refer
to Step 2) of the new algorithm. The power of the new method is fully realized on
massively parallel MIMD computers where the overhead becomes negligible.

Example 2: Two-Dimensional Frame Structure
A pattern of a two-dimensional frame structure is shown in Figure 3.5.

Figure 3.5 Two-dimensional frame structure

The 5 story x 150 bay structure has 1005 frame elements, 306 nodes with three
DoF per node. The elapsed time for this example using the new algorithm is presented
in Table 3.11.
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Table 3.11 2-D Frame: speed-up on Cray Y-MP

Number of Generate/Assemble Speed-up
Processors Stiffness Matrix (secs)
1 0.0295 1.0000
2 0.0152 1.9390
4 0.0083 3.5502
6 0.0071 4.1541

For this example, the elapsed time using the conventional algorithm (on a single
processor) is 0.0242 seconds.

Example 3: Two Dimensional Plate Structure

A pattern of a plate which is modeled by three-node triangular elements is shown
in Figure 3.6.

WAViv)

N
NN

Figure 3.6 Two-dimensional plate structure

The 5 story x 150 bay structure has 1500 triangular elements, 906 nodes with two
DoF per node. The elapsed time for this example is presented in Table 3.12.

Table 3.12 2-D Plate: speed-up on Cray Y-MP

Number of Generate/Assemble Speed-up
Processors Stiffness Matrix (secs)
1 0.0607 1.0000
2 0.0305 1.9909
4 0.0164 3.6990
6 0.0121 5.0362

For this example, the elapsed time using the conventional algorithm (on a single
processor) is 0.0400 seconds. The overhead cost (0.0607 seconds -0.0400 seconds) for
this example is larger than in the preceding examples. This is expected since the 3-node
plate element used requires more computations than the simpler 2-node truss and 2-node
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frame elements. Furthermore, the amount of redundant (or overhead) works in
evaluating element stiffness matrices, in general, is increased with increasing number
of nodes (or dof) per element.

Example 4: Three-Dimensional Beam Finite Element Model

A three-dimensional beam finite element antenna model to study Control-Structure
Interaction (CSI) [3.11] is shown in Figure 3.7.

Figure 3.7 Three-dimensional CSI antenna model

The structure has 1647 beam elements, 537 nodes with six DoF per node. The
elapsed time for this example is presented in Table 3.13.

Table 3.13 CSI speed-up on Cray Y-MP

Number of Generate/Assemble Speed-up
Processors Stiffness Matrix (secs)
1 1.3396 1.0000
2 0.6927 1.9339
4 0.3711 3.6098

For this example, the elapsed time using the conventional algorithm (on a single
processor) is 1.0989 seconds.

In all the above examples (see Tables 3.10-3.13), the elapsed time is decreased
with increasing number of processors. For linear structural analysis, the generation and
assembly of the structural stiffness matrix need to be done only once. Thus, more
significant time-saving can be expected in nonlinear structural analysis, structural
optimization and control-structure interaction where the element matrices are updated
and assembled repeatedly.

3.6 Qin-Nguyen’s G & A Algorithm

In this section, a massively parallel G & A of element stiffness matrices is developed
for large-scale structural analysis on massively parallel computers with distributed-
memory (such as the Intel Gamma, Delta, Paragon, Mieko, IBM-SP2). The same
algorithm can also be applied for shared memory computers (such as Cray YMP, Cray
C-90). A block-skyline column storage scheme is used to enhance the vector
performance of the equation solver (to be discussed in Chapter 7) and to reduce the
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memory demand for each processor. This column storage scheme can also be used to
improve the parallel performance of generation and assembly of element stiffness
matrices. The parallel computers used in this section are the Intel iPSC/860 (such as the
Gamma computer with 128 processors and the Delta computer with 512 processors).
Both computers have the same floating-point operation speed, while the Delta machine
has a higher communication rate as compared to that of the Gamma (say 3 to 1 ratio, for
matrices with an average half-bandwidth around 1000).

It is important to emphasize here that any proposed G & A algorithms should be
compatible with the equation solvers to be developed in subsequent chapters.

For illustrative purpose, let’s consider a two-dimensional frame structure as
shown in Figure 3.8. This 2-D frame structure has 16 nodes, each node has 3 degree-of-
freedom (2 translational dof in the x & y directions, and 1 rotational dof about the z-
direction). Nodes 13-16 have no degree-of-freedoms since these nodes are constrained
by the support boundary conditions. There are 21 frame finite elements, each element
is connected by 2 nodes, hence each element has 6 dof, and the entire structure has 36
dof.

To simplify the discussions, assuming there are 3 processors available, thus each
processor can be assigned to store block columns of the total stiffness matrix [K], as
shown in Figure 3.9 (where the block size k = 4 is shown). In real computer
implementation, however, block size k = 8 is selected, since this block size will give
near optimum performance during G & A and equation solution phases (to be discussed
with more details in Chapter 7). Thus column numbers (or dof numbers) 1-4, 13-16 and
25-28 belong to processor 1 (or P,), column numbers 5-8, 17-20 and 29-32 belong to
processor 2 (or P,). Similarly, column numbers 9-12, 21-24 and 33-36 belong to
processor 3 (or P,).

The dof associated with each finite element are known, once the finite element
model (see Figure 3.8) has been defined. This information is shown in the first 2
columns of Table 3.14. Since each dof (or each column) can be mapped into a particular
processor (refer to Figure 3.9), element number to processor number(s) mapping can be
easily established as shown in the 3™ column of Table 3.14.

Once the information shown in Table 3.14 is known, the mapping from processor
number to element number(s) can be readily identified as shown in Table 3.15.

In fact, once the dof associated with each element are known (refer to the 2nd
column of Table 3.14), Table 3.15 can be easily obtained in a parallel fashion, as
indicated in the following “pseudo-FORTRAN” coding (refer to Table 3.16).
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Table 3.16 Parallel algorithm to find which elements belong to each processor

For each processor i (where i = processors 1, 2 & 3)
DO 1 K =1, ALLELS (say K=7)

.. Get the dof, ELDOF(-) array, associated with the K™ element
. Get ELDOF(1, 2,3, 4, 5, 6) =25, 26, 27, 28, 29, 30

DO2M=1,6

If [ELDOF(M) belongs to processor i ] Then
. Record element K belongs to processor i
. Exit loop 2, and go to loop 1

Endif

2 Continue

1 Continue
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Figure 3.8 A 2-D frame structure
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Table 3.14 Degree-of-freedom and processor number

associated with each finite element

Frame Element Number

Frame Element DOF Numbers

Processor Number
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0,0,0,25,26,27
16,17,18,4,5,6
28,29,30,16,17,18
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19,20,21,7,8,9
31,32,33,19,20,21
0,0,0,31,32,33
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Table 3.15 Frame elements associated with each processor

Processor Number Frame Element Numbers Number of Elements
1 1,2,4,7,8, 10-15, 11
2 1-9, 13-18 15
3 2,3,4,5,8,9, 16-21 12

In Table 3.16, variable ALLELS (on line 2) refers to the total number of finite
elements. For the example shown in Figure 3.8, ALLELS =21 (also refer to Table 3.14).
The if statement (on line 6 of Table 3.16) will assure that an element will not be recorded
more than once by the same processor.

Each processor will scan through all finite elements (refer to the “do loop” on line
2). The dof associated with the K™ element are known, and are given by the integer array
ELDOF (M), where M = 1 through 6 (since each 2-D frame element has 6 dof). Once the
dof are known, the corresponding processor number can be identified (for example, by
referring to the information shown in Figure 3.9).

Assuming the value of K (on line 2) is 7. All three processors (P, P, and P;) will
examine the 6 dof (25, 26,27, 28, 29, 30) associated with frame element number 7 (refer
to lines 4 and 6). Upon exiting from loop 2 (refer to line 10), element 7 will be recorded
by processor 1 (since element 7 contains dof 25, 26, 27 and 28), and also will be
recorded by processor 2 (since element 7 also contains dof 29 and 30). Element 7,
however, will NOT be recorded by processor 3 (since all dof 25-30 are NOT belonging
to processor 3, refer to Figure 3.9).

The parallel G & A algorithm proposed by Qin & Nguyen [3.4] can be
summarized in Table 3.17.

Table 3.17 Qin-Nguyen’s parallel G & A algorithm

1 For each processor i (where i=processors 1,2 & 3)

2 DO 1 K =1, NEL (i)

3 c... Getthe 6 dof associated with the K'" element, ELDOF (M)
4. c... WhereM=1,2,3,4,5and 6

S ® Generate element (stiffness) matrix of the K™ element

6 ® Assemble the entire (or just a portion of) stiffness

7 matrix of the K" element into a global matrix

8 1Continue

In Table 3.17, NEL (i), on line 2, represents the number of elements which belong

to the i processor. Based upon the data presented in Table 3.15, then NEL (1) = 11,

NEL (2) = 15 and NEL (3) = 12. The first element of processors 1, 2 and 3 is element 1,

element 1 and element 2, respectively. Similarly, from Table 3.15, the last element of
processors 1, 2 and 3 is element 15, element 18 and element 21, respectively.

Assuming processors 1, 2 and 3 are trying to simultaneously generate element
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stiffness matrices (of elements 1, 1 and 2, respectively) and add (or assemble) its
contribution to the appropriate locations of the total (or global) stiffness matrix K. At this
stage, processor 1 (or P,) will generate a 6 by 6 element stiffness matrix (for element 1).
However, it assembles only a portion (associated with dof 1-4) of its 6x6 element matrix
into the appropriate locations of the total matrix [K] as shown in Figure 3.10. At the same
moment, processor 2 (or P,) will also generate a 6 by 6 element stiffness matrix (for
element 1). However, it assembles only a portion (associated with dof 5-6) of its 6x6
element matrix into proper locations of the total matrix [K]. Simultaneously, processor
3 will generate a 6 by 6 element stiffness matrix (for element 2). However, it assembles
only a portion (associated with dof 9) of its 6x6 element matrix into proper locations of
the total matrix [K]. From Figure 3.10, it is important to observe that there is no
overlapping among processors when each processor simultaneously adds its contribution
to global matrix [K].

P, P, P, P,
1 45 8 9 12 13 16
1 QOO [0®
OJoJOR [Ofe
OFl (o)
4 N (O @
5 oye) @
© @
@
8 @
(K] = 9 @
12
13
16

Figure 3.10 Parallel G & A of element stiffness matrices for elements
1 and 2 by processors 1, 2 and 3, respectively

The numerical values of the total (or global) stiffness matrix [K] are
unimportant at this point, hence, only element numbers are shown in Figure 3.10.

3.7 Applications of Qin-Nguyen’s Parallel G & A Algorithm

2-D truss structures with ‘nb’ bays and ‘ns’ stories (shown in Figure 3.11) are denoted
as nb x ns. Table 3.18 gives the CPU times for the generation and assembly of the global
stiffness matrix (on the Gamma computer with up to 128 processors). For the 200 x 6
model, nel = 4806, neq=2412. For the 1 x 16500 model, nel = 82,500 and neq = 66,000.
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Table 3.18 CPU times for the generation and assembly of the global matrix

nb x ns k 1 2 4 8 16 32 64 128
200x6 4 337 206 .1036 .0593 .0290 .01398 | .00718 | .0034
200x6 8 .339 .1885 1145 .0569 .0273 .01412 | .00664 } .0033
1x16500 4 4.64 3.537 1.793 .9083 4515 2267 114 .057
1x16500 8 - 2.985 1.507 7564 376 .188 .0945 .0481

*small overhead timings for obtaining Table 3.15 is not included here.

As it can be seen from Table 3.18 that in general, larger block size k will lead
to higher speedup, because there will be fewer elements that contribute to more than one
processors. The price one has to pay is, however, more memory will be required for
larger block size (to be discussed and explained in Chapter 7). The block size will also
have the effects on the performance of the equation solver, which will be discussed in
Chapter 7.

Figure 3.11 Two dimensional pattern of truss structure
with “nb” bays and “ns” stories

Larger-Scale numerical examples of 2-D truss structures with 750 bays and 6
stories (with 18,006 truss elements) and 1096 bays and 41 stories (with 179,785 truss
elements) are presented in Table 3.19.

Table 3.19 Performance of Qin-Nguyen G&A algorithm
for large-scale truss structures

Number Processors 8 16 32 64 128 256 512
750 bays, 6 stories 0.1585 | 0.0806 { 0.0403 | 0.0188
(Intel Gamma Computer)
750 bays, 6 stories 0.3203 | 0.1506 | 0.0785 | 0.0377 | 0.0176 [0.0095 0.00463
(Intel Delta Computer)
1096 bays, 41 stories 0.12251
(Intel Delta Computer) (38.46

Mflops)
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It is interesting to note that there are a few places in Table 3.19 which indicate
more than ideal speed-up factors. In this work, a processor will generate a complete
element stiffness matrix even though it may need only a portion of it. This kind of a
“redundant computation” may be reduced when more processors are used.

In Table 3.20 [3.5], the finite element used is an eight-node solid element with
3 d.o.f. per node, thus there are 24 d.o.f. per element. Since every 8 d.o.f. are stored in
one processor, it is generally true to state that the same element should be shared by AT
LEAST three (24/8=3) processors, or AT MOST (the worst case) by eight processors.

The above observations imply that for the 24 d.o.f. solid element, the speed-up
for generation and assembly is AT BEST NP/3, or AT WORST NP/8. When the number
of processors (NP) is small and the problem size is fixed, the “actual” speed- up may be
more or less than the “predicted” range. However, when NP is large enough, the change
of the speed-up will be proportional to the change of NP (i.e., when NP is doubled, the
speed-up will also be doubled.)

In Table 3.20, the “actual” change in speed-up shown in row 5 can be easily
obtained from the “actual” change in time shown in row 4. Furthermore, the change in
NP shown in row 6 is in close agreements with row 5 when NP is large. The “actual”
number of elements processed by each processor is shown in row 2, the “predicted”
worst case is shown in row 3 and is in good agreement with row 2 when NP is large.

Table 3.20 “Predicted” and “actual” speed-up for Qin-Nguyen’s G/A
of 24 d.o.f. solid elements on multiple processors MEIKO computer

Nel=15**3 NP=8 NP=10 NP=16 NP=20 NP=30 NP=64 NP=96
#Els./Processor 1830 2120 1620 1300 870 415 270
(actual)
#Els./Processor 3375 2700 1687 1350 900 4219 2813
(predicted)
“actual” time 30.01 3485 26.68 21.22 14.20 6.73 4.49
for G/A (seconds)
“actual” change N/A 1.1613 1.30622 1.2573 1.4944 2.11 1.499
in speed-up (=34.85/ (=14.20/
30.01) 6.73)
“predicted” N/A 1.25 1.60 125 1.50 2.13 1.50
change in (=10/8) (=64/30)
speed-up
3.8 Summary

Simple and efficient parallel algorithms for generating and assembling the structural
stiffness (or mass) matrix have been developed and tested in a non-dedicated computer
environment on different supercomputers. The new algorithms circumvent the processor
synchronization problem associated with implementing the conventional approach on a
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parallel machine.

Good speed-up factors were obtained even for small to medium scale structural
examples. Better speed-up factors can be expected from the new algorithms in a truly
dedicated computer environment. The new parallel algorithms are general since there
is no assumption made on the type of finite elements used.

While both parallel G & A algorithms (presented in Sections 3.2 and 3.5) have
offered excellent speed up as the number of processors increased, the Qin-Nguyen’s G
& A algorithm is a preferred choice due to its simplicity, generality (the algorithm can
be easily used to construct the stiffness matrix in either column-by-column, or row-by-
row fashion) and portability (the algorithm can be implemented on either distributed, or
shared memory computers).

3.9 Exercises
3.1 In Figure 3.9 (which is related to Figure 3.8), the following assumptions have
been made:

(a) 3 processors were used, and

(b) each processor stored block (4) columns of the coefficient stiffness matrix.
Re-construct Tables 3.14, 3.15 and Figure 3.10, due to the following changes in the
assumptions:

(c) 4 processors and block (4) columns are used ?

(d) 3 processors and block (6) columns are used ?

(e) 4 processors and block (6) columns are used ?

3.2 A two dimensional finite element problem is modeled by 4 triangular and 1
rectangular elements as shown in Figure P3.2. For this problem, construct a
Table similar to the one explained in Table 3.8 ??

Qi K= B O
i @ J \ i ]
1 2 6
Figure P3.2
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4 Parallel-Vector Skyline

Equation Solver on
Shared Memory Computers

4.1 Introduction

The solution of linear systems of equations on advanced parallel and/or vector
computers is an important area of ongoing research.[4.1 - 4.2]. The development of
efficient equation solvers is particularly important for static and dynamic structural
analyses, eigenvalue and buckling analyses, sensitivity analysis and structural
optimization procedures.[4.3 - 4.5] Research has been directed towards developing
either effective vector methods or parallel methods to solve linear systems of equations.
However, modern supercomputers now have both parallel and vector capability;
algorithms that exploit both capabilities are the most desirable.

This chapter presents a direct Choleski-based equation solver which exploits
both parallel and vector features of supercomputers. The objective of this chapter is to
describe this new equation solver and to evaluate its performance by solving structural
analysis problems on high-performance computers.

4.2 Choleski-based Solution Strategies

The key to reducing the computation time for structural analysis is to reduce the time
to solve the resulting linear system of equations. Using matrix notations, the linear
system of equations can be conveniently expressed as:

[K]{z} = {F} @.1)

For many engineering applications, the coefficient matrix (or stiffness matrix, for
structural engineering applications) often has nice properties, such as symmetry and
positive definiteness. In Eq. 4.1, {Z} and {F} are unknown (or nodal displacements, for
structural engineering applications) and known (or nodal forces, for structural
engineering applications) vectors, respectively.

On sequential computers, direct methods based on Choleski factorization are
both accurate and fast in solving a wide range of structural analysis problems. These
methods are used in most commercial finite element codes. Choleski-based methods
have also been found to be accurate and fast in solving structural analysis problems on
parallel computers.

51
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In the Choleski methods, the unknown vector {Z} can be found in three
distinct steps.
First Step: Factorization (or Decomposition)

In this step, the coefficient matrix [K] can be decomposed as

(k] = [U]"[U] “2)

where [U] is an upper triangular matrix, and thus [U]" is a lower triangular matrix.

Second Step: Forward Solution
Assuming the matrix [U] in Eq. 4.2 has already been obtained, one can
substitute Eq. 4.2 into Eq. 4.1 to obtain

[U)[U]{z} = {F} 4.3)

The product [U] * {Z} in Eq. 4.3 can be renamed as vector {y}. Hence, Eq. 4.3
becomes:

(U]« {y} = {F} )

The forward solution step is completed upon solving the unknown vector {y} from Eq.
44,

Third Step: Backward Solution
From the second step, one has

[U]{z} = {y} (4.5)

where the factorized matrix [U] and vector {y} have already been found from the first
and second steps, respectively.

The final (and original) unknown vector {Z} can be found by solving Eq. 4.5.
For a single right-hand-side vector {F}, the first step is the most time consuming step.
Approximately 90% or more of the total equation solution time is spent in the
factorization step alone. The remaining 10% or less of the total equation solution time
is spent on Forward/Backward solution steps.

4.3 Factorization
In Choleski-based methods, a symmetric, positive definite (stiffness) matrix [K] can be

factorized as indicated in Eq. 4.2. The U; terms of matrix [U] in Eq. 4.2 can be
computed according to the following formulas

U;=0 Jor P> (4.6)
U, = /K ; U, - U
n - n o 1y —U— 4.7

11
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for i>1 4.8)

4.9)

U, = kel for ij>1

Having obtained the upper triangular matrix [U] from the Choleski decomposition
phase, the solution vector {Z} for the system of simultaneous equations (see Eq. 4.1)
is found by the forward (see Eq. 4.4) and backward (see Eq. 4.5) substitution phases.
Equation 4.6 is obvious, since [U] is an upper triangular matrix, and therefore, its lower
triangular portion must be zero. The determination of the Egs. 4.7 - 4.9 can be easily
understood with the help of the following example of a 3 x 3 [K] matrix. From Eq. 4.2,
one has

K, K, K uy, 0 0 Uy Up U
Ky Ky Kyy|=|uy, uy 0 0 uy uy 4.10)
Ky K;, Ky Uiz Uy Uy 0 0 uy

Equating the upper triangular portion of the left hand side of Eq. 4.10 with the
corresponding right hand side, one obtains:

2
K, =uy or u, =K, 4.11)
K,
K, =u,u or U, = —= 4.12
12 1 %2 12 (4.12)
Uy
K,
K.=u.,u or U, = — 4.13
13 1 %3 13 (4.13)
Uy
2 2 2
K,, = uj, + uy or u, = K,, - up “4.19)
K —uu +uu or =K23_u12“13
23 T U Upz H Uy, Uy Uy — (4.15)
Uy
2 2 2 2 2
Kyy=ujs + uyy + U3y or Uy = | Kyy — a3~y (4.16)

Thus, it can be seen that Eqgs. 4.7 - 4.9 are general versions of Egs. 4.11 - 4.16.

The order of computation for the matrix [U] can be dictated by the storage
schemes used to store the “stiffness” matrix [K] and its corresponding factorized matrix
U. For example, a closer look into Egs. 4.11 - 4.16 will reveal the facts that matrix U
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has been computed according to a row-by-row storage scheme. Eqgs. 4.11 - 4.13
compute the first row of matrix [U], and Eqs. 4.14 and 4.15 compute the second row of
matrix U. Similarly, Eq. 4.16 computes the third row of matrix U. In this case, since
matrix U can be computed in a row-by-row fashion, the original stiffness matrix [K]
should also be stored in a row-by-row fashion (refer to Section 2.4 of Chapter 2). A
more detailed row-by-row storage scheme and its associated equation solution strategy,
however, will be discussed in Chapter 5.

In this chapter, however, the original stiffness matrix [K], shown in Eq. 4.10,
will be stored, and factorized in a column-by-column (or skyline) fashion!*®!. Details of
the skyline storage scheme has already been discussed in Section 2.5. To simplify the
discussions, assuming the 3 x 3 matrix [K], shown in Eq. 4.10, is completely full. In
practice, only the upper-half of the matrix [K] needs to be stored in a 1-dimensional
array A(-), column-by-column fashion. Furthermore, for each column of the matrix [K],
its corresponding numerical values will be stored from the diagonal term and in the
upward direction. As an example, the 1%, 2™ and 3™ columns of [K] will be stored in a
1-D array A(-), according to the following patterns:

1 Kll
2 II?Z
3 18
A = > 4.17)

4 K,
5 K

6 23

K1

The factorized matrix [U], therefore, should also be computed in the following column-
by-column fashion, refer to Eqs. 4.11 - 4.16:

u, = JK, Beginning of 1* column of [U] (4.11R)
K
u, = —2 Beginning of 2™ column of [U] (4.12R)
U
2
Uy, K,, - up, (4.14R)
K
u, = u—” Beginning of 3™ column of [U] (4.13R)
11
K,-u,u
uy = ﬁ_uLB (4.15R)
2
Uy = | K35 - "123 - u223 (4.16R)

It is rather obvious to see that Egs. 4.11 through 4.16 are simply the repeated equations
of Eqs 4.11R through 4.16R. The major difference between these two sets of equations
is only in the order of computations for the factorized terms u;. The former was based
on a row-by-row factorization scheme, while the latter was based on a column-by-
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column scheme. Furthermore, for each column, the factorized elements u; (for j > 1)
have been computed in the direction from the top element of the column to the diagonal
element of the same column, refer to Egs. 4.11R through 4.16R, and Figure 4.1.

Uy Uy Upy

| |
Uy Uy
|

Uz

Figure 4.1 Column-by-column (skyline) factorization

4.3.1 Basic, sequential skyline Choleski factorization:

computer code (version 1)
To facilitate the discussion in this section, a full and symmetrical stiffness matrix [K],
with nine rows and nine columns, is shown in Figure 4.2.

Column Column
I1=4 J=7
Ky K, Ks K, Ks Kg K; Kg wa
22 n Ku Ky K Ky Kyu Ky
Ky Ky Ky K Ky Ky Ky | RowI-1 =3
K, Ks K, K, Kz K, Row Il =4
SYM. K Ko K Ky K
K Ko Ky Kg
K, K, K RowJ =17
Ky Ko
K

Figure 4.2 A full, symmetrical stiffness matrix [K]

In practice, the calculated factorized matrix [U], with its terms uy, will be
stored in the same locations as the original terms K;. Furthermore, the original matrix
[K] will not be full and it will be stored in the one-dimensional array, as it has been
discussed in Sections 2.5, and 2.7 through 2.9. Factorizing the matrix [U] with
implementations of these detailed features will be postponed in later sections of this
chapter. Let us try to carefully examine Eqs. 4.8 and 4.9 by computing the following
typical off-diagonal term of the matrix [U]. According to Eq. 4.9, one has

u, (with i=4,j=7)=upy=—H1 4.18)
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Eq. 4.18 can be written in the expanded form as

K - ("14 Upg + Uy lly; + Uy, u37)
= (4.19)
Uyy

Uyq
Similarly, the typical diagonal term u,, can be computed according to Eq. 4.8 as

2 2 2 2 2 2
Uy = Koy - (“17 Ty Uy Uy T Uy “67) (4.20)

At this point, it should be pointed out that if i = j, then Eq. 4.9 will be automatically
reduced to Eq. 4.8 (with the exceptions of the square root and dividing of u; operations).
Thus, the most important equation in this section is Eq. 4.9, which is used to compute
the off-diagonal terms, as well as the diagonal terms, for the reasons which have already
been cited.

Equation 4.19 reveals an important fact that, in order to compute u,,, one needs
to know the factorized matrix [U] associated with only columns, 4 and 7. The
summation done inside the parenthesis of Eq. 4.19 can be considered as the dot product
of two vectors

Uy Uy
Uy ( and Uy
Uy, Uy

This dot product operation can be conveniently visualized by referring to columns 4 and
7 of Figure 4.2. Similarly, Eq. 4.20 indicates that, in order to compute u,,, one needs to
know the factorized matrix [U] associated with only columns 7 and 7. In other words,
only the factorized column 7 is needed in order to compute u,,. The summation done
inside the parenthesis of Eq. 4.20 can be considered as the dot product of the vector

Uy
A : : : _ ,
ul) [ on itself. This dot product operation can be conveniently visualized by referring

Zs7
67

to column 7 of Figure 4.2.

It has been stated in Section 4.3, in particular to the references to Egs. 4.11R
through 4.16R, that column-by-column (or skyline) factorization of the given matrix [K]
will proceed in the direction from left to right. In other words, column 1 is factorized
first, then columns 2, 3, .. n are factorized. Furthermore, within each column,
factorization will proceed in the direction from the top of the column down to the
diagonal term of the same column. Thus, if one wishes to compute the factorized term
u,; (the 4th term from the top of column 7), then it has been implied that the first 6
columns of [U], and the first 3 terms of column 7, such as u,,, u,; and u,,, of [U] had
already been completely factorized.

Similarly, the computation of the factorized term u,, has the implications that
the first 6 columns of [U], and the first 6 terms of column 7, such as u,,, u,, ..., ug;, of
[U] had already been completely factorized.
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<— rowm
<—rowi

<— row j

Figure 4.3 Factorization of general diagonal term u; (= point C)
and general off-diagonal term U;; (= point F)

As indicated in Figure 4.3, factorizing a typical diagonal term u; will require
the dot product operations of column i on itself. Thus, according to Eq. 4.8 and referring
to Figure 4.3, one has, (assuming column i has full height).

u, = [Kﬁ - (ulz, + uzz,. o + u,z_l, ,_1)]”2 4.21)

Similarly, factorizing a typical off-diagonal term u; will require the dot product
operations of column i and column j (above the i* row). In general, a column may not
have its full height. As an example, the j" column in Figure 4.3 only has the height EF,
whereas the i column has the full height AC. Thus, factorizing u; will require the dot

product operations of segment BC for the i™ column, and segment EF (=BC) for the j*
column. In other words, according to Eq. 4.9, one has

_K;- (um,i F U+ Uy i ¥ Uy oot Uy Uy
u, = (4.22)
i
Ujj

A skeleton, pseudo FORTRAN code (version 1) for column-by-column Choleski
factorization, is now given in Table 4.1.

The pseudo FORTRAN code, shown in Table 4.1, can be understood with the
aid of Figure 4.2, and Eqs. 4.8 and 4.9. Referring to Table 4.1, different FORTRAN
statements will perform different operations during the Choleski factorization.
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Table 4.1 Basic (column oriented) Choleski factorization (version 1)

1 U,; = SQRT (X,,) (referring to Fig. 4.2)
2 DO1J=2N (Say J= 7" column)
3 DO 2 1=Top Row # of Column J, RowJ (Say I = 4" Row)
4 SUMI1 = 0
5 DO 3 K = Top Row # of Column I, Row I-1
6 3 SUMI = SUMI + Uy * Uy
7 U, = K, - SUMI
8 IF (I. EQ.J) THEN
9 Uy = SQRT (Uy)
10 ELSE
11 Uy = Uy/Uy
12 ENDIF
13 2 CONTINUE
14 CONTINUE
Referring to Table 4.1 and Figure 4.2 simultaneously, one observes:

Line 1: First column of the [K] matrix is factorized. The factorized diagonal term U,
is computed by using Eq. 4.8.

Line 2: This first do loop will sweep from column 2 to column N, with the increment
1. Let us just concentrate on a typical I column, say J = 7" column.

Line 3: This second nested do loop is needed, since within the 7* column, there are
several terms (= 7 terms, since the [K] matrix is assumed to be full) that need
to be factorized (U,5, U,,, Us;, Uy, ... U;,). Since the 7* column is assumed to
have its full height, this loop should sweep from row 1 to row J (=7). In
general, if the column height of the 7™ column is shorter, then this loop may
sweep from TOP ROW # OF COLUMN 1J (either row 2, or 3, etc....) Let us
just concentrate on a typical term, say U,, (or I =4).

Line 4: The summation is initialized.

Line 5: This 3™ nested loop is needed, since the computation of U,, will require the

u u

dot product of 2 vectors {u;: } and {u; . In this case, the index K of this
Usy Usq

loop will sweep from 1 to I-1 (= 4-1=3). Again, since the 4" column may not

have its full height, the index K of this loop will sweep from TOP ROW # OF

COLUMN I to I-1.
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u u
. 14 17 .
Line 6: The dot product of the 2 vectors %, ( and {¥,; ( are carried, and the
U U
34 37

result is stored in variable SUM1.

Line 7: The nominator of Eq. 4.8, or Eq. 4.9 is computed.

Lines 8,9: Ifthe index I and J are the same, then the factorized term is recognized as
a diagonal term. Hence, Eq. 4.8 is applied.

Lines 10-12: If the index I and J are NOT the same, then the factorized term is an off-
diagonal term. Hence, Eq. 4.9 is applied.

Line 13: End of the 2™ loop.

Line 14: End of the 1* loop.

4.3.2 Improved basic, sequential skyline Choleski factorization: computer code

(version 2)

In FORTRAN computer coding, logical “IF” statement is not cheap to execute. The
purpose of this section is to try to avoid the use of logical “IF” statement, as shown in
statement number 8 of Table 4.1.

Referring to Figure 4.2, one can see that factorizing column 7 will require the
computation of u,,, U,;, U;7, Uyy, Usy, Ugy, and u,,. Loop I of Table 4.1 (see statement #3)
will sweep through from TOP ROW # OF COLUMN J (=row 1) to ROW J (=row 7).
However, it is obvious that the first 6 rows of column 7 (= u,;, u,,, ... us;) contain only
off-diagonal forms, while the last row of column 7 contains the diagonal term u,,.

Realizing this fact, Table 4.2 offers a simple coding strategy to avoid the use
of a logical IF statement during Choleski factorization. Comparing Tables 4.1 and 4.2,
one can see that Loop 2 in Table 4.1 has been separated into 2 loops, loop 2 and loop
33, in Table 4.2. In Table 4.2, loop 2 now sweeps from TOP ROW # OF COLUMN J
(=row 1) to ROW #]-1 (= row 6). Thus, even without an IF check on the index I and
J, one knows for sure that loop 2 will compute only off-diagonal terms. Since only the
first 6 rows (instead of 7 rows) of column 7 have been processed by the index I of loop
2 in Table 4.2, it implies that loop 3 (see Table 4.2) needs to be executed one more time
to take care of the diagonal term u.,. Statements 11 through 14 of Table 4.2, therefore,
are used to factorize diagonal term u,,.
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Table 4.2 Basic Choleski factorization without IF statements (version 2)

1 U,, = SQRT (X,,)

2 DO1J=2N (Referring to Figure
4.2 Say J = 7th
Column)

C TREAT ALL OFF-DIAGONAL TERMS FIRST
DO 2 I=Top Row of Column J, Row J - 1 (Say I =4)
SUM1 =0
DO 3 K = Top Row of Col. I, Row I - 1
3 SUMI = SUMI + Uy, * Uy,
Uy =Ky - SUMD/ U,y
CONTINUE

10 C NOW, TREAT THE CASE 1=
C (DIAGONAL TERM) SEPARATELY

O 00 N &N »n b~ W

11 SUMI = 0
12 DO 33 K = Top Row of Col I, Row I - 1
13 3 SUMI = SUMI + Uy, * Uy,

14 Uy = SQRT (K, - SUMI)

15 1 CONTINUE

4.3.3  Parallel-vector Choleski factorization (version 3)

From Egs. 4.8 and 4.9, and by referring to Figure 4.2, it may seem the column-by-
column Choleski factorization algorithm involves highly sequential operations. For
example, factorizing all 7 terms (=u,,, Uy, ... U,) in the 7" column of Figure 4.2 cannot
completely be done, unless “all” previous columns 1 through 6 have been completely
factorized.

However, a more careful look into Eqgs. 4.8 and 4.9 and Figure 4.2 will reveal
the following important facts, which can be further exploited later on to develop
efficient parallel Choleski factorization algorithms for shared memory computers, such
as Cray-YMP, Cray C-90 computers.

Using Eq. 4.9, one has
u = Ko

17 (4.23)
Uy

Ky - upyuy,
tyy = B (4.24)
2
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Ky — (U311, + Uy 1ty
u = ( L ) (4.25)
33

Ky - (”14 Upg ¥ Upglyy + Uy ”37)
Uy = (426)
Uy,

Ky '("15 Upg + UpsUyy * Uyglzg * Uys ”47)
u; = 4.27)
Uss

Ky ‘("16”17 FUgg Uyt UsgUsy t Uy Uy + Usg “57)
gy = (4.28)
Uge

- 2 2 2 2 2 2 \|i2
Up = [K77 - ("17 Ty tUyy Uy U u67)] (4.29)

Equation 4.23 clearly indicates that as soon as factorization of column 1, or u,,,
is done, the first term of the 7* column (= u,,) can be computed, even though columns
2 through 6 may NOT be done yet!

Similarly, Eq. 4.26 indicates that the term u,;, of the 7™ column can be readily
computed as soon as column 4 has been completely factorized, even though columns
5 and 6 may not be done (or factorized) yet. Since the column-by-column factorization
scheme proceeds in the direction from the top down to the diagonal term (of a given
column) therefore, the computation of u,, has already implied that u,,, u,,, and u,, had
already been completely factorized earlier.

The above observations will immediately lead to different options for parallel
factorization strategies. In Figure 4.2, assuming that each column will be factorized by
different processors. For example, Columns 1 through 9 will be handled by processors
1 through 4 (see Figure 4.4).

Option A: Make Only One (1) Synchronization Check
Again, we assume that the 7" column is currently being factorized by a particular
processor, say the 2™ processor. In this option, the 2™ processor will make only 1
synchronization check:
Has column #6 been completely factorized, by the 1st processor, yet?

If the answer to the above questions is NO, then processor

#2 will wait, until column 6 is done. If the answer is YES,

then processor #2 will proceed to compute, in the direction

from top down, u,;, u,,,..., U,;. Finally, processor #2 will

broadcast to all other processors that column #7 has been

completely factorized.

Option B: Make “A Lot” of Synchronization Checks
In this option, the 2™ processor will make “a lot” of synchronization checks:
Has column #1 been completely factorized yet?
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If the answer is NO, then it (= processor 2) will wait, until
column 1 is done. If the answer is YES, then it will
compute u,,, and proceed to ask the next question:

Has column #2 been completely factorized by processor 1 yet?
If the answer is NO, then it will wait, until column 2 is
done. If the answer is YES, then it will compute u,,, and
proceed to ask the next questions. etc.

Has column #6 been completely factorized by processor 1 yet?
If the answer is NO, then it will wait. If the answer is YES,
then it will compute ug, and proceed to compute u,,, without
asking any further questions, since processor #2 is the
“owner” of column 7, and all required information to
compute u,;, are already available and belongs to this
processor. Finally, processor #2 will broadcast to all other
processors that column #7 has been completely factorized.

Option C: Make “A Few” Synchronization Checks
In this option, the 2™ processor will make “a few” synchronization checks:
Has column #3 been completely factorized, by the 2™ processor?
If the answer is NO, then it will wait, until column 3 is
done, or else it will compute u,,, u,; and u;;. Then, another
synchronization check will be made.
Has column #6 been completely factorized?
If the answer is NO, then it will wait, or else it will compute
U7, Usy, Ugs, and u,,. Finally, all processors will be informed,
by processor #2, that column 7 has been completely
factorized.

Analysis of Options A, B, and C:
It is rather obvious to see that Option A is an extreme, where factorization has been
conducted essentially in a sequential fashion. For example, unless all first 6 columns of
the stiffness matrix [K] have been completely factorized, none of the terms in column
7 will be factorized, by processor #2.

Option B is another extreme, it will offer good parallel computation, but at the
price of paying higher communication cost. In this option, assuming only the first 2
columns of stiffness matrix [K] have been completely factorized, the other columns 3
through 6 have not been factorized yet, then the first two terms, from the top, of column
7 (= u,; and u,,) can still be computed by the 2™ processor. In this option, if column J
belongs to processor I, then the I'"" processor will have to make (J-1) synchronization
checks.

Option C is a compromise between the 2 options A and B, since only a “few,”
say 2 or 3 (instead of only “1" as in Option A, or “J - 1" as in Option B)
synchronization checks need to be done. The key idea presented in Section C can also
be partially explained in Figure 4.5.

The skeleton of a pseudo-FORTRAN Parallel-Vector Choleski factorization
computer code (Version 3) is outlined in Table 4.3.
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In Table 4.3, different statements will perform different operations during the

Choleski factorization, as will be explained in the following paragraphs.

Line 1:
Line 2:
Line 3:
Line 4:

Line 5:

Line 6:

Lines 7 -

All columns are initially declared as NOT done (or NOT factorized) yet.

The first column is factorized by a particular processor.

All processors are informed that column 1 has been done (or factorized).

In the first do loop, different values of index J, which represent column

numbers, are assigned to different processors for parallel factorization. For the

matrix example shown in Figure 4.4, columns (2, 6), (3, 7), (4, 8), and (5, 9)

are assigned to processors 1, 2, 3 and 4, respectively.

The second do loop with index I, has already been explained in statement 4 of

Table 4.2

Synchronization checks are performed according to Option B.

16: In this third do loop, different off-diagonal terms are factorized by
different processors. In Figure 4.4, for example, the off-diagonal terms
u,,, U3, U,, and u,s are being factorized simultaneously by processors 1,
2, 3 and 4, respectively. Upon completions these tasks, processor 1 will
get out of the 2™ do loop and it proceeds to compute the factorized term
u,, (for the case index I = J). At the same moment, processors 2, 3, and
4 all have to wait, “idle,” since they cannot compute u,;, u,,, and u,
(refer to Eq. 4.9) unless the computation of the diagonal term u,, has
been completed by processor 1.

As soon as u,;, U,, and u,, have been computed, by processors 2, 3, and 4,

respectively, processor 2 will also get out of the 2™ loop and it proceeds to compute the
diagonal term u,, (for the case index I = J).

Line 17:

Line 18:

As soon as the diagonal terms of any columns have been computed (by
any processor) the associated column will be declared to all other
processors as completely done.

Another J* column will be processed by a processor

Col 1 Processor 1 P, P, P, P, P,
Done (or P)

s
oo

X X X X X X x X X
X X X X X » X X

X X X X = X X

X X X = X X

SYM X X x X X
X x X X

* X X

X X

X

Figure 4.4 Parallel and basic vector Choleski factorization
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Table 4.3 Parallel vector Choleski factorization (version 3)

[ovy

ALL COLUMNS ARE DECLARED AS NOT DONE (OR NOT
FACTORIZED) YET

2 U,; = SQRT(K;;)

3 BROADCAST TO ALL PROCESSORS THAT COL. #1 WAS DONE
ALREADY

4 PARALLEL DO 1 J=2, N (Referring to Figure 4.4)

) DO 2 I=TOPROW OF COLJ,ROW J-1

6 Is Col. #1 Done? (If NOT, then wait here!)

7 SUMI =0

8 DO 3 K = TOPROWOF COLI, ROWI-1

9 3 SUMI = SUMI + Uy * Uy

10 U, = K - SUMD) /Uy

11 2 CONTINUE (PROCESSOR #2, 3,4 GO BACK LOOP 2

PROCESSOR #1 EXIT LOOP 2)
12 C.. NOW, TREAT THE CASEI = J SEPARATELY

13 .
14 .
15 .
16 Uy, = SQRT (K, - SUMI)

17  BROADCAST TO ALLPROCESSORS THAT COL.I1(=COLJ) WAS DONE
18 1 CONTINUE

CcoL coL COL
V72) J-1 J=7
* X X X * X X
X * X X X * X X
* *
X X 1 %% coLa-3pone
SYM X X * X X
X * X X
* X X..COL (J-1) = 6 DONE?
X X
X
PP, PP P P, P, P, = Processor Numbers

Figure 4.5 Parallel (with a few sychronization checks) and
vector Choleski factorization

4.3.4 Parallel-vector (with “few” synchronization checks) Choleski
factorization (version 4)

In the previous section, parallel Choleski factorization based on Option B strategy has

been discussed. While Option B strategy has the advantage of keeping most of the

processors busy (or less idle time) most of the time, it also has potential problems of

increasing the communication costs. For most high-performance parallel computers,

the communication rate is very slow as compared to the computation rate. This is
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especially true for distributed memory parallel computers, such as the Intel Paragon,

IBM-SP2, etc. ... For these reasons, parallel Choleski factorization based on Option C

strategy (or Version 4) is presented in Table 4.4. Explanations for various statements

in Table 4.4 are given in the following paragraphs.

Lines 1-3:  The first three statements have already been explamed in Table 4.3.

Line 4: Assuming the current column #7 (or J = 7) is being factorized by a particular
processor, say processor #2 (or P,), processor P, will make the first
synchronization check:

Has column #J/2 (or 7/2 = 3) been completely factorized yet?
If the answer is NO, then processor P, will wait until
column #3 has been completely factorized, and declared as
READY by another processor. If the answer is YES, then
processor P, will proceed to statements 5-8.

Lines 5-8:  Assuming column #3 has already been completely done (or completely
factorized), a typical processor, say P,, will compute the factorized terms
u,;, U4, and u ,, (see Figure 4.5) according to Eq. 4.9.

Line 9: Again, assuming the current column #7 (or J = 7) is being factorized by a
particular processor, say P,, processor P, will make the second synchronization
check:

Has column #J-1 (or 7-1 = 6) been completely factorized yet?
If the answer is NO, then processor P, will wait, until
column #6 has been completely factorized, and declared as
READY by another processor. If the answer is YES, then
processor P, will proceed to statements 10-13.

Lines 10-13: Assuming column #6 has already been completely done (or completely
factorized), a typical processor, say P,, will continue to compute u,,, us,
and ug, according to Eq. 4.9.

Lines 14, 15: A typical processor, say P,, will continue to compute the last term of the
J*® (=7") column, which always happens to be the diagonal term (the case
where index I = J) say u,,, according to Eq. 4.8.

Line 16: Once the diagonal term of the J* (= 7*) column has been factorized, the
J™ column will be broadcasted by the processor P,, to all other processors
that this J* column has been done.

Line 17: Processor P, will now move to its next column (say column #11, assuming
the matrix shown in Figure 4.5 has much more then just 9 columns).

Table 4.4 Parallel (with a few synchronization checks)
vector Choleski factorization (version 4)

1 U, = SQRT(K;;)

2 BROADCAST COL. #1 WAS DONE

3 PARALLEL DO 1 J=2, N (Referring to Figure 4.5)

4 IS COL. # (J /2) DONE? IF YES, THEN PROCEED. IF NO, THEN
WAIT.

5 DO 2 I=TOPROWOFCOLJ,ROW({J-1)/2

6 DO 3K = TOPROWOF COLL, ROW (I-1)

7 3 SUMI1=SUMI1 + Uy * Uy,

8§ 2 U,=(K;-SUMDH/U,
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9 ISCOL.#(J - 1) DONE? IF YES, THEN PROCEED. IF NO, THEN
WAIT.

10 DO 22 1 = ROW({J-1)/2 + 1, ROW (J-1)

11 DO 33 K =TOPROW OF COL I, ROW (I-1)

12 33 SUMI = SUMI + Uy * Uy,

13 22 U, = (K, - SUM1)/U,

14 C..NOW, TREAT THE CASE1 =J SEPARATELY
15 Uy = SQRT (K, - SUM1)

16 BROADCAST COL #1 (=COL #J ) WAS DONE
17 1 CONTINUE

4.3.5 Parallel-vector enhancement (vector unrolling) Choleski factorization

(version 5)

In earlier discussions, it has been seen several times that the Choleski factorization will
require three nested do-loops. Furthermore, it has also been explained in Table 4.4 that
parallel computation can be exploited in the outermost (or the first) nested do-loop,
whereas the most numerical intensive computation can be most effectively vectorized
in the innermost (or the third) nested do-loop. In order to further improve the vector
speed in the third nested do-loop (refer to statements 11 and 12 in Table 4.4) the general
idea is to add more works inside the innermost (or the third) nested do-loop. This can
be achieved by using “unrolling” techniques, which have been introduced and explained
in Chapter One (through simple applications, such as Matrix-Vector multiplications).

In this section, the unrolling techniques will be extended and incorporated into
the Choleski factorization algorithm.

To simplify the discussions, unrolling level 2 is used in Figure 4.6, where the
9 x 9 matrix is also assumed to be full. One also assumes that there are NP = 3
processors available.

Unrolling strategy means each processor will be the owner of a “block” of
columns. Thus, unrolling level 2 means each processor will be the owner of block of 2
columns. According to this definition, block columns (2, 3) and block columns (8, 9)
etc.... will be assigned to processor P,. Similarly (assuming that the matrix size is much
larger than 9, as shown in Figure 4.6) block columns 4 and 5 and block columns 10 and
11, etc. ... will be assigned to processor P,. Finally, block columns 6 and 7, and block
columns 12 and 13, etc. ... will be assigned to processor P;.

P, P, P, P,
J=6J=7
x X X| X K, X X
X X X K, |[X X
x ¥ X/ X K,|X X ..ISCOLUMN#3DONE?
X x |x K,|x x
XX KX x
X K, X X ..ISCOLUMN #6 DONE?
K, X X
X x
x

Figure 4.6 Parallel-vector (unrolling) enhancement Choleski factorization
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The skeleton of a pseudo-FORTRAN parallel-vector “unrolling” Choleski
factorization computer code (Version S5) is outlined in Table 4.5. It should be
emphasized here, that version 5 simply reflects some simple modifications on version
4. Thereaders are strongly suggested to fully understand the previous versions (versions
1 through 4) before reading this section!

In Figure 4.6, one assumes the matrix size is 9 (or much larger), there are 3
processors available, and unrolling level 2 is used. In Table 4.5, different statements
will perform different operations during the Choleski factorization, as will be explained
in the following paragraphs. (Refer to Figure 4.6).

1: Depending on the total number of equations is an odd, or an even number, the
first one (or first two) column(s) need to be factorized initially, by any
processor(s).

2: Having been factorized completely, the first one (or two) column(s) are
declared as done.

3: Assuming the total number of equations ( =N) is an odd number. (i.e. N =9).

In the first do loop (the outermost do loop), different values of index J, which
represents “block” column numbers, are assigned to different processors for parallel
factorization. For the matrix example shown in Figure 4.6, “block” columns 2 and 3, 8
and 9, etc. ... are assigned to processor P,. Similarly, “block” columns 4 and 5, etc. ... are
assigned to processor P,. Finally, “block” columns 6 and 7, etc. ... are assigned to
processor P,. To simplify the following discussions, assuming currently columns J =6
and J = 7 are being factorized by a particular processor, say P;. This statement is
completely equivalent to statement 3 of Table 4.4. The only difference is the increment
of 2 is used in Table 4.5, due to the use of unrolling level 2.

4: Processor, (i.e. P,) which possesses columns J (= 6) and J+1 (=7) will ask the
following question:

Is column # (J/2), or column 6/2 = 3, done??

If the answer is YES, then processor (i.e. P,) will proceed
to the next statements, or else, it will wait, until column
#1/2 is declared as done. This statement is equivalent to
statement 4 of Table 4.4.

5: This statement is completely equivalent to statement 5 of Table 4.4. The only
difference is the increment of 2 is used in Table 4.5, due to the use of unrolling
of level 2. Thus, within each column (i.e. columns J and J + 1), a block of 2
rows are considered at a time.

6-11:  Since there is a block of 2 columns, which are assigned to each processor, and
within these 2 columns, a block of 2 rows are considered at a time. Thus, there
will be 4 dot product operations to be executed in the third (inner-most) nested
do loop, in order to compute the following 4 factorized terms:

Up 55 Upga 5 Upay g @A ULy
The reader should recall Table 4.4, where the third (inner-most) nested do-loop only
computes 1 factorized term (= u j),

12: Having factorized about half the column height of columns J and J + 1, a
processor (i.e. P;) will ask the 2™ question:

Is column #J - 1 done?
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If YES, then the processor, P;, will proceed to the next
statement(s). If NO, then the processor, P,, will wait.
13-16: The processor, P, will continue to factorize the remaining off-diagonal terms
in columns J and J + 1. Again, 4 dot product operations are computed in DO
LOOP 22. In other words, DO LOOP 22 is quite similar to loop 2.
17 and 18:  The last diagonal term of column J (or uy;) is now factorized.
19and20:  The last off-diagonal, u, ,.,, and the diagonal terms uy,, ;,, of column J+1
are now factorized.

21: Columns J and J+1 are now declared as completely done (or completely
factorized).

22: Processor, P,, will move to the next “block” of columns, (i.e. columns 12, 13,
etc. ...), assuming the matrix shown in Figure 4.6 has much more than just 9
columns.

In summary, the algorithm presented in Table 4.5 is quite similar to the one
presented in Table 4.4. The major differences occur in the first (outer-most) nested do-
loop, and the second nested do-loop.

In Table 4.4, since only 1 column at a time is assigned to a processor, and
within each column, only 1 row is processed at a time, therefore, only 1 dot product
operation is required in the third (inner-most) nested do-loop. However, in Table 4.5,
since a “block” of 2 or more columns at a time are assigned to a processor, and within
these “block” columns, a “block™ of 2 or more rows are processed at a time, therefore,
at least 4 or more dot product operations are required in the third (inner-most) nested
do-loop.

Vector computers, such as the Cray, provide maximum vector speed to access
data that are stored continuously. “Stride” is the distance between two adjacent elements
of a vector involved in the computations (see Chapter 1). The elements of [U] are stored
in column form, in order that they will be in contiguous storage locations. The column-
oriented skyline storage scheme offers stride 1 storage and hence the optimum memory
retrieval speed.

On parallel-vector supercomputers, such as the Cray-C90 that have high
computational speeds, the synchronization time relative to computation time is
significant. This synchronization overhead time is reduced by segmenting the loop into
two nearly equal sections (see Figure 4.6, and also refer to statements 4 and 12 of Table
4.5) and performing the synchronization only twice for each column.

Table 4.5 Parallel-vector enhancement (vector unrolling)
Choleski factorization (version 5)

1. FACTORIZE COL. 1, IF NUMBER OF EQUATIONS (N) IS ODD
or, EQIEEIORIZE COLS. 1 & 2, IF NUMBER OF EQUATIONS (N) IS

2. BROADCAST COL. 1 WAS DONE, IF N IS ODD
or, BROADCAST COL. 2 WAS DONE, IF N IS EVEN

3. PARALLEL DO 1 J=2,N, (IFNISODD), SAYIJ=6
or, PARALLEL DO 1 J=3,N,2 (IF N IS EVEN)
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4. IS COL. # (J /2) DONE? IF YES, THEN PROCEED. IF NO, THEN

WAIT
5. DO 2 I =TOP ROW # OF COLUMN J, ROW (J - 1)/2,
6. For the innermost loop, DO 3 : Compute a set 4 dot products for
7. i-1

K. - u U,
I A *f) 4.9
1,0~
Uy

8. uI, ].{_ 1
9. Urey,g

10 3 Wyyge=-..
11. 2 CONTINUE

12. ISCOL. #(J - 1) DONE? IF YES, THEN PROCEED. IF NO, THEN
WAIT.

13. DO 22 I=ROW({J-1)2+1,ROW({J-1),| 2

14. For the innermost loop, DO 33: Compute a set of 4 dot products for

15. Ug; Upge; Uy, and Upsy, 4y

33 CONTINUE
16. 22 CONTINUE
17. C.. NOW, FACTORIZE THE REMAINED TERMS OF COLUMNS

JANDJ +1

18. U=

19. Uy =...

20. Uy gy = - -

21. C.. Dg%IéARED COLUMNS J & (J+1) HAVE BEEN COMPLETELY
D

(or completely factorized)
22. 1 CONTINUE

4.3.6 Parallel-vector (unrolling) skyline Choleski factorization (version 6)
The column-oriented skyline Choleski method was implemented in a computer code to
exploit both parallel and vector capability of supercomputers. In actual computer code,
the elements of [U] overwrite the elements of [K]. The columns of [K] are stored one
after the other in a single vector array, and elements of each column are arranged from
the diagonal up. This storage arrangement is referred to as skyline storage and is
illustrated in Figure 4.7. Column 5 in Figure 4.7, for example, represents the terms K,
K., Ks;, and K, of the stiffness matrix [K]. In a vector skyline storage scheme, the
corresponding terms for Ks;, K ,, K53 and K s, are stored in a one dimensional array A
at the locations A(10), A(11), A(12), and A(13), respectively (please refer to section 2.5
of Chapter 2). A typical skyline storage scheme for structural engineering applications,
such as aircraft panel finite element model, is shown in Figure 4.8.

A variable bandwidth storage scheme for the same aircraft panel finite element
model, is shown in Figure 4.9. The factorization, forward and backward solution
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strategies associated with the variable storage scheme, however, is postponed until the

next chapter.
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27
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Figure 4.8 Skyline column storage of panel stiffness matrix
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Figure 4.9 Variable bandwidth row storage of panel stiffness matrix

Version 6 of the skyline Choleski factorization is outlined in Table 4.6.

Table 4.6 Parallel vector (unrolling) “skyline” Choleski factorization (version 6)

This version is “exactly” the same as shown in Version 5. However, the two-
dimensional stiffness matrix [K], or its factorized matrix [U], will be converted into a
one-dimensional array A, using the mapping explained in Section 2.5 of Chapter 2.

Uy =
UKJ =

=
|

K, =

bl B S i

[MAXA (I)+ I - K]
[MAXA () +J - K]
MAXAQJ+1) +J+1) - J+1)]
[MAXA@J) +17 -1]
[MAXA () +J - 0+ 1)]
[MAXA() +7J -1}
[MAXAJ+1) +J+1)-1]
[MAXA (J)]

[MAXAQJ+1) +J+1) -17]
[MAXAJ+ D]

[MAXA ()]

Note: In actual coding, the decomposed matrix [U] will overwrite the original
stiffness matrix [K]. For clarity, however, these 2 matrices have been shown
under different names.
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44 Solution of Triangular Systems

It will be explained in subsequent sections that the forward and backward solutions (see
Eqgs. 4.4 and 4.5) both require only two nested do-loops, instead of three nested do-
loops, as required during the factorization phase.

The forward elimination and backward substitution phases can be made
parallel in the first loop (as it will be explained in Sections 4.4.1 and 4.4.2) which
requires synchronization statements. This parallel implementation was tested and
resulted in excellent computation speed-up for an increasing number of processors, but
it suffered from the added time for synchronization on Cray computers. Because of this
synchronization overhead time, the forward-backward solution phases were found to
be faster on one Cray processor (without parallel constructs) than on multiple
processors. Further time reduction for one processor was also obtained by using second-
level vector unrolling in the forward elimination and second-level loop-unrolling in the
backward substitution.

4.4.1 Forward solution
In the forward solution phase, since the factorized matrix [U] has already been found
(in Section 4.3), the forward solution vector {y} can be solved from Eq. 4.4.

In order to derive the general formula for the unknown vector {y}, a simple
system with only 3 unknowns will be considered in details, as shown in Eq. 4.30

u, 0 0 2 F,
U, ty, 0 Yt = {5 (4.30)
Uy Uy Uz | Vs Fy
From the first part of Eq. 4.30, one can write
u,y, = F, “.31)
Thus
Fy
» = — 4.32)
Uy
From the second part of Eq. 4.30, one can write
Upy, *+ upy, = F, (4.33)
Thus
F -u.y
2 " %12
¥, = _____( ) 4.34)
Uy
Similarly, from the last part of Eq. 4.30, one can write
Uy + Uy + Uy = F (4.35)

or
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F.-u.y -u.,y
3 23
y, = = lul - (4.36)
33

In general, for any matrix size, the solution Egs. 4.32, 4.34 and 4.36, can be
written as

= A (4.37)

SS

In order to see how the operations shown in Eq. 4.37 can actually be executed
in parallel, Eq. 4.30 will be expanded into a system of 9 unknowns, as indicated in Eq.
4.38.

uy, Y1 Folop
X Y2 5| P
. X Vs F, P,
Uy X Vs F, P,
s X {ys py={Fs } P, (4.38)
“o1 X Ye Fg | Py
U X Vs F, | P,
“81 X Vs Fo | Py
“o1 X L Vo Fy | Py

Assuming the matrix shown in Eq. 4.38 is full, and 3 processors (P,, P, and P,)
are available, thus the unknowns y,, y, and y, (in rows 1, 4 and 7) will be processed by
processor P,. Similarly, processors P, and P, will handle rows 2, 5, 8 and rows 3, 6, 9,
respectively.

The unknowns, say y,, ys and y, can be computed from Eq. 4.37 as

F,-(u,y, tu,y, tu,y
¥, - 4 (141u24z 34 3) (4.39)
44

), - F —(u15yl Tl Yy Tyt u45y4) (4.40)

Uss

Vs = Fy = (167, + thyg Yy + Uy Y3 + Uyg ¥y + Usg Vs ) (4.41)

Uge

From Egs. 4.39 through 4.41, it is obvious to recognize that as soon as the first
unknown, y,, has been computed, the unknown y, can be “completely” determined, by
using Eq. 4.34 and all other unknowns (say y;, ¥, - . . , ¥,) can be “partially” computed
AT THE SAME TIME.
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For example, the unknowns y,, y; and y, can be “partially” and simultaneously
(in parallel) computed as:

Incomplete Ve = F, -~ u,y, ... (computedbyP)) (4.42)
Incomplete ys = Fg - usy, ... (computed byP,) (4.43)
Incomplete Yo = Fg - uy, ... (computed by P,) (4.44)

While the above parallel forward solution strategy may offer good parallel
speeds (as the number of equations increased) synchronization checks are obviously
required. For example, synchronization checks are needed to make sure that the 2™
unknown (=Yy,) has been “completely” computed (say, by processor P,) before the next
term of Eqs. 4.42 through 4.44 can be simultaneously processed by processors P,, P,
and P, (as shown in Eqgs. 4.45 through 4.47).

Incomplete  y, = F, - u,y, - 4y,y, ... (4.45)
Incomplete Ys = Fg —uy, - uyy, ... (4.46)
Incomplete Vo = Fg —u ey, — Uy, ... 4.47)

As it has been mentioned in Section 4.4, on many supercomputers, the synchronization
overhead time will make the use of multiple processors to be slower than simply using
asingle processor with a good vectorized code. During the Choleski factorization phase,
however, the synchronization overhead time is much less significant, since factorization
phase requires a higher number of operations as compared to the forward solution
phase. Because of these reasons, the following paragraphs will be devoted to the
development of efficient vectorized codes for forward solution phase using only a single
processor.

A straight forward implementation of Eq. 4.37 will lead to the computer code
presented in Table 4.7. Explanations of different FORTRAN statements in Table 4.7
are given as follows:

1: The first loop with the index J will sweep from the first unknown (or the first
row) to the last unknown (or the last row).

2: The summation in Eq. 4.37 is initialized.

3,4: The summation of the product (see Eq. 4.37) is computed inside the second
nested do-loop (with the index I).

S: The unknown y; is computed according to Eq. 4.37.

6: The index J of the first do-loop is increased, for the computation of the next
unknown.
It should be mentioned here that the forward solution vector {y} will overwrite

the original right-hand-side vector {F}.

In Table 4.7, the stiffness matrix has been stored as a 2-D array and is assumed
to be full. In actual computer coding, the stiffness matrix will be stored in a 1-D array,
and according to skyline fashion (refer to Section 2.5). Assuming the one dimensional
integer array, diagonal pointer MAXA(-) has already been computed from Eq. 2.12, and
the column heights array ICOLH(-) has also been calculated from Table 2.1. The
forward solution algorithm presented in Table 4.7 can be modified to the skyline storage
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scheme as shown in Table 4.8. Explanations of different FORTRAN statements in
Table 4.8 are given in the following:

1, 2: These first two statements have already been explained in statements 1 and 2
of Table 4.7.

3: Referring to Figure 4.10, and assuming that the first three unknowns have
already been found. The fourth unknown (or J = 4" row) y(J = 4) can be found
by Eq. 4.37 as

F, - (u +tu +u
y, = = (4021 + ¥ 3Ys) (4.48)
Upy

In actual computer coding, one will store the factorized matrix in the upper triangular
matrix, hence, Eq. 4.48 should be re-written as

F, - (u,y +tu,y, +u,y
¥, = 4 (14 1u242 34 3) (4.49)
44

Tl )]
J

(4.50)

Uy

or Icolh(J)

F,' - E Uy

=1 (4.51)

Yy =

Uy

The number of terms inside the parenthesis of Eq. 4.49 is equal to the column

height (excluding the diagonal term) of the J* column. For this reason, the second do-

loop (with the index I) in Table 4.8 will sweep from I = 1 to ICOLH(J), or from I =
ICOLH(J) to 1 (with an increment-1).

4: The summation in Eq. 4.51 is computed. Notice that the first product inside the
summation sign is
u *N 4.52)

Since the factorized stiffness matrix is expressed in a 1-D array U(-), expression in Eq.
4.52 can also be written as

U[MAXA4) + 4-1] * y, (4.53)

where the value 3 (=4 - 1) in expression 4.53 represents the column height of the 4"
column in Figure 4.10 or, using the index I and J notations, expression 4.53 becomes

Ul[Maxa(J) + I] * y(J-1I)

which is precisely the expression used in statement 4 of Table 4.8.
5: The final, complete unknown solution y(J) can be found from Eq. 4.51.
Recalling U;; = U[Maxa(J)].
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6: The index J of the first do-loop is increased (for the computation of the next
unknown).

The forward solution algorithm presented in Table 4.8 can be further modified
to incorporate unrolling techniques (similar ideas have been presented in Section 1.3 of
Chapter 1), as shown in Table 4.9 and the associated Figure 4.11.

Explanations of different FORTRAN statements in Table 4.9 are given in the

following (assuming that the unrolling of level 2 is used).

1,2: The first unknown y,, will be solved separately. Since the original stiffness and
its factorized matrix is symmetrical, the row or its correspondent column is
merely the image of each other.

3: The first do-loop with the index J will sweep from column (or its imaged row)
2 through the last column NEQ, with the increment 2 (since unrolling level 2
is used, hence a “block” of 2 columns are grouped together). It is important
here to refer to Figure 4.11 where columns J(=4) and J + 1 (= 5) are grouped
together. For reasons which will soon be explained, any column within a group
must have a column height of 1 unit more than its previous column height.

In the example presented in Figure 4.11, since both columns 4 and 5 have the
column height of 3 (excluding diagonal terms), one needs to add 1 extra zero term on
to the top of the 4™ column to make its column height becomes 4. Thus, the 4" column
height is 1 unit more than the 3™ column height within the same group.

4,5: Two summations (SUM1 and SUM?2) are initialized.

6: The second do-loop with the index I will sweep from the column height of the
J" column down to value 1, with the increment of -1. This statement has
essentially the same role as statement 3 of Table 4.8.

7-9:  Since the unrolling of level 2 is used in the first outermost do-loop, the index
J has the increment of 2, which implies that 2 consecutive columns (or its
imaged 2 consecutive rows) are considered at a time. Because of this reason,
there are 2 summations (not just one summation, as shown in statement 4 of
Table 4.8) to be calculated inside the second do-loop, with the index I.

At this point, it should be obvious to understand there is a need to add extra
zero(s) to some column height(s), as mentioned earlier in statement 3. By adding the
appropriate extra zero(s) to some column(s), it will make the operations within the 2™
loop, with index I, to be done properly. For example, considering the case where the
index J of the first do-loop has a fixed value, say J = 4, it is NOT possible for the index
I to have the values 3 (= column height of the 4" column) through 1 with increment -1
(or rows 3 through 1 of column J = 4) and the same index I to have the values 3 through
2 (or rows 3 through 2 of column J+1 = 5)!

By adding 1 extra zero (in the example of Figure 4.11) to column 5, it is now
possible for the index I to have the same values 3 through 1 (or rows 3 through 1) with
increment -1, in both columns J (= 4) and J+1 (= 5).

Obviously, the extra term u; j,, = u, s = U[Maxa(J+1)+1] will have to be
included separately when we compute the unknown y,,, (refer to statement 11).

10: The forward solution unknown y, can now be calculated according to Eq. 4.37.
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11: The forward solution unknown y,, can also be calculated now, by referring to
Eq. 4.37. Also, referring to Figure 4.11, one can write the following
expression to calculate yj,, or ys:

Fs —(us)yy + U, + g3 ¥y + us, y
ys = (2 S E— Y (4.54)
55

or, in general
J

- u XY,
Fy ; i ¥ i (4.55)
Uper,g+1
The product us 4 * y,, oru, s * y,, oru, 5, * y;, or u[Maxa(J+1)+1] * y, has not yet been
included in the calculation of SUM2 in statement 8. That is the reason we have to
modify the value of SUM2 to include the product term u[Maxa(J+1)+1] * y, in here.
12: The index J of the first do-loop is increased (by the increment 2) for the
computation of the next 2 unknowns.

yJ+l =

Table 4.7 Basic scheme for forward solution

DO1 J = 1,NEQ

SUM1 = 0.
DO21=11J-1

SUM1 = SUM1+ U1 J)*Y()
Y(J) = (YQJ) - SUM1)/UJ.)
1 CONTINUE

AN
N

Table 4.8 Skyline scheme for forward solution

—

DO 1J = 1,NEQ

2. SUMI = 0.
3. DO 2 I = COLH(Q), 1,-1
4. 2 SUMI = SUMI + U[MAXA()+1] * Y(J-1)
5. Y(J) = (Y(J)- SUM1)/ U (MAXA()))
6. 1 CONTINUE
J* Column
X X O0|Xi0 O
X X |X|X O
[U] = X|X|x o
X X XXX X
X X
SYM X

Figure 4.10 Skyline scheme for forward solution
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Table 4.9 Skyline and vector-unrolling scheme for forward solution

Assuming NEQ = number of equations, say an odd number
C... TREAT COLUMN 1 SEPARATELY
Y(1) = Y(1)/U (MAXA (1))
DO 1 J =2,NEQ, 2
SUM1 = 0.
SUM2 = 0.
DO 2 I = COLH(J), 1, -1
SUM1 = SUM1 + UMAXA)+D) * YJ-D
SUM2 = SUM2 + UMMAXA(J+D) +1 + D *Y(J-D
2  CONTINUE
Y(J) = (Y(J) - SUM1)/U (MAXA (J)
Y(J+1) = [Y(J+1) - SUM2 - UMMAXA (J+D)+ 1) * Y]/
U [MAXA (J+1)]
CONTINUE

0V PN R LN -

—
—_— O

....
N
—_

J? column and (J + 1)" column
have same column heights
1l

X X 0 X0 0 = extra zeros
X X XX

U= XXX
SYM. X X Extraterm = UMAXA (J+ 1)+ 1) =U,;
X

Figure 4.11 Skyline and vector unrolling scheme for forward solution

4.4.2 Backward solution
In the backward solution phase, since the factorized matrix [U] and the forward solution
vector {y} have already been found, the backward solution vector {Z} can be obtained
from Eq. 4.5.

In order to derive the general formula for the unknown vector {Z}, a simple
system with only 4 unknowns will be considered in detail, as shown in Eq. 4.56

u(;l u, uy uy,| {4 V1
Uy Uy Uy | |4, Vs

= 4.56
0 0 uy uy| |4 V3 (4.56)
0 0 O Uy, Z4 Vs

The last part of Eq. 4.56 can be used to solve for the last unknown Z,, as following
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Z4 = — 4.57)

Similarly, the unknowns Z,, Z,, and Z, can also be obtained from the 3, the 2" and the
1* parts of Eq. 4.56, respectively.

V, = U, 2,
Z3 =23 344 (4.58)

Uy,

z, - Yy - (”23 Zy + uy, Z4) (459

Uy

and

Z, - Y "(”12 Z, *uyZy +uy, Z4) (4.60)
Uy

In general, for any matrix size, one can write:
N
v~ X %z
7 = i=j+1

J
Uy

(4.61)

As soon as the last unknown Z, has been “completely” solved, the “partial” solutions
for all remaining unknowns can be computed simultaneously, by different parallel
processors. For example, assuming the unknown Z, has not been completely computed
yet, one can simultaneously compute the “partial” solution for

Incomplete Z, =y, —(u24 Z, .... ) (4.62)

Incomplete Z =y —(u14 Z, .... ) (4.63)

While the above parallel backward solution may offer good parallel speeds (as
the number of equations increased) synchronization checks are needed to make sure
that, say the 3" unknown (= Z,) has been “completely” computed (say by a particular
processor) before the next term of Eqs. 4.62 and 4.63 can be simultaneously processed
by the other processors

Incomplete Z, =y, —(u24 Z, *upZy . ... ) (4.64)

Incomplete Z, =y, '(“14 Z, +usZ, .... ) (4.65)

The above parallel backward solution strategy, however, suffers significant
overhead time for synchronization checks (refer to the parallel forward solution phase
discussed in Section 4.4.1). Because of these reasons, the following paragraphs will be
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devoted to the development of efficient vectorized code for backward solution, using
only a sirigle processor.

In actual computer coding, once the (last) unknown has been found, the right-
hand-side vector {y} in Eq. 4.56 can be updated as follows:

Y3 =Yy - U2, (4.66)
Yy =Y, - Uy Z, (4.67)
Vi =y U2, (4.68)

In practice, the solution vector {Z} will overwrite the right-hand-side vector {y}. A
straight forward implementation of Eq. 4.61 will lead to the computer code presented
in Table 4.10.

Explanations of different FORTRAN statements in Table 4.10 are given in the
following:

1: The first do-loop with index J will sweep from the last unknown (or the last
column) to the first unknown (or the first column) with the increment -1. Since
the original stiffness matrix and its factorized matrix is symmetrical, the J*
column and the J* row are identical.

2: The (last) unknown y;, (i.e. y,) is finally computed (see Eq. 4.57).

3: The second do-loop with index I will sweep from row #J-1 (= row 3) to the Top
Row # of column J (= row 1, assuming the stiffness matrix is full), with the
increment -1.

4: The right-hand-side vector {y} is updated (or modified) according to the
nominator of Eq. 4.61, or for the specific case of the matrix shown in Eq. 4.56,
according to Egs. 4.66 through 4.68.

5: The index J of the first do-loop is decreased by 1, in order to compute
subsequent unknowns y;, (= ¥3), ¥, (F ¥,), etc. . . .

To enhance the vector speed in the 2™ (inner-most) do-loop, “loop unrolling”
technique can be incorporated (refer to Section 1.3 of Chapter 1) into the backward
solution phase, as shown in Table 4.11, where unrolling level 2 (or a “block” of 2
columns are grouped together) is demonstrated.

Explanations of different FORTRAN statements in Table 4.11 are given in the
following. For a better understanding of the algorithm presented in Table 4.11, the
readers are also encouraged to specifically refer to Eq. 4.56. The column heights of
columns 1, 2, 3, and 4 (see Eq. 4.56) are assumed to be 0, 1, 2, and 3, respectively.
Thus:

1 0
rcoti | 2| = {3 (4.69)
4 3
1: This statement has the same role as statement 1 of Table 4.10. The only

difference is that the increment of -2 is used here (due to the unrolling of level
2) instead of -1 as used earlier.
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2,3: The last 2 unknowns y; and y,, (say y, and y,;) are finally and “completely”
computed (see Eq. 4.57). Notice that vectors {y} and {Z} are overwritten on
each other.

4: The index I of the second do-loop will sweep from J - ICOLH(J), or 4 -
ICOLH@4)=4-3=1,t0)J-2,0r4-2=2.

5: The “partial” solution for the unknowns y, and y, are computed, as follows
(notice that vectors {y} and {Z} are overwritten on each other).

Vi SV T U4 F Yy T U3 F s 4.70)

Yo =0 T * Vg T U3 s 4.71)

It should be emphasized here, that the last products u, ; * y, in Eq. 4.70, and u,,
*y, in Eq. 4.71 are included here (but have not been included in statement 4 of Table
4.10) as a direct consequence of the use of unrolling level 2 (or, increment -2) for index
J in statement 1..
6: The index J of the first do-loop is decreased by -2, in order to compute
subsequent “block” unknowns y,, (=y,)and y,; (=y,), and etc. . . .

Table 4.10 Basic scheme for backward solution

1. DO 1J=N,1,-1 (say, J =4)
2. YO =YJ)/UQy,h
3. DO 21 =17J-1, TOP ROW OF COLUMN J, -1
4, 2 YD =YD-ULDH*YD)
5. 1 CONTINUE
Table 4.11 Loop-unrolling scheme for backward solution
1. DO 1J=N,1,-2
2. Y = YJ)/UQW,))
3. YJ-D)=[YJ-1)-UQJ-,)*YD)/UQUd-1,1-1)
4, DO 21=17J-ICOLH(®J),J-2,+1
5. 2 YD =YDH-ULH*YD - ULI-D*YJ-1)
6. 1 CONTINUE

4.5 Force: A Portable, Parallel FORTRAN Language

Force is a machine-independent tool for parallel programming and, with certain
exceptions noted in the “Force User’s Manual”*7), it includes all FORTRAN constructs
and compiler options. It is a preprocessor which produces executable parallel code
from FORTRAN augmented with several simple parallel extensions. These parallel
extensions include such constructs as Pre- and Self-scheduled DO-loops (for parallel
computations), Barriers, Produce and Consume (for synchronization). Force permits
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users to write efficient, yet portable, parallel code without referring to the many details
of multitasking or parallel programming found in vendor manuals. Thus, engineers and
numerical analysts can concentrate on developing effective parallel algorithms or
solution strategies for different engineering and/or scientific applications. Programs
written in Force are easily ported to and run on other parallel computers on which Force
is installed. In this chapter, Force is used (for convenient purpose only) to develop and
implement the parallel FORTRAN code on high-performance computers, such as the
Convex, Cray-2, Cray-YMP, and Cray C-90. The developed parallel-vector algorithms
can also be implemented in other parallel environments such as PVM[4.10], or MPI
(Message Passing Interface) [4.11] etc...

4.6 Evaluation of Methods on Example Problems

To testthe effectiveness of the parallel-vector skyline Choleski solver, several structural
analysis problems were solved on various high performance computers. Furthermore,
for user’s convenience, a simple algorithm to automatically generate the coefficient
stiffness matrix [A] and load vector {B} for solving the unknown vector {x} from

[A] {x} = {B} is also shown in Table 4.12.

In the solution of the following example problems, code was inserted to measure the
time spent by each processor during the equation solution. The Cray timing function,
tsecnd, was used to measure the total computation time used by each Force processor.
In addition, for each problem, the number of million floating point operations, MFLOP,
was calculated and then divided by the solution time, in seconds, to determine the
overall performance rate of the solver in MFLOPS.

Table 4.12 Code for stiffness and load generation

MAXA(1) = 1
A(l)=2.
DO 511=2,NEQ
COLHT = MIN(I - 1, HALFBW)
MAXA() = MAXA( - 1) + COLHT
AMAXA(D) = 2.

51 B(I) = 2.
IEND = MIN(I + HALFBW,NEQ)
DO 521=1,NEQ
DO 52J=1+1,IEND
LOCATE = MAXA(J) +J -1
A(LOCATE) = 1.0/ (I+J)
B(I) = B(I) + A(LOCATE)
B(J) = BUJ) + A(LOCATE)

52 CONTINUE

e B ol o e
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Example 4.1: 10,000 degree-of-freedom, 800 Bandwidth Test Problem
The parallel-vector supercomputer available for testing the column-oriented skyline
Choleski solver was the Cray-YMP.

80
T 74
o
3
- 40 37 Forward-Backward
g <«——Solution
= < Deriosmposition
19
83 166 249 326
MFLOPS MFLOPS MFLOPS MFLOPY
o | —T ] T
1 2 3 4

Number of Processors, Cray 2

Figure 4.12 Computation time reduction for test problem
with 10,000 equations and 800 bandwidths
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]
g
iz 100
74 74
45 45
28 83 83 137 137
o MFLOPS MFLOPS IMFLOPS MFLOPS|
T T 1 T

Convex 200 Cray-2 Cray-2 F  Cray-YMP Cray-YMP F
Type of Processor

Figure 4.13 Time comparison for one processor with 10,000 equations and 800
bandwidths. (F denotes Force used)
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Figure 4.14 Computation time reduction for 3000 equation (cube)
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Figure 4.15 Computation time reduction for space shuttle solid rocket booster
with 54,870 equations

Although it is fast and has eight processors, the Cray-Y MP used has only eight
million words of main memory available for a single job. This maximum eight million
words restricted the size of the largest problem that could be solved since the equation
solvers described are currently implemented only for main (in-core) memory storage of
[K]. Thus, the largest problem possible to solve on all three high performance
computers was designed to have a stiffness coefficient matrix with 10,000 degrees-of-
freedom (DoF) and 800 bandwidth. In this test problem, the coefficient matrix A (stored
in a vector skyline form) and the load vector B are generated according to Table 4.12.
In this table, NEQ represents the number of equations, or the Degree-of-Freedom
(DoF). The integer array MAXA is used to store the location of the diagonal terms of
the stiffness matrix. This test problem is useful for debugging and can also serve to
evaluate the performance of this and other methods on any shared memory parallel-
vector computer.
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The total processing time (of both the decomposition and the forward-
backward solution phase) for the test problem on the Cray-2 using 1, 2, 3, and 4
processors is shown in Figure 4.12. The figure indicates a computation speedup of 3.9,
(74 seconds divided by 19 seconds), at a rate of 328 MFLOPS on four processors. The
major computation time was spent in the decomposition phase, while very little time
was spent in the forward-backward solution phase as indicated in Figure 4.12.

The total computation time for this test problem on the Convex-220, Cray-2
and Cray-YMP computers is shown in Figure 4.13. From this figure, one can see the
relative performance of the skyline Choleski solution method on a single processor for
the three computers. Here again the forward-backward solution phase represents a very
small fraction of the total solution time. Figure 4.13 also indicates that the Cray-YMP
runs almost twice as fast as the Cray-2, which in turn runs about three times as fast as
the Convex-220. By using Force (see Section 4.5) the same code was implemented on
the three computers. The code is running on the Cray-YMP in multitasking environment
(using 1 through 8 processors). The Cray-YMP multitasking timing subroutine is not
fully developed, thus accurate timings for eight processors on the Cray-YMP are not
known. However, preliminary indications are that this method achieves computation
speedups on the Cray-YMP similar to those achieved on the Cray-2.

To measure the overhead of Force, the same code, with all Force statements
removed, was implemented on the Cray-2 and Cray-YMP. The results obtained using
Force on the Cray-2 and Cray-YMP (denoted Cray-2(F) and Cray-YMP(F) in Figure
4.13) do not introduce any significant additional overhead in computation time.

Example 4.2: Three-Dimensional Cube Problem

Solution algorithms often display different characteristics on different classes of
problems. To investigate the behavior of the solver on the three-dimensional problem,
a cube-shaped, isotropic solid undergoing compression was solved. This 3000 degree
of freedom problem has a maximum bandwidth of 336 and average bandwidth of 313.
The 1000 node cube (10 nodes along each axis) was constrained at the corner nodes and
contained 729 eight-node solid elements (nine solid elements along each axis). The
computation times for multiple processors are shown in Figure 4.14. The computation
time reduction is in direct proportion to the number of processors used, with a speedup
of 3.6 for four processors. The result from a vectorized code on one processor is also
given in Figure 4.14.

Example 4.3: Space Shuttle Solid Rocket Booster (SRB) Problem

To evaluate the performance of the skyline Choleski solver on a large-scale static
structural analysis problem, a two-dimensional shell model of the Space Shuttle solid
rocket booster was solved. This SRB model was used to investigate the overall
deflection distribution for the SRB when subjected to mechanical loads corresponding
to selected times during the launch sequence [4.8]. The model contains 9205 nodes,
9156 four-node quadrilateral shell elements, 1273 two-node beam elements and 90
three-node triangular elements, with a total of 54,870 degrees of freedom. This problem
has a maximum bandwidth of 894 and an average bandwidth of 381. A detailed
description and analysis of this problem is given in reference {4.8 and 4.9].
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For this problem, the parallel-vector skyline Choleski method developed in this
chapter took 135 and 36 seconds on one and four processors, respectively.

By using four processors, the speed up obtained by the skyline Choleski
method was found to be 3.75 as can be seen in Figure 4.15. This good speedup of the
skyline Choleski method makes it attractive for supercomputers with more than four
processors, such as the Cray-YMP, or the Cray C-90.

The computation rate (i.e., MFLOPS) shown in Figures 4.12-4.15, is best for
problems with a large average bandwidth (i.e. Figure 4.12). The skyline Choleski solver
operates on vectors ranging in length from one to the column height of each column of
the upper triangular matrix [U]. For problems with a small average column height, the
major portion of the computation is performed on short vectors which results in a low
MFLOPS rate. In large structural analysis problems with large average column height,
the majority of the vector operations are performed on long vectors, which results in
higher MFLOPS rates.

4.7 Skyline Equation Solver Computer Program

For the complete listing of the FORTRAN source codes, instructions in how to
incorporate this equation solver package into any existing application software (on any
specific computer platform), and/or the complete consulting service in conjunction with
this equation solver etc... the readers should contact:

Prof. Duc T. Nguyen

Director, Multidisciplinary Parallel-Vector Computation Center
Civil and Environmental Engineering Department

Old Dominion University

Room 135, Kaufman Building

Norfolk, VA 23529 (USA)

Tel =(757) 683-3761, Fax = (757) 683-5354

Email = dnguyen@odu.edu

4.8 Summary

A portable and efficient skyline Choleski method for the solution of large-scale
structural analysis problems has been developed and tested on three high performance
computers - Convex-220, Cray-2 and Cray-YMP. The newly-developed equation solver
exploits both parallel and vector capabilities of modern high performance computers.
A unique feature of this method is the strategy used to minimize computation time by
performing parallel computation at the outermost DO-loop of the decomposition phase,
the most time-consuming part of the total equation solution time. In addition, the most
intensive computation of the decomposition phase was vectorized at the innermost DO-
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loop. The dot-product-based factorization scheme prohibits the traditional use of the
well-known loop-unrolling technique used for saxpy operations. To overcome this
difficulty, a novel use of “vector unrolling” has been introduced in the column-oriented
Choleski algorithm to reduce computation time. For the forward and backward solution
phases, it was found to be more effective to perform vector-unrolling and loop
unrolling, respectively, using vector rather than parallel code.

The new method was coded in a modular, and portable fashion using a generic
parallel FORTRAN, called Force. The generality and portability of the method should
make the use of it attractive for other engineering and scientific applications.

The newly-developed parallel-vectorized Choleski method has been applied
to the solution of several small- to large-scale structural analysis problems. For all
problems, the total equation solution time was reduced significantly, in direct proportion
to the number of processors used.

4.9 Exercises

4.1 Given the following 21 x 21 symmetrical matrix [K]

1. 2 o0 4 0 0 0 0 0 0 o0 o0
5. 6 7 8 9 0 0 0 0 0 0
10. 11 0. 0 0 0 0 0 0 0
14, 15 16 0. 0. .19 0 0. 0
620 21 22 0. 24 0. 0 0
725. 26 0. 28 0. 0. 0
829 3 31 0. 0. 0
932. 33 0. 0. 0
Row 9 934. 35 36 37
938. 0. 4 41 42 43 0 0. 0 0 0
(k] = 104, 45 46 0. 0. 0. 0. 0 0 0
214 48 49 0. 0. 0. 0 0 O
225, 51 52 53 0. 0. 0. 0
315, 0. 56 57 0. 0. 0
415, 0. 59 0. 0. O
616. 61 62 .63 .64
716. 66 0. 67
Row 18 968. 69 0.
887. 71 0
771. .13

a.  Find the column height (integer) array ICOLH(-) of the above matrix.

b.  Findthe diagonal location (integer) array MAXA(-) of the above matrix.

c. How many (real) words of computer memories are required to store the
above matrix?

42 For the matrix [K] given in Problem 4.1:

a.  Find (using hand calculator) the first 4 columns of the factorized matrix
[U] using the Choleski algorithm.

b.  The original term K, = 0., without any actual computation, explain your
reason(s) for saying the corresponding factorized term U, =0.??, or U,
#0.77.
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c.  The original term K, |, = 0. , without any actual computation, explain
your reason(s) for saying the corresponding factorized term U, ,,=0.7?
,orUy 1, #0.2?7 .

For the matrix [K] given in Problem 4.1, and assuming “vector unrolling” level

3 is used:

a. How many “additional” (real) words of computer memories will be
required due to vector unrolling’s (level 3) strategies?

b.  Assuming 4 processor (P,, P,, P;, and P,) are used in this example, and
according to the following given information

Processor | “Columns” of Matrix [K] Which Belong To a Processor
P, 1,2,3, 13,14, 15
P, 4,5,6, 16,17, 18
P, 7,8,9, 19, 20,21
P, 10, 11, 12

Without any actual computation, and assuming the first 5 columns of the
factorized matrix [U] have already been completely factorized, identify which
terms (if any) U; of the matrix [U] can be factorized by processors P, P,, P,
and P,, respectively?
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5 Parallel - Vector Variable

Bandwidth Equation Solver on
Shared Memory Computers

5.1 Introduction

In the previous chapter, parallel and vectorized Choleski algorithms which were based
on the skyline (column-by-column) storage scheme for shared memory computers (such
as the Cray-2, Cray-YMP, Cray-C90, etc...) had been discussed. The factorized
algorithms discussed in Chapter 4 have been based upon the “dot product” operations.
For certain types of shared memory computers (such as Cray-YMP, Cray-C90, etc....),
“Saxpy” operations (to be explained in more detail, later on in this chapter) are known
to be faster than “dot product” operations®'l. The skyline storage scheme and its
associated parallel and vectorized algorithms has been found to prohibit the traditional
“loop unrolling” technique used to optimize vector performance, so a less powerful
“vector unrolling” strategy was used. This chapter describes a different algorithm that
overcomes the deficiency of skyline storage by using a variable bandwidth storage
scheme. The objective of this chapter is to describe this new algorithm for solving
matrix equations and to demonstrate its accuracy and speed by solving large-scale
structural analysis applications on shared memory (such as Cray) supercomputers.

5.2 Data Storage Schemes

The Choleski method for the solution of simultaneous equations requires the
decomposition of the matrix of stiffness coefficients, [K], into an upper-triangular,
factored stiffness matrix, [U]. Two methods most often used in structural analysis codes
to store [U] are the variable-band, and skyline storage schemes.

For large finite-element applications, the user defines the geometry, finite
elements and loads of the finite-element model[5.2]. The user may use automated
algorithms to reorder the resulting stiffness matrix, [K], in the form that is most efficient
for the solver. The reverse Cuthill-McKee algorithm[5.3] reorders the [K] matrix into
a near minimum bandwidth, and thus is used for the examples in this chapter.

In a row-oriented, variable-bandwidth Choleski approach, the bandwidth of
each row of the upper-triangular matrix [U], is generally defined as the number of
coefficients from a diagonal term to the last non-zero coefficient of the row, excluding
the diagonal term. Exceptions to this definition, however, can be found in row 3 of

91
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Figure 5.3 (and is also indicated in row 3 of Eq. 5.4). The coefficients of the stiffness
matrix for a stiffened panel with a circular cutout (bottom of Figure 5.1), are plotted in
a variable-band format as shown in Figure 5.1.

Max. BW

Figure 5.2 Skyline column storage of panel matrix

The coefficients of the matrix are stored by rows where each row represents
a degree of freedom in the finite-element model. The variable-band storage includes all
zero coefficients within the so called “profile” which is defined by the ragged right edge
of the matrix represented in Figure 5.1. Variable-band storage requires less memory
than earlier schemes which stored all coefficients within the maximum bandwidth,
(refer to the distance Max. BW, shown in Figure 5.1), since earlier schemes stored and
operated on many zeros outside the variable-band profile (see the double cross hatch
region in Figure 5.1).

The same panel stiffness matrix is stored by columns in the skyline format, like
skyscrapers, in Figure 5.2 from each diagonal coefficient up to the last nonzero directly
above it.

In the column-oriented storage scheme, the column height is defined as the
number of coefficients from a diagonal coefficient to the last nonzero coefficient in the
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same column, excluding the diagonal coefficient, as shown in Figure 5.2. This skyline
format requires fewer coefficients to store and operate on during equation solution as
indicated by the many zeros (white spaces) in Figure 5.2. The panel example is used for
illustrative purposes only, as in many applications, the reduction in storage offered by
the skyline approach is not so pronounced (as compared to variable bandwidth storage
scheme).

Factorization of a matrix using skyline storage has the advantage that
calculations with zeros outside the skyline need not be performed since zeros remain
in these locations after factorization. Although the skyline method has the advantage of
minimizing the storage and number of operations required on sequential computers, it
cannot achieve optimal vector speed on high-performance computers since it cannot use
efficient SAXPY operations, which stands for Summation of AX Plus Y, (i.e., ) ax +
y, or scalar * vector + vector). Details on the skyline (column-by-column) storage
scheme and its associated Choleski factorization, forward and backward solution
algorithms have already been fully discussed in Chapter 4. SAXPY operations achieve
optimal performance on vector computers since they continually stream operations to
separate add and multiply units which can operate simultaneously.

12 0 4
56 7 8 9 - k=2
10 11 0 0

14 15 16 0 0 19

20 21 22 0 24| - k=95
25 26 0 28| - i=6
29 30 31 )
32 33
34 |

Figure 5.3 Variable-band storage of stiffness matrix

To better understand the variable bandwidth storage schemes in greater detail,
the location of the coefficients in the upper half of a 9x9 symmetric stiffness matrix are
shown in Figure 5.3 as a simple illustrative example. The non-zero integers in Figure
5.3 are the index (location) of each stiffness coefficient stored contiguously in a one-
dimensional array. The 34 matrix coefficients are numbered row-wise according to a
variable-band storage scheme, where for illustrative purposes, the seven zeros are stored
within five of the rows (rows 1, 3, 4, S, and 6). The skyline storage scheme requires
only 29 locations to store the same matrix, since the five zeros in columns 3, 7 and 8 in
Figure 5.3 fall outside the skyline and need not be stored. The two zeros in row 3 must
be stored in both the variable-band and skyline storage schemes since they may become
non-zero during factorization. Using numerical data shown in Figure 5.3, and referring
to Equation 4.9 in Chapter 4, one has

Kys = tyy * Uy

Uy = 2 BB (5.1)
Uy
Ky = tyy * Uy
wy = =22 (52)
33
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Thus, even though the original values for K;; and K, are zeros, their correspondent
factorized matrix u,; and u,, are NOT zeros, as indicated in Eqs. 5.1 and 5.2. The
bandwidth of row 2 in Figure 5.3 is 4, excluding the diagonal coefficient, and the height
of column 6 is 4, excluding the diagonal coefficient.

Using the simple stiffness matrix example shown in Figure 5.3, one can
compute the column height (integer) array, for variable bandwidth storage scheme, as
follows:

ICOLH (5.3)

ORI ND WN =
]
N= N AW ——O

The variable bandwidth, or row length, of each row associated with the
example shown in Figure 5.3 can be computed as:

IROWL 54

OO D WN —
I
O—=NWRUNWHAW

In actual computer code implementation, the stiffness matrix [K] is usually
stored in a one-dimensional array (instead of using a two-dimensional array as shown
in Figure 5.3) in the following row-by-row fashion

(K}7- {12045678910110014 15, 160019}

20,21,22,0,24, 25, 26, 0, 28, 29, 30, 31, 32, 33,34 (5.5)

The numerical values of diagonal terms for the (two dimensional array)
stiffness matrix can be identified as (refer to Figure 5.3):

K, =1
K, =5

1<33 10 (5.6)
K,, = 34

In the corresponding one-dimensional array, the above nine diagonal terms will be
located at the 1%, 5™, 10", 14", 20*, 25%, 29" 32" and 34" positions of Eq. 5.5. The
“diagonal pointer” (integer) array MAXA, therefore, can be defined as:
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1
5
10
14

= 4 %g . (5.7

29
32
=N 34
10 = N+1 35
The integer MAXA array can, therefore, be used as the “mapping” between the two-
dimensional and the one-dimensional arrays stiffness matrix.

The column heights integer array ICOLH can be computed from any given finite
element models, according to the procedures described in Section 2.9 of Chapter 2. Once
the column height information is known, the row length (IROWL) array shown in Eq.
5.4 can be easily calculated (the reader may refer to a segment of Subroutine CSMIN,
given in Section 5.12 of this chapter for detailed computer codings).

The array MAXA, shown in Eq. 5.7, can be conveniently computed from
IROWL according to the following formulas

MAXA

VRO IN NN —

MAXA(1) = 1 (always 1) (5.8)
MAXA (i +1) = MAXA(i) + IROWL(i) + 1 for i =1,2,..N (5.9)
MAXA(N +1) = MAXA(N) + 1 (5.10)

In Egs. 5.9 and 5.10, N represents the total number of equations. The total
number of terms (or total number of memory requirements, in words) can be computed
as

NTERMS = MAXA(N+1) - 1 (5.11)

For the example shown in Figure 5.3, one has (referring to Eq. 5.7, or Egs. 5.8 through
5.10) NTERMS = 35 - 1 = 34. It should be emphasized at this point, that in the variable
band storage scheme, the row length of i"" row MUST also satisfy the following criteria:

IROWL(i™ row) > IROWL((i- 1" row) - 1 (5.12)

For example, since the row length of the 2™ row of Figure 5.3 is 4, therefore, the row
length of the 3" row of Figure 5.3 MUST BE “at least” 3. The requirement stated in Eq.
5.12 is necessary to guarantee the possibilities of a zero term may become non-zero
during the factorization (see explanations given in Egs. 5.1 and 5.2). In general, using
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the variable bandwidth storage scheme, the envelope of the coefficient (stiffness) matrix
may have the form shown in Figure 5.4

[ A

C B
D E
(a) Acceptable Envelope (b) Unacceptable Envelope

(The vertical line CD must move to the
right direction, at least to location BE!)

Figure 5.4 Acceptable and unacceptable variable bandwidth storage scheme
The parallel-vector Choleski method, described in later sections of this chapter, uses a
variable-band storage scheme to achieve optimal vector performance combined with the
skyline column heights to avoid calculations with zeros outside the skyline.

53 Basic Sequential Variable Bandwidth Choleski Method

In the sequential Choleski method, a symmetric, positive-definite stiffness matrix, [K],
can be decomposed as

[K] =[U]"[U] (5.13)
with the coefficients of the upper-triangular matrix, [U]:
w; =0  for i>j (5.14)
- . _ky .
u, = \/K—ll’ u, = = Jor  j=21 (5.15)
1
i-1
u, = | K, - Z ukzl. Jor i>1 (5.16)
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i1
Kij - kz; U Uy
v, = — =5 Sfor i,j>1

i

(5.17)

kS

When j=i, the numerator of Eq. 5.17 is identical to Eq. 5.16 without the square root
operation, which simplifies coding.

For better understanding of the developments of the basic (sequential) variable
bandwidth Choleski code for factorization, let us consider a full, symmetric, positive
definite matrix, where the matrix size N = 9 as shown in Figure 5.5

2™ loop, k=1-1i-1(sayk=4)
!

K, K, K; K, K5 Kig Kp; Ky Ky
Ky Ky Ky Kys Kyg Ky Ky Ky
Ky Ky Kys Ky Ky Ky Ky
3" loop, j=i~ N K Kis Kig Ky Ky Ky
(sayj=6-9) K5 Ksg Ks; K K ) .
K¢ Kg Ko K ~ 1"loop,i=1~ N
i = 6" row)
Ky Ky Ky (say i
SYM. Ky Ky
Ko,

Figure 5.5 A full, symmetric stiffness matrix

In a variable bandwidth storage scheme, since the stiffness matrix has been
stored in a row-wise fashion, factorization will also be done according to a row-by-row
fashion (the reader should recall that factorization has been done according to a column-
by-column fashion in Chapter 4!) as illustrated in the skeleton FORTRAN code shown
in Figure 5.8.

According to Figure 5.5 and Eq. 5.16, the factorized diagonal term ug can be
computed as

- 2 2 2 2 2 \J12
Uge = [Kss - (”16 tTlye tUg Uy * usé)] (5.18)

The above summation, within the inner parenthesis, can be considered as the
inner product of

Ujg Ujg
Ugg Uy
Usg Usg
Uys Uy
Usg Usq
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or, with the aid of Figure 5.5, can be considered as the dot product of column #6
(excluding the diagonal term) onto itself. Similarly, the factorized off-diagonal term ug,
can be computed from Eq. 5.17 as
K, - (ueug + oty +..... t U U
Uy = 69 ( 16 “19 26 u29 56 59) (5.19)
66
Again, the summation within the parenthesis in Eq. 5.19 can be considered as the dot

product of column #6 and column #9, such as

Upg Uy
Uy Uy
Usg Usg
Uyg Uyg
Use Usg

From Eqs. 5.18 and 5.19, one can easily see that if we wish to factorize the “entire” row
#6 of Figure 5.5 (for example, to compute g, Ug;, Ugg, and ug, ) then we only need to
know the factorized terms in the rectangular region “right above” the 6" row. In general,
the factorized information required in order to factorize any i row of a full matrix, and
variable bandwidth matrix can be shown in Figure 5.6 and Figure 5.7, respectively.

< Information required to
factorize the i row

< i row (to be factorized)

Figure 5.6 Choleski factorization of the i row of a full matrix
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k = toprow # of ith cdunm > row #i - 1

[2nd loop, say k = 7]
i yinlornmlon required fo
/ factorize the ith row
=ik length--——— '
j=io>k+ rb:l' :: " ) ith row {to be factorized)
3rdloop, sayj=9 > 7+4] ft e sy 1 =91

Figure 5.7 Choleski factorization for the i row of a variable bandwidth matrix.

Regardless of whether the Choleski or Gauss method is used (see Section 5.8), the basic
skeleton FORTRAN sequential code for matrix factorization, based on the variable
bandwidth storage scheme, is given in Table 5.1 with comments inserted to explain its
connection to Egs. 5.15 through 5.17

Table 5.1 Sequential Choleski variable-band skeleton code
for matrix factorization

1 DO 1 1i=row#l, row#N

2 DO2 k= top tow# of i column, i-1

3 c compute multiplication factor, xmult

4 xmult = U(k,i)

5 cgauss xmult = U(k,k) * U(k,i) replaces above statement
6 DO 3 j=i,k+row length of row k

7 c calculate the numerator of Eq. 5.17

8 U(i,j) = K(i,}) - xmult * U(k,j)

9 3 Continue

10 Continue

11 c calculate final value of U(i,i) as in Eq. 5.16

12 U(@,i) = SQRT (U(4,i))

13 cgauss remove above statement

14 c DO loop 4 divides the numerator of Eq. 5.17 by u;
15 xinv = 1/U(4,1)

16 DO4 j=i+l,i+row length of row i

17 U(,j) = U(i,j) * xinv

18 4 Continue

19 1 Continue
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Detailed explanations of Table 5.1 are given in the following paragraphs (the

reader should refer to Figure 5.7).

Line 1: Since the Choleski variable bandwidth factorization proceeds in a row-by-
row fashion, the first loop, with the index i, will scan from row #1 to the last
row #N, (say i = 9" row, as shown in Figure 5.7)

Line 2: Since the i = 9™ row is being factorized, it implies that all the previous
rows (row 1 through row 8) have already been completely factorized. Thus,
if the matrix is assumed to be full as shown in Figure 5.6, then the
information required to factorize the i™ = 9" row are rows k = 1 through 8.
However, if the matrix has variable bandwidths as shown in Figure 5.7, then
the information required to factorize the i = 9" row are rows k = 4 through
8, or to be more general, the index k of the second loop should be k = top
row number of the i column, i - 1, (say k = 7, as shown in Figure 5.7).

Line 3-4:  Copy the known value u,; into the variable xmult, where xmult is referred to
as “multiplier factor”.

Line 5: This “comment” statement will be discussed in greater detail in Section 5.8

Line 6: Assuming k = 7 (as explained in Line 2) the “completely” factorized 7" row
can be used to “partially” factorize row number i =9. For example (referring
to Figure 5.7 and Eqgs. 5.16 and 5.17).

Uy g (partially factorized) = Kyq - (u72 9 * u; 9) (5.20)
uy o (partially factorized) =Ky = (uy o * Uy 1o+ Ugg * Ug ) (5.21)
Ug i (partially factorized) = K9,11 -( Upg ¥ Uy +Ugg *Ug ) ) (5.22)

Thus, the index j of the 3™ loop should be j = column 9 ~ column 11, or to be more
general:
j =i~k + row length of row k (5.23)

Expression given in Eq. 5.23 for the index j is valid, since in this example, i=9, k =7,
and row length of row 7=4 (hence j=9-7+4,0r j=9 -~ 11)

Lines 7-9: Calculate the numerator of Eq. 5.17

Line 10: End of the 2™ nested do-loop

Lines 11-12: Calculate the final value of the diagonal term u ;

Line 13: Explanation of this “comment” statement will be postponed until
Section 5.8

Lines 14-15: Since division is more time consuming than multiplication, the

operation xinv = L is done outside of loop 4 (with the index j)
u

ii

Lines 16-18: The numerator of Eq. 5.17 is divided by u, ; (or multiplied by xinv) to
get the complete, final answer for the factorized off-diagonal term u;



Duc T. Nguyen 101
Line 19: End of the 1* nested do-loop
54 Vectorized Choleski Code with Loop Unrolling

For a single processor with vector capability, the loop-unrolling technique (suitable for
SAXPY operations) can be exploited to significantly improve performance. The SAXPY
operation is one of the most efficient computations on vector computers since vector
operations are performed in parallel on separate add and multiply functional units.

In Figure 5.5, for example, once the first four rows of the factored matrix, [U],
have been completely updated, row 5 can be updated according to the numerator of Eq.
5.17

Us; = ij T U * Uy

~ U, * U,
e (5.24)

35 3j

T Uy * Uy,

where j =5 ~ N (say =9).

In Eq. 5.24, u,, uy, us,, and u,s are multiplier constants. Thus, u,s (or u,;, uss,
u,s), uy; (or uy, uy, uy) and ky; play the role of the terms a, x and y, respectively, in
SAXPY operations. The SAXPY operations in Eq. 5.24 are also loop unrolled to level
4 since operations on four rows are stacked together into one FORTRAN arithmetic
statement. This loop unrolling is possible since “partial” updated values of row 5 can be
computed when any of the first four rows are completed. .

In a previous chapter (using the column-oriented Choleski method) once the
first four columns of the factored matrix, [U], were completely updated, all terms of
column 5 were updated. For example, referring to Figure 5.5, u,; was computed by Eq.
5.17 as

ko - (u, *u
g = 25 ( 12 15) (5.25)
Uy

The term u,5 in Eq. 5.25 was computed directly as the “final” updated value, and could
not be expressed in terms of “partial” updates as is the case in Eq. 5.24. Therefore, the
loop unrolling technique could not be used in this case. Instead, a vector unrolling
strategy was used (see Chapter 4) to improve the vector performance in Eq. 5.17.

However, in the present chapter, the sequential Choleski skeleton in FORTRAN
code in Table 5.1 can be modified to include loop-unrolling, say to level 4 as is shown
in Table 5.2

Table 5.2 Vectorized Choleski factorization code (with level 4 loop unrolling)

DO2 k= top row# of i" column, i-1, 4
DO 3 j=i, k+row length of row k

DO 1 i=row#l, row#N ’
c Eq. 5.24 (numerator of Eq. 5.17) follows !

LW N -
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5 U(ij) = K(ij) - U(ki) * U(k,))
- U(k+1,i) » U(k+1,j)
- U(k+2,i) * U(k+2,j)
- U(k+3,i) * U(k+3,j)

6 3 Continue

7 2 Continue

8§ c repeat loop 2 to update i row by extra k values

9 ¢ for DO 2 k=1, 10, 4, extra k values are 9, 10

10 U(i,i) = SQRT (U(i,i))

11 xinv = 1/U(4,1)

12 DO 4 j=i+l, i+ row length of row i

13 U(i,j) = U(i,j) * xinv

14 4 Continue

15 1 Continue

Detailed explanations of Table 5.2 are given in the following paragraphs:

Line 1: In arow-by-row fashion, the first loop, with the index i, will scan all rows from
1 to N (say i = 5" row in Figure 5.5)

Line 2: Since the ith = 5™ row is being factorized, it implies that all the previous rows
(rows 1 through 4) have already been completely factorized. Thus, if the matrix
is assumed to be full (only to simplify the discussions) as shown in Figure 5.5,
then the information required to factorize i = 5" row are rows k = 1 through
4, or to be more general, the index k of the second loop should be k = top row
number of the i column, i - 1.

However, we can improve the vector speed in the next (or third) nested
do-loop by packing every 4 rows of the matrix together. Thus, the index
k of the second loop should be modified as
k = top row number of the i column, i - 1, 4

Line 3: Explanations have been given earlier (see line 6 of Table 5.1)

Lines 4-5:

Lines 6-7:
Lines 8-9:

Calculations for, say Eq. 5.24, or calculations for the numerator of Eq.
5.17. The index k of the second loop will “jump” from row k=1 to row
k =5, because of the increment 4, as explained in Line 2, and therefore,
rows k=2, 3, and 4 will be skipped. The contributions of the “already
completely factorized” rows 2, 3, and 4, however, are included in line
5, in the following forms

U (k+1,i) = U(k+1,})

U (k+2,i) x U(k+2,j

U (k+3,i) « U(k+3,j

The third and second loops are ended, respectively.

Suppose the index i, in the first loop, has the value i = 11, then the
index k, in the second loop, is supposed to have the values k = 1
through 10. However, because of the increment 4 (or loop unrolling
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level 4) the index k will only reach the value of k = 8. Thus, the
“equivalent” of loop 2 needs to be executed for two more times, to take
care of k=9 and 10.

Lines 10-15:  These lines have the same meaning as lines 12 and 15 through 19 in
Table 5.1.

Using the loop-unrolling technique (see Lines 2 and 5 of Table 5.2), the total
number of load and store instructions and operations between the main memory and the
vector registers is reduced significantly for nested DO-loops. The modified outer loop
(DO 2 in Table 5.2), has an increment equal to the level of unrolling, while the innermost
loop (DO 3 in Table 5.2) contains more arithmetic computations in a single FORTRAN
statement than the basic code. For vector supercomputers, such as Cray, SAXPY
operations are known to be faster than dot-product operations used in the skyline method.
The use of a variable-band is preferred to the skyline storage scheme since it permits the
SAXPY operations in Eq. 5.24.

In addition to vector capability, modern high-performance computers also have
multiple processors which can operate in parallel. Considerably more work is required
by engineers to achieve parallel performance gains than to achieve vector performance
gains, since code must be restructured for processor synchronization and load balancing.
The parallel-vector Choleski method was coded (in the Force parallel FORTRAN
language) as the computer program pvs. PVS will be described in Section 5.11 after a
brief synopsis of Force in Section 5.5.

55 More on Force: A Portable, Parallel FORTRAN Language!>¥

Force is a preprocessor which produces executable parallel code from a combination of
FORTRAN and a set of simple, yet portable, parallel extensions tailored to run
efficiently on parallel computers. The parallel extensions used in pvs are Prescheduled
DO, Shared and Private variables, Produce and Copy. Prescheduled DO causes all
processors to execute the same DO-loop statements in parallel simultaneously with each
processor using a different DO-loop index. Variables can be either Shared between all
processors or Private (each processor has its own value for the same variable name).
Care should be taken to avoid large Private arrays, as they are stored in different
memory locations for each processor. Therefore, Shared arrays are preferred to Private
arrays. Copy and Produce are used to synchronize tasks. Copy X into Y stores X in Y
onlyif X is “full” (i.e., a signal to all processors to resume their computations), otherwise
the processor waits. Produce X = K assigns K to X and marks X as “full”. If X if “full”,
Produce waits until X is “empty” (i.e., a signal for processors to wait) before assigning
K to X. Force permits algorithms to be independent of both the computer and the number
of processors, as the number of processors is not specified until run time. Other parallel
FORTRAN software, such as PVM [4.10] and MPI [4.11] can also be employed.

5.6 Parallel-Vector Choleski Factorization

In Choleski-based methods, a symmetric, positive definite stiffness matrix, [K], can be
decomposed as shown in Egs. 5.16 and 5.17. For example, u,, can be computed from Eq.
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5.17 as:

_ kg = Wystyg = Upglhyy = Usgllyy = Uygtyy
ugy = (5.26)
Uss

The calculations in Eq. 5.26 for the term us, (of row 5) only involve columns 5 and 7.
Furthermore, the “final value” of us, cannot be computed until the final, updated values
of the first four rows have been completed. Assuming that only the first two rows of the
factored matrix, [U], have been completed, one still can compute the second partially-
updated value of us, as designated by superscript (2):

@ _

Usy 57 (5.27)

T U U T Uy Uy

If row 3 has also been completely updated, then the third partially-updated value of us,
can be calculated as:

3 @

This observation suggests an efficient way to perform Choleski factorization in parallel
on NP processors. For example, each row of the coefficient stiffness matrix, [K], is
assigned to a separate processor.

From Eq. 5.26, assuming NP = 4, it is seen that row 5 cannot be completely
updated until row 4 has been completely updated. In general, in order to “completely”
factorize the i row, the previous (i-1) rows must already have been updated. For the
above reasons, any NP consecutive rows of the coefficient stiffness matrix, [K], will be
processed by NP separate processors. As a consequence, while row 5 is being processed
by a particular processor, say processor 1, then the first (5-NP) rows have already been
completely updated. Thus, if the i* row is being processed by the p™ processor, there is
no need to check every row (from row 1 to row i-1) to make sure they have been
completed. It is safe to assume that the first (i-NP) rows have already been completed as
shown in the triangular cross-hatched region of Figure 5.8.
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—
<——f—— Rowi-NP
<—fF—— Rowi

Completely Updated

A Not completely updated

Figure 5.8 Information required to update row i

Synchronization checks are required only for the rows between (i-NP+1) and
(i-1) as shown in the rectangular solid region of Figure 5.8. Since the first (i-NP) rows
have already been completely factored, the i*" row can be “partially” processed by the p*
processor as shown in Eqs. 5.27 and 5.28.

To simplify the discussions and to better understand the developments of
Parallel-Vector Variable Bandwidth Choleski Factorization, a full and symmetrical
(stiffness) matrix with 24 Degree-of-Freedom (DOF, or unknowns) and three processors
(NP =3)P,, P, and P, are shown in Figure 5.9.

Since factorization will be done in a row-wise fashion, the three processors P,,
P, and P, will be systematically assigned to different rows, as shown in Figure 5.9.

To make the discussions more general, let’s assume that a particular processor
(say P,) is currently trying to factorize a certain row (say row no. 17). Since processor
P, is currently at row no. 17, it implies that at least the first fourteen rows (rows 1
through 14) have already been “completely” factorized. Since row no. 14 also belongs
to processor P,, therefore P, will jump to work on row no. 17 only if row no. 14 has been
completely factorized, which also implies that all previous rows (rows no. 1 through 13)
have also been completely factorized!

Furthermore, if P, is currently at row no. 17, then the other two processors (P,
and P; ) MUST BE at either “right above” row no. 17 (if rows 15 and 16 have not been
completely factorized yet!), or “right below” row no. 17 (if rows 15 and 16 have already
been completely factorized)!

For example, if P, is at row no. 17 (i = 17), then P, can NOT be at row no. 1,
or no. 4, or no. 7, or no. 10, or no. 13 because we have already proved that the previous
(i-NP) rows (or 17 - 3 = 14 rows) must have been completely factorized. In practice, it
is safer to assume that if P, is at the i" row, then its neighboring processors (P,, P;, etc.
... ) will be right above it. Referring to Figure 5.9, one can see that processors P, P,,
and P, can do a significant amount of parallel computations in trying to factorize rows
no. 16, no. 17, and no. 15, respectively. Processor P, for example, will have a lot of




106 Parallel-Vector Equation Solvers for Finite Element Engineering Applications

work to do, since the “majority” of information required to factorize row no. 16 has
already been available as shown by the rectangular region MFCD.

Thus, processor P, can use the available information (in the rectangular region
MFCD) to “partially” factorize (or update) row no. 16. Processor P,, however, will get
the “completely” (or final) factorized row no. 16 only if its neighboring processor P,
completely factorizes its own row (row no. 15).

While P, is working on row No. 16, at the same moment, processors P, and P,
are simultaneously working on the “partially” factorized rows no. 17 and no. 15,
respectively (using the available information in the rectangular regions, NICD and
ABCD, respectively).

The black region shown in Figure 5.8 will correspond to rows 15 - 17 in Figure
5.9, where i =17 and NP = 3.

The vectorized Choleski code in Table 5.2 has been modified for parallel
processing. The resulting skeleton factorization part of the full pvs code is shown in
Table 5.3 with parallel (Force) statements in boldface type.

112(314]5/6/7|8[91q1117131 1514171819202”114

o | x [ Joaf X[ x ] X x]x x| x [P x x x [ x x Gl Py

x oo o x [ x [ x ] x x[ x| Py

P3

4 D
. 3
P

3

] ,l
P2

§ 3
P

P)

p

3

P

4 MEINRP D’z
IR X | X [ X[ X [ X[X% P5

i X xxxxx):l

7 x| x X[ x[x|L]Py
P3

sTYm[m[E[T[R[T{c[aL] [M[a[T[R]T]X P

_b ’2
A xix|{x|Ps
x[x| Py

3 x{ Py
24 P3

Figure 5.9 A full, symmetrical (stiffness) matrix with
24 DOF and NP = 3 processors (P,, P,, P;)

Table 5.3 Parallel-vector Choleski skeleton code with level 4 loop unrolling

Shared K(21090396)

Private i,j,ktemp,xinv

{X} vector used to indicate when a row is completely factorized
[U] overwrites [K] in actual code to reduce storage

calculate U(1,1) in Eq. 5.16 on one processor

wn B W N -
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6 U(1,1) = SQRT(K(1,1))

7

8 c declare row#1 finished

9 Produce X(1) = U(1,1)

10 c start all available processors (for parallel computation)

11 Presched DO 1 i = row#2, row#N

12 c lock processor if row# (i-NP) is not completed

13 c release lock when row is completely factorized

14 IF (i-NP.GT.0) then

15 Copy X(i-NP) into temp

16 End if

17 DO 2 k=top row# of the i column, i-NP, 4

18 c skip DO 3 if all multipliers are zero: zero checking

19 DO 3 j=i, k+rowlength of row k

20 U(ij) = K(i,j) - U(k,i) * U(k,))

21 - U(k+1,0) *» U(k+1,j)

- - U(k+2,i) * U(k+2,j)
- U(k+3,i) * U(k+3,j)

23

24 3 continue

25 2 continue

26 c lock the processor if row# (i-1) not finished

27 c release the lock when row#(i-1) is finished

28 Copy X(i-1) into temp

29 DO 4 k=max(top row# of i" column, i-NP+1), i-1

30 DO S j=i, k + rowlength of row k

31 U(i,j) = UGy - Uk,i) * Ulk,j)

32 5 continue

33 4 continue

34 U(i,i) = SQRT(U(,i))

35 xinv = 1/U(4,i)

36 DO 6 j=i+l,i+rowlength of row i

37 U(@,j) = U(,j) * xinv

38 6 continue

39 c broadcast to all processors that row i is finished

40 Produce X(i) = U(i,i)

41 1 End Presched DO

Explanations of Table 5.3 will be given in the following paragraphs:
Line 1: Stiffness matrix, stored in a one-dimensional real array, is declared as a
“shared” variable. Thus, this array can be accessed by any processor.
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Line 2: Some “private” variables are declared

Lines 3-10: These statements, with comment cards, are self-explained

Line 11: The outermost do-loop (with the index i) is executed in parallel (row-by-row

fashion) by NP processors as described in Fig. 5.9.

Lines 12-13:  Self-explained from comment cards

Lines 14-16:  Check (synchronization) to make sure that the first (i - NP) rows have
already been completely factorized? Ifthe answer is YES, then proceed
to the next statement. If the answer is NO, then processor(s) will wait
in here!!

Lines 17-25:  These statements play the same roles as lines 2 through 7 of Table 5.2.
The major difference between Table 5.3 and Table 5.2 is that the
second loop in Figure 5.9 is broken into two separated loops in Table
5.3 (see loop 2 in line 17 and loop 4 in line 29 of Table 5.3). In these
statements, all processors are simultaneously trying to “partially”
factorize its own row (using available information in rectangular
regions ABCD, MFCD and NICD shown in Figure 5.9).

Lines 26-28:  Check (synchronization) to see if any rows, within the sequential, black
region shown in Figure 5.8, has been completely factorized?? If the
answer if YES, then proceed to the next statement. If the answer if NO,
then processor(s) will wait in here!!

Lines 29-33:  These statements continue to play the same roles as the ones in lines 17
through 25. The key difference is “sequential” factorization will be
done in here (see the black regions in Figure 5.8).

Lines 34-38: These statements play the same roles as the ones in lines 10 through 14
of Table 5.2.

Line 41: Self-explained from the comment card. The end of the first (parallel)
nested do-loop, with the index i.

5.7 Solution of Triangular Systems

The forward/backward solution can be made parallel in the outermost loop by using
synchronization statements, and can result in excellent computation speed-up for an
increasing number of processors on computers where synchronization time is fast
compared to computation time. However, on Cray computers, the computations for the
forward/backward solution time are so fast that for better performance in subroutine pvs,
they are done on one processor with long vectors rather than introducing synchronization
overhead on multiple processors. A further time reduction for one processor is obtained
by using loop unrolling in the forward elimination and vector unrolling (another form of
loop unrolling) in the backward substitution.

It is interesting to notice that in Chapter 4, since the column-by-column storage
scheme is used, vector unrolling has been used in the forward solution and loop unrolling
has been used in the backward solution! The readers are asked to recall that vector
unrolling is associated with “dot-product” operations and it will lead to “final” answer.
On the other hand, loop unrolling is associated with “SAXPY” operations, and it will
lead to “partial” (or “incomplete”) answer.
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5.7.1 Forward solution
To simplify the discussions, let us refer to Eq. 5.29 for the forward solution of the six
simultaneous equations. In Eq. 5.29, the upper triangular matrix [U] which have already
been factorized in earlier sections is also assumed to be a “full” upper triangular matrix.
In actual computer coding, the factorized matrix [U]" will be stored in arow-by-
row fashion in a one-dimensional array. Thus, the numbers in each column of [U] (shown
in Eq. 5.29) are stored next to each others, and therefore the “stride” (see Chapter One)
between any two consecutive numbers within a column is equal to 1.

Uy i F
Uy Uy V2 F,
Uy U3 Uy 2N G LN (5.29)
Uy Uy Uy Uy V4 F,
Uys  Ups Uss Uy U s Fy
Uy Upg U Uy Usg  Ugg | Vg Fy

The explicit forward solution to obtain the unknown vector {y} in Eq. 5.29 can
be given as

Fy
y=— (5.30)
Uy
F u,y
y, = 2 (422) (5.31)
Uy
3= 2 (sn * ts:) (5.32)
Uss
Y, = F, - (“143’1 YUY, t u34y3) (5.33)
Uy,
Y = Fs - (sy) + sy * ussy; + UysVs ) (5.34)
Uss
Fg - (ul6yl YUyt UsgVsy Uy t “ssys)
Vs = (5.35)

Uge

Observing Egs. 5.30 through 5.35 carefully, one will recognize that it is
definitely possible to get the “final” (or “complete”) solution for any unknowns (say, ys)
by using the appropriate equation (say Eq. 5.34). It is NOT desirable, however, to get the
“final” solution for y directly (from Eq. 5.34), due to the following two reasons:
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(a) The values of u,s, u,s, u;5 and u,s are NOT stored consecutively (next to
each others) in the one-dimensional array. Thus the “stride” between any
of the above numbers is much larger than 1, hence, it will lead to poor
vector performance (see Chapter One).

(b) Directly obtain the “final” answer for y; will require “dot-product”
operations, which is known to offer much less vector speed on many
shared memory computers, such as the Cray-YMP, Cray-C90, etc. . . .,
as compared to the “SAXPY” operations.

For better vector performance, say, on Cray-type computers, and to fully utilize
the SAXPY operations with “loop-unrolling” technique, the forward solution can be
summarized by the following “key” strategies
Step 0: Leti=1
Step 1: Solve “completely” for the “final” solution of y;.

Thus,

Y= — (5.36)
: Uy

Step 2: Solve “partially” for the “incomplete” solutions of y;,;, Yisy - - - - ¥n-
Thus,

¥, (incomplete) = F, - (u},y,) (5.37)
vy (incomplete) = Fy - (u;;y,) (5.38)
¥4 (incomplete) = F, - (u,,y,) (5.39)
v (incomplete) = Fy - (uy5y,) (5.40)
Vs (incomplete) = Fy - (u5,) (5.41)

Step 3: Leti=i+ 1, and go back to step 1

Using the above strategies, the values of u,,, u,;, . . . ., u;s (required in Eqs. 5.37
through 5.41) are stored right next to each other (in the one-dimensional array U) and
therefore their strides are all equal to 1. Furthermore, since the obtained forward solution
vector {y} is “incomplete”, SAXPY operations with loop-unrolling enhancements can
be utilized!

The basic skeleton FORTRAN code to implement the strategies given by Eqs.
5.36 through 5.41 is now given in Table 5.4.



Duc T. Nguyen 111

Table 5.4 Basic forward solution for row-by-row storage scheme

c Initialize the unknown solution vector {y} to its corresponding
right-hand-side vector {F}
DO1 J=1,N
1 YQJ)=FQ)
c Considering all unknowns

DO2 J=1,N,1
Obtaining the complete, “final”solution for the J*' unknown

see Eq. 5.36
J)
Jy = Y
y(J) D)
c Obtaining the partially, “incomplete” solutions for the other

A+D™J+2)" ..., N)" unknowns
See Eqs. 5.37 through 5.41
DO3 I=J+1,N
y(D =y@ -UdD * y()
3 continue

2 continue ]

The operations involved inside loop 3 of Table 5.4 is called SAXPY operations,
because it basically involves

vector y; = vector y; + a constant y; * vector U;

In the above operations, since the index j does NOT change within the loop 3, therefore
y; is considered as a constant and U;; is considered as a vector.

Loop unrolling technique can be used to improve the vector performance of the
algorithm shown in Table 5.4. To simplify the discussions, assuming loop-unrolling level
2 (or NUNROL = 2) is used, and the improved algorithm is self-explaining in Table 5.5
(only a skeleton of FORTRAN code is given).

Table 5.5 Loop-unrolling forward solution for row-by-row storage scheme

c Initialize
DO1 J=1,N
1 Y(Q)=FQ)
c Considering all unknowns, but with increment NUNROL (say = 2)
DO2 J=1,N,NUNROL
c Obtaining the complete, “final” solution for a “few”

unknowns (depending on value of NUNROL)
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D AC))
re) U(J,J)
y(J+1) = y(J+1) - UJ,J+1) * y(J)
U(J+1,J+1)

c Obtaining the partially, “incomplete” solutions for other unknowns
DO3 I=J+NUNROL,N
y(D =yD-Ud,D * y(J)
-UQ@+1, D) * y(J+1)

3  continue
continue

In actual computer code implementation, loop-unrolling level 8, or level 9
(NUNROL = 8, or 9) has been used. Furthermore, the factorized matrix U has been
actually stored in a one-dimensional array (using the diagonal pointer array MAXA, as
explained in Eqs. 5.8 through 5.10). Finally, variable bandwidths (see array IROWL, as
explained in Eq. 5.4) have also been employed to save both computer storage as well as
to reduce the number of operations.

5.7.2  Backward solution
To simplify the discussions, let us refer to Eq. 5.42 for the backward solution of the same
six simultaneous equations considered in Section 5.7.1.

Uy Uy Uy Uy W Ul |2 |

Uy Uy Uy Uy Uy | |2 )
Uy Uyy  Uys Uy | 250 - *}’3} (5.42)

Uy U5 U | |4, V4

Uss  Usg | |Zs s

Uge | |Zs Vs

The explicit backward solution to obtain the unknown vector {Z} in Eq. 5.42 can be
given as

y
z, = == (5.43)
Uss
Ve - (U Z,
Z, = 5_(56_6_) (5.44)
Uss
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Z, - Y = (422 * U2, +u“14Z4 + s Zs + uZg) (5.45)
1

Observing Eqgs. 5.43 through 5.45 carefully, with special attention to Eq. 5.45,
one will recognize that the “final”, or “completed” solution for the unknowns, say Z,, can
be (and should be) obtained directly from Eq. 5.45. This strategy is preferred here, since
the known quantities such as u,,, u,, .., 4, have already been stored in a consecutive
(right next to each other) fashion (thus, the optimum stride 1 can be achieved). Since the
final, complete solution for the unknowns can be obtained directly, vector-unrolling
(NOT loop-unrolling) can also be used in conjunction with DOT-PRODUCT operations
to enhance the vector speed.

The basic backward solution for row-by-row storage scheme is presented (in the
form of a skeleton FORTRAN code) in Table 5.6 (assuming the factorized, upper
triangular matrix is fully populated to simplify the discussions) and explanations are
given in the following paragraphs.

Line 1:  The first nested do-loop (with the index J) will cover from the last unknown
to the first unknown (with the index increment of -1).

Line2:  The J* unknown is first initialized to have the same value as the right-hand-
side vector y(J)

Line 3:  The second nested do-loop (with the index I) will scan from the value J + 1
to N to make sure that all terms inside the parenthesis (see the nominators of
Eqgs. 5.44 and 5.45) are included.

It should be noted here that most (if not all) FORTRAN compilers will automatically

skip do-loop #2 if J + 1 is greater than N.

Line4:  The nominator of Eq. 5.44, or Eq. 545 etc. . . .. , is computed.

Line 5:  Do-loop #2 is ended

Line 6:  The final, complete solution for the J* unknown is computed

Line7:  Do-loop #1 is ended.

The algorithm for backward solution presented in Table 5.6 can be modified to
enhance its vector speed by utilizing the “vector unrolling” technique. Referring to Eq.
5.42, and assuming several rows (say every two rows, thus the level of unrolling is
NUNROL =2) are grouped together. The key strategies used by the algorithm presented
in Table 5.7 can be summarized as follows (please also refer to Eq. 5.42, for a “specific”
example):

Step 1: Solve completely for the last NUNROL (say, 2) unknowns Zy, Z,_, (for
example Z, and Z;) and let j = N - NUNROL
Step 2: Compute Z; (incomplete) = Z, (incomplete) =y, - (Uys Zs + Uys Zg)

Compute Z, (incomplete) = Z, (incomplete) = y; - (Uy5 Zs + Uss Ze)

Note: The effects of the triangular region of the coefficient matrix (see rows 3 and 4
of Eq. 5.42) have not yet been included in the calculations. It will, however, be

incorporated in Step 3!

Z4
Step 3: Compute Z, (complete) = —

Compute Z, (complete) =
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Step 4: Letj=j - NUNROL, and return back to Step 1, for the remaining unknowns
With the above four-step procedure in mind, explanations for Table 5.7 can now

be given:

Line 1: Select the level of unrolling. Here, we select NUNROL = 2 (or
grouping every two rows together)

Lines 2-3: Solve for the last NUNROL unknowns (see Step 1 of the above key
strategies)

Line 4: This first nested do-loop (with index J) will consider all remaining
unknowns (with the loop increment - NUNROL).

Lines 5-6: Initialize the next NUNROL unknowns to be equal to their
corresponding right-hand-sides

Lines 7-10: This second nested do-loop (with index I) will “partially” compute the

nominator (of Eqs. 5.43 through 5.45) of the next NUNROL unknowns
(see Step 2 of the above key strategies)
Note: Because the increment of index J in the first loop (see line 4) has been set
to “-NUNROL?” (or -2), hence, there is a need to insert an EXTRA statement
(see line 9) to compensate the larger increment of the index J.

Lines 11-12:  Compute the final, complete unknowns (see Step 3 of the above key
strategies, and also refer to the triangular regions in rows 3 and 4, and
rows 1 and 2 in Eq. 5.42).

Line 13: Do-loop #1 is ended.

Table 5.6 Basic backward solution for row-by-row storage scheme

1 DO 1 J=N, 1,-1
2 ZM=Y()
3 DO2 I=J+1,N
4 ZN=23)-uy, D *ZD)
5 2 CONTINUE
6 ZW) - Z(J)
U(J,J)
7 1 CONTINUE
Table 5.7 Vector unrolling backward solution for row-by-row storage scheme
1 NUNROL =2
2 Z(N) = Y(N)
U(N,N)
3 Z(N-1) = Y(N-1) - U(N-1,N) x Z(N)
U(N-1,N-1)
4 DO 1 J=N-NUNROL, i, -NUNROL
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5 Z()=Y()
6 Z(-1)=Y(-1)
7 DO2 I=J+I,N
8 Z(J)=Z(3) - UQJ, T) * Z(T)
9 Z(J - 1) = Z(J-1) - U(-1, T) * Z(T)
10 2  CONTINUE
11 2y = ZU)
UJ,J)
12 z(-1) = [2U=D) - UU-1,0) » ZW)]
UJ-1,J-1)
13 1 CONTINUE

5.8 Relations Amongst the Choleski, Gauss and LDL" Factorizations

The row-oriented, sequential versions of the Choleski, Gauss and LDL" methods are
presented together to illustrate how their basic operations are closely related and readily
identified. To simplify the discussion, the following system of equations is used
throughout this section:

[k]{z} = {F} (5.46)
where
2 -1 0
(K] =]-1 2 -1] (5.47)
0 -1 1
1
and {F} = { g} (5.48)

The solution of Eqs. 5.46 through 5.48 is:

1
{z} = {1} (5.49)
1
The basic ideas in the Choleski, Gauss and LDLT elimination methods is to
reduce the given coefficient matrix, [K], to an upper triangular matrix [U]. This process
can be accomplished with appropriate row operations. The unknown vector, {Z}, can be
solved by the familiar forward and backward substitution.

5.8.1 Choleski (UTU) factorization
The stiffness matrix [K} of equation 5.47 can be converted into a Choleski upper-
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triangular matrix, [U}, by appropriate “row operations”:

- [K2] =

- [K4] =

(K1] = [K] =
-1
%
3
2
0 -1

where

- [K5]

Row 1 of [K2] = Row 1 of [K]
JEI(T,1)
Row 2 of [K2] = RW LA [K2] | poty s or (k1]

/2

Row 2 of [K3] = Row 2 of [K2]
VK2(2,2)

Row 3 of[K4] = Row 2 of[KB] * \]—g + Row 3 of[K3]

Row 3 of [KS] = —J-—]ROWK:: 0;’ 3K4

The multiplier constants, my, used in the forward substitution (or updating the right-hand
side vector of Eq. 5.46) are the same as terms in the factorized upper-triangular matrix

such that:

My, =up=

]

2
-1 2 -1
0

Ny

(=

n
(=]

(=

i~

[«

i
“alS

|
—

=
° Dol

PRl

- m..=u..=0.m,.,.=u =—_@
> 713 13 > %23 23

3

==

(5.50)

(5.51)

(5.52)

(5.53)

Another way to view this Choleski factorization process is to express Eq. 5.47

as
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(k] = [U]"[U] (5.54)

For the data shown in Eq. 5.47, and the direct applications of Eqs. 5.16 and 5.17, Eq.
5.54 can be expressed as

2o o] [ 2L o
lz—10]_-i£o Og_ﬁ

RN A N A 559
S A

The second matrix on the right-hand side of Eq. 5.55 can be identified as the
matrix [K5] presented in Eq. 5.52.

The forward solution (or updating the right-hand side vector F of Eq. 5.46) can
be obtained by solving Eq. 4.4, from Chapter Four:

[U)"{»} = {F}

for the vector {y} (or, the “updating” right-hand-side vector {F}). The multipliers shown
in Eq. 5.53 turn our to be the same as the off-diagonal terms of the matrix [U]" in Eq.
5.55.

5.8.2  Gauss (with diagonal terms L; = 1) LU factorization
As in the Choleski method just described, the stiffness matrix, [K], of Eq. 5.47 can also
be converted into a Gauss upper-triangular matrix by appropriate row operations.

2 -1 0
[K1] =[K]=|-1 2 -1 (5.56)
0 -1 1
2 -1 0 (2) "31 01
~(k2]=]0 2 -1|=[k3]=|" 2 (5.57)
011 00 3

In this version of Gauss elimination, the multipliers m;; can be obtained from the factored
matrix, [U], as:

. = U, 1 (5.58)
12 - - 7 P’y .
u, 2
m = E = _q = O (5 59)
13 u 2 .
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Uy -1 2
", T3 3 (5.60)
22 2
2
Another way to view this Gauss factorization process is to express Eq. 5.56 as
(k] =[£][U] (5.61)
or
2 -1 0 10 0fjuy u, U,
-1 2 -1 =|Ly 1 010 uy u, (5.62)
0 -1 1 Ly Ly 1110 0 uy,

The three unknowns in the lower triangular matrix [L], and the six unknowns in the
upper triangular matrix [U] of Eq. 5.62 can be obtained simply by enforcing the nine
equality conditions (on both sides of Eq. 5.62). Thus, Eq. 5.62 can be expressed as:

1 0 of [2-10
1 3
2 -1 0 -— 1 0 0 = -1
‘-1 2 —1]= 2 x| 2 (5.63)
0 -1 o -21| |0 o 1
3 3

The second matrix on the right-hand-side of Eq. 5.63 can be identified as the
matrix [K3] presented in Eq. 5.57.
The forward solution can be obtained by solving

(L] {»} = {F}
for the vector {y} (or, the “updating” right-hand-side vector {F}). The multipliers shown

in Egs. 5.58 through 5.60 turn out to be the same as the off-diagonal terms of the lower
triangular matrix [L] in Eq. 5.63.

5.8.3 Gauss (LU) factorization with diagonal terms U; =1
An alternative version of Gauss elimination where the final diagonal elements become
1 follows:

2 -1 0
[K1]=[K]=]-1 2 -1 (5.64)
0 -1 1
1 -1 o0 L
2 2
- (k2] =1, % ) =[K3) =]y | -2 (5.65)
0 -1 1 0 -1 1



Duc T. Nguyen

119
1
b2 0 1-2 0
2
- [K4] =0 1 -3 -[Ks]=|, | _2 (5.66)
3
00 3 0 0 1

Since the final diagonal terms become one, in the computer code, the main
diagonal of the factored matrix is used to store the diagonal terms before scaling.
For example,
3 1
U, =2;u22=—2-;andu33=——

(5.67)
The multiplier m;; is obtained from the factored matrix, [U], as:
1
m12 = ulZ * u“ = —5 * 2 = ’1 (5.68)
ma=u, *u; =0x2=0 (5.69)
m23=u23*u22=——2-*3=—1 (5.70)
3 2 )

Another way to view this Gauss factorization process is to express Eq. 5.64 as

(K] =[L][V]

2 -1 0 L, 0 0 1wy, uy
102 1| =Ly Ly O |x|0 1 u, (5.71)
0 -1 1 Ly Ly, Ly 0 0 1

The six unknowns in lower triangular matrix [L], and the three unknowns in the upper

triangular matrix [U] of Eq. 5.71 can be obtained simply by enforcing the nine equality
conditions on both sides of Eq. 5.71.

Thus, Eqg. 5.71 can be expressed as

2 0 0

3 1 -1 o
2 -1 0 -1 2 0 2
002 -1l - 2 o | .2 (5.72)
0 1 1 o 1 1 3
3] lo o 1

The second matrix on the right-hand-side of Eq. 5.72 can be readily identified
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as the matrix [K5] in Eq. 5.66.
The forward solution can be obtained by solving

[Z]{»} = {F})

for the vector {y}. The diagonal terms (before scaling to the value 1) shown in Eq. 5.67
appear on the diagonals of the matrix [L] in Eq. 5.72. The multipliers shown in Egs. 5.68
through 5.70 turn out to be the same as the off-diagonal terms of the lower triangular
matrix [L] in Eq. 5.72.

5.8.4 LDL" factorization with diagonal terms L;, = 1
It is also possible to express Eq. 5.47 into the following form

(K] =[L][D][L]" (5.73)

In Eq. 5.73, [L] is a lower triangular matrix with unit values for its diagonals, and [D] is
a diagonal matrix. Using the numerical data shown in Eq. 5.47, one can express Eq. 5.73
as:
2 -1 0 10 1 0 Ly Ly
-1 2 -1|=|Ly 1 D L, (5.79)
L, 0

0 -1 1

()

01 L,
0o 1 L,
Ly, Dyflo 0 1
Solving the above system of six simultaneous equations for the unknowns L,,, L,,, L;,,
D,, D, and D, (by expressing the six equality conditions for the upper triangular portions

of the matrix on both sides of Eq. 5.74) one obtains

1 0 0/|2 0 0 1
I 3 b-5 0
2 -1 0 -— 1 0|0 =0 2
-1 2 -1)=| 2 2 2 (5.75)
0 -1 1 2 11|01 -z
0 -Z1/|0 0 —
3 2110 0 1

The product [P] of the first two matrices on the right-hand-side of Eq. 5.75 turns out to
be

0 0
3

= 0
2 (5.76)

W | —

It is interesting to see that matrix [P] in Eq. 5.76 is the same as the first matrix
in Eq. 5.72 of Section 5.8.3. Furthermore, the last matrix of Eq. 5.75 is identical to the

last matrix in Eq. 5.72. Thus, LDLT strategy is essentially equivalent to LU strategy
(with U, =1, as discussed in Section 5.8.3), where L = L * Dand U = L T,

The diagonal matrix D can be obtained as diagonal terms of the factored matrix
(of LDLT procedure, shown in Table 5.8). The multipliers (for the LDLT algorithm) can
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also be obtained directly from LDL" matrix (= off-diagonal terms of the factored matrix
U, in Table 5.8).

To simplify the discussions, assuming the matrix [K] (shown in Eq. 5.47) is
fully populated, the “skeleton” LDLT code is given in Table 5.8.

Table 5.8 LDLT factorization

DO11I=1,N
DO22 K=1,I-1

xmult =

u()  _ u(K,D)
D(1I) u(K,K)
DO 33 J =LN (or I + Irowlength)

c Irowlength = row length (or bandwidth) of the I'"" row
u(LJ) = u(L,J) - xmult * u(K,J)
33 CONTINUE
u(K, I) = xmult
22 CONTINUE
11 CONTINUE

Implementation of the algorithm given in Table 5.8 with the numerical data
shown in Eq. 5.47 will lead to the following results

For I =1, hence (temporarily) no change in 1* row
ForI=2 henceK=1-1

xmult = u(1,2) _ -1

I
N
N
I
®
N
[ 5]
—_—
=
3
8.
~
S
—
=
~
—
(S}
N
|
—
N————
—
|
—_
N
1
N | W

1
Uyy = Uy - (xmult) (um) = -1 - [ _E) (0) = -1
u(l, 2) = xmult = —_5—

ForI=3,hence K=1-2
Now K =1

Loop 33:
{ Uy 3 = Ugz ~ (xmult = O) * (“1,3 = 0) =1
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u(1,3) =0
Now K =2
xmult = u(2,3) . -1 _ -2

Loop 33: " ]
{ Us3 = U3 ~ (xmult = "3") (u2‘3 = -]) = §
(2,3) = xmult = 32
Hence: -
2 -1 0
2
3 2
U = - -z
2 3
1
3
From the above results, one can identify:
2 0 0 | 1 o
[D] 2! (L) 2
D| = 2 L - 2
1 | and o1 -=
00 — 3
3 0 0 1

5.8.5 Similarities of Choleski and Gauss methods

1)  The Choleski and Gauss solution procedures are quite similar since both methods
can be expressed in terms of row operations which differ only by the scale-factors
as explained above.

2)  For both methods, the multipliers, m;, used in the forward substitution (to update
the right-hand-side vector of Eq. 5.46) can always be recovered conveniently from
the factored, upper triangular matrix, [U].

3) The methods can be modified to solve unsymmetric systems of linear equations.
The basic procedure is essentially the same as that outlined above except that the
computer storage increases since the lower triangular matrix of the factored matrix
is used to store the multipliers, my. In some applications, partial pivoting may be
useful.

4)  Since the multipliers of the Choleski method are identical to its factored, upper
triangular matrix, [U], the Choleski method is slightly more efficient than the Gauss
method. However, the Gauss method can also be used to solve non-positive-
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definite systems of equations.

To use the Gauss solution method (i.e., for non-positive-definite systems of
equations), only two FORTRAN statements, labeled cgauss in Table 5.1 need to be
changed.

The multiplier constants, xmult, and the column height information are utilized
in the DO 2 loop in Table 5.1 to avoid operations with zeros outside the column height
(or skyline). The parameter, k, of the DO 2 loop is illustrated in Table 5.1. For i=6 (in
DO 1 of Table 5.1) the index k (in DO 2) has the values from 2 to 5 as shown in Table
5.1

Although [K] and [U] are two-dimensional arrays in Table 5.1, in the actual
Choleski factorization code, both are stored in a one-dimensional array.

5.9 Factorization Based Upon “Look Backward” Versus “Look Forward”
Strategies

The parallel-vector factorization (for row-by-row storage scheme) which has been
discussed in Section 5.5 is based on the “look backward” strategy. This strategy is due
to the fact that if we want to factorize the i (say the 17") row of a matrix (shown in
Figure 5.9) then we need to “look backward” to utilize all previously factorized rows (say
rows 1 through 14, according to the example shown in Figure 5.9).

The discussions on the “look forward” strategies can be started with a given
symmetric, positive definite (stiffness) matrix [K]. We now are looking for a lower
triangular matrix [L,], and a symmetric positive definite matrix [K,], such that

(K] =[L,][&][L] (5.77)

Similarly, we then are looking for another lower triangular matrix [L,], and a
symmetric positive definite matrix [K,], such that

5] (1] ) (5] s
The above process will be repeated
%] - (L] (] &
until
(K] - (1] ] 2] @80

If the matrix [Ky], shown in Eq. 5.80, converges to an identity matrix [I ], then it can
be easily shown that

[K]=[L]=[L]" (5.81)

where [L] is a lower triangular matrix with the same dimension as [K]. The proof of Eq.
5.81 can be easily shown, simply by substituting Eqs. 5.78 through 5.80 into Eq. 5.77,
to obtain
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[K)=[L ][] [Zn] [Kn) [En]) [Lwer ) [0 ) (5.82)
Since [K,] is an identity matrix, Eq. 5.82 can be expressed as
[K]=[Li Ly oo Ly] *[L Ly oo Ly (5.83)

Equation 5.83 has the same form as Eq. 5.81, where

(L] = [L,][Lz] . [LN] (5.84)

Starting from the given matrix [Kly = [Ko] = [H,], we can make the following
partitions

(K] = [K,] = [H,] = g (5.85)

The dimensions for various sub-matrices in Eq. 5.85 are given as

d, isa 1 x 1 submatrix (or scalar)

v, is a (N-1) x (1) submatrix (or a column vector)
v,T is a (1) x (N-1) submatrix (or a row vector)

H, is a (N-1) x (N-1) submatrix

It will be proved shortly that the original, given matrix [K] can be expressed in
the form of Eq. 5.77 if matrices [L,] and [K,] are defined according to the following
formulas:

=l v
[L,] L (5.86)
s
where I, is a square, identity matrix with the dimension N-1
1 0
T
[1(l ] “lo A - Vv, (5.87)
d

1

With the above definition for matrices [L,] and [K,], the readers can verify (as
a short exercise) easily the following equality

(K] = y =[L,][& ][4 (5.88)

The repeated applications of Eqs. 5.86 and 5.87 in Egs. 5.78 through 5.80 will
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eventually lead to Eq. 5.82, and therefore Eq. 5.84 can be obtained. The following simple
numerical example will clarify all the detailed steps discussed in Eqgs. 5.77 through 5.88.

Step 1: Given

2 -1 0 0
132 210
[(K]1=10 5 2 -1
0 0 -1 1

Hence:
v/ ={-1,0,0)

-1 2 -1
0 -1 1

2—10‘

d =2
Step 2: Compute (using Eqgs. 5.86 and 5.87)

—_— (=R )

.—
=
i}
coo—
]
—_
)
R=1=)
—

Hence:

(5.89)

(5.90)

(5.91)

(5.92)

(5.93)

(5.94)

(5.95)

(5.96)

(5.97)

(5.98)
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(K] -

o o o=
o o —o
|

—_wlpOoO

Hence:

Step 4: Compute (using Eqs. 5.86 and 5.87, again)

[

S O
S —O

[Ls] -

1
0
K)o
0

o
(=]

Hence:

S OO
S =00

w'§a|woo

SO

—_—

Arl—oO0O

oS oo

(5.99)

(5.100)

(5.101)

(5.102)

(5.103)

(5.104)

(5.105)

(5.106)

(5.107)
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Step 5: Compute

The computation loop is ended in here.

S OO —~
o O—=0O
S —=OO
N[~

0
0
1
0

OO —
SO~ O
— OO0

Using Eq. 5.84, one has

(2] - (1] [&:][] 1]

Substituting Eqs. 5.93, 5.98, 5.103, and 5.108 into Eq. 5.110, one obtains

L] -

2

o oL
O_E’ ?‘o
wn W

(=)

0

|
—

0
2
V3
A

2

[98)

0
0

o

N —
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(5.108)

(5.109)

(5.110)

(5.111)

Again, it can be left as a small exercise for the readers to verify that Eq. 5.81

will be satisfied, when the numerical data for Eqs. 5.111, and 5.89 are used.

Observing Eq. 5.111 carefully, one will notice that each column of the lower
triangular matrix [L] can be obtained successively from the 1%, 2™, 3" and 4™ columns

of the matrices [L,], [L,], [L;], and [L,] (from steps 2 through 5) respectively.

This entire process (to obtain the final [L] matrix in Eq. 5.111) can be best
summarized in Figs. 5.10 through 5.13

Figure 5.10 1st column done initially (see V terms), “look forward”
updating the 3x3 submatrix (see * terms)

(L] =

XXX

* ¥ ¥ =

* ¥ ¥ =X

* % * R
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(L] =

IR R
R ®
* ¥ R R
* % R =

Figure 5.11 2nd column done (see V terms), “look forward”
updating the 2x2 submatrix (see*terms)

(1] -

H R =R
LR R I
AR IR
* % R R

Figure 5.12 3rd column done (see V terms), “look forward” updating the 1x1
submatrix (see * term)

1] -

R
SRR
®oM RN
~ RN

Figure 5.13 4th (or last) column done (see V term)

The key differences between “Look Backward” and “Look Forward” parallel
strategies for Choleski factorization are also summarized in Figures 5.14 and 5.15.

Q already factorized, no longer needed

Q already factorized, needed for calculation

‘ C current parallel factorizing rows
NP1

| 1 rows which will be factorized

Figure 5.14 Look backward parallel factorization
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Z already factorized, no longer needed

Q parallel factorizing

Figure 5.15 Look forward (outer product form) parallel factorization
5.10 Evaluation of Methods for Structural Analyses

To test the effectiveness of the parallel-vector solver, described in Sections 5.6 and 5.7,
two large-scale structural analyses have been performed on the Cray Y-MP
supercomputer at NASA Ames Research Center. These analyses involved calculating the
static displacements resulting from initial loadings for finite element models of a high
speed research aircraft and the space shuttle solid rocket booster (SRB). The aircraft and
SRB models were selected as they were large, available finite-element models of interest
to NASA. The Cray Y-MP was selected as it is a high-performance supercomputer with
parallel-vector capability. To verify the accuracy of the displacements as calculated from
the equilibrium equation (i.e. [K] {Z} = {F}), the residual vector,

{R} = [K]{z} - {F} (5.112)

is calculated, and the absolute error norm,

e, = y{R}" {R} (5.113)

a

and the strain energy error norm,
e, = {z}'[K]{z} - {z}" {F} (5.114)

are evaluated. If no computer roundoff error occurs, all components in the residual
vector, {R} are zero. However, performing billions of operations during equation
solution introduces roundoff which, for accurate solutions, result in small values for {R},
e, and e, in Eqs. 5.112 through 5.114.

The solution times using pvs code (see Section 5.11) for the SRB application
were also obtained on Cray 2 supercomputers at NASA Ames and NASA Langley and
compared with solution time for the skyline algorithm in a previously published papert**).

In the following applications, code is inserted in pvs to calculate the elapsed
time and number of operations taken by each processor for equation solution. The Cray
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timing and performance utilities (timef, hpm, ja and second) are used to measure the
time, operations and speed of the equation solution on each processor. For each problem,
the number of Million FLoating point OPerations is divided by the solution time, in
Seconds, to determine the overall performance rate of the solver in MFLOPS. The
timings obtained are conservative, since they were made with other users on the systems.
In every case, times would be less and MFLOP rates more if pvs were run in a dedicated
computer environment.

5.10.1 High speed research aircraft

To evaluate the performance of the and parallel-vector Choleski solver, a structural static
analysis has been performed on a 16,146 degree-of-freedom finite-element model of a
high-speed aircraft concept®®), shown in the upper right of Figure 5.16

10
] 228 *MFLOPS
&
g ] 447k fime saved by
4 zyochecking
2
0 t
1 2 4 8
Nunber of Cray Y-MP Processors

Figure 5.16 Effect of more processors on analysis time
(high speed research aircrafts)

Since the structure is symmetric, a wing-fuselage half model is used to
investigate the overall deflection distribution of the aircraft. The finite element model of
the aircraft is generated using the CSM Testbed'*”! finite element code. The half model
contains 2851 nodes, 4329 4-node quadrilateral shell elements, 5189 2-node beam
elements and 114 3-node triangular elements. The stiffness matrix for this model has a
maximum semi-bandwidth of 600 and an average bandwidth of 321. The initial number
of non-zero in the stiffness matrix is 499,505. The number of non-zeros after
factorization, including fills-in, increases to 5,579,839. The half-model is constrained
along the plane of the fuselage centerline and subjected to upward loads at the wing tip
and the resulting wing and fuselage deflections are calculated.

The numerical accuracy of the static displacements calculated is indicated by
the small absolute and strain energy error norms of 0.000009 and 0.000005, respectively,
computed from Eqs. 5.113 and 5.114. These residuals are identical no matter how many
processors are used. The small values of the residuals indicates that the solution satisfies
the original force-displacement equation. The residuals are independent of the number
of processors indicating no error is introduced by synchronizing the calculations on
multiple processors.
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The time taken for a typical finite element code to generate the mesh, form and
factor the stiffness matrix is 134 seconds on a Cray Y-MP (802 seconds on a Convex
220) of which the matrix factorization is 51 seconds. Using pvs, the factorization for this
aircraft application requires 2 billion operations which reduces to 1.4 billion when
operations with zeros are eliminated. Although CPU time is less for one processor,
elapsed time is reported as it is the only meaningful measure of parallel performance.
Factoring [K] with no zero checking takes 8.68 and 1.54 elapsed seconds (at arate of 228
and 1284 MFLOPS) on one and eight Cray Y-MP processors, respectively, as shown in
Table 5.9.

Table 5.9 Matrix decomposition time (MFLOPS) for aircraft on Cray Y-MP

Processors Sec (MFLOPS) Sec (MFLOPS)
(MFLOPS) with zero-checking
1 8.68 (228) 6.81 (203)
2 4.50 (441) 3.46 (399)
4 2.41(822) 1.89 (730)
8 1.54 (1284) 1.29 (1071)

Eliminating operations with zeros within the variable bandwidth (zero checking,
see line 18 of Table 5.3) further reduces the solution time to 6.81 and 1.29 seconds,
respectively, on one and eight processors. However, the reduced time with zero checking
is accompanied by a reduction in computation rate (MFLOPS), since the added IF
statements also reduce the number of operations. The reduction in computation time
(nearly proportional to the number of processors) and the portion of time saved by zero-
checking are shown in Figure 5.16. The number above the bars (in MFLOPS) in Figure
5.16 show the increased computation rate as the number of processors increases.

5.10.2 Space shuttle solid rocket booster (SRB)
In addition to the high-speed aircraft, the static displacements of a two-dimensional shell
model of the space shuttle SRB have been calculated.
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Figure 5.17 Effect of more processors on analysis time (space shuttle SRB)

This SRB model is used to investigate the overall deflection distribution for the
SRB when subjected to mechanical loads corresponding to selected times during the
launch sequence®®. The model contains 9205 nodes, 9156 4-node quadrilateral shell
elements, 1273 2-node beam elements and 90 3-node triangular elements, with a total of
54,870 degrees-of-freedom. The stiffness matrix for this application has a maximum
semi-bandwidth of 900 and an average bandwidth of 383. The initial number of non-
zeros in the stiffness matrix is 1,310,973. The number of non-zeros after factorization,
including fills-in, increases to 21,090,396. A detailed description and analysis of this
problem is given in references [5.8 and 5.9].

The calculated absolute and strain energy residuals for the static displacements
are 0.00014 and 0.0017, respectively, from Egs. 5.113 and 5.114. This accuracy indicates
that roundoff error in the displacement calculations is insignificant despite the 9.2 billion
floating point operations performed.

The time for a typical finite element code to generate the mesh, form and factor
the stiffness matrix is 391 seconds on the Cray Y-MP (15 hours on a VAX 11/785) of
which the matrix factorization is 233 seconds (51,185 seconds on VAX). Using pvs, the
factorization for this SRB problem, requires 40.26 and 6.04 seconds on one and eight
Cray Y-MP processors, respectively, as shown in Table 5.10. Eliminating more than one
billion operations on zeros further reduces the solution time to 5.79 seconds on eight
processors but reduces the computation rate to 1444MFLOPS. The CPU times are
approximately 10 percent less than the elapsed times quoted on one processor.
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Table 5.10 Matrix decomposition time (MFLOPS) (shuttle SRB on Cray Y-MP)

sec (MFLOPS)
Processors sec (MFLOPS) with zero-checking
1 40.26 (228) 40.97 (224)
2 20.27 (452) 19.32 (425)
4 10.50 (872) 10.00 (821)
8 6.04 (1517) 5.79 (1444)

A reduction in matrix decomposition time by a factor of 7.08 on eight
processors compared to one processor (for zero checking) is shown in Figure 5.17. The
corresponding computation rate for this matrix factorization, using eight processors on
the Cray Y-MP is 1,517 MFLOPS. The previous recorded time to solve this problem on
the Cray Y-MP using a sparse solver was 23 seconds on one processor and 9 seconds on
eight processors for a speedup factor of 2.5151-511,

For structural analysis problems with a larger average column height, and
bandwidth than the aircraft or SRB discussed, one can expect pvs to perform
computations at even higher MFLOPS rates since the majority of the vector operations
are performed on long vectors. For example, a rate of 1784 MFLOPS has been achieved
by pvs for a structural matrix with an average bandwidth of 699 on the eight-processor
Cl'ay Y'MP[S'IZ-S'”].

The decomposition time for the Shuttle SRB matrix using pvs, is ¢compared to
the skyline algorithm'®*! in Figure 5.18 (discussed in Chapter 4) for 1, 2 and 4 Cray 2
processors.

7] Skytire, Ames Cray2[ ] pusbre, Ames Cray 2 (7} posobe Langey Cray 25

Number of Cray 2 Processors

Figure 5.18 SRB decomposition time comparison
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A reduction in decomposition time by a factor of 2 is shown for pvs in the figure for the
Cray 2 at NASA Ames. An additional reduction in decomposition time of approximately
50 percent is shown for pvs on the newer Cray 2S at NASA Langley with faster memory
access using static RAM compared to dynamic RAM on the Cray 2 at NASA Ames. The
decomposition time for pvs using eight processors on the Cray Y-MP (six seconds in
Figure 5.17) is a reduction by factors of 23 and 6 when compared to the skyline solution
on 1 and 4 Cray-2 processors, respectively, shown in Figure 5.18.

The above results have been obtained using loop unrolling to level 9 (see
Section 5.4). On the Cray Y-MP supercomputer, the performance continues to increase
until loop unrolling level 9, after which further performance gains are not significant
compared to the complex coding required. The pvs code performed best with an odd
number for loop unrolling, because both data paths to memory are used simultaneously
at all times. The vector being modified plus the 9 unrolling vectors make ten total
vectors, an even number, which keeps both data paths busy.

5.11 Descriptions of Parallel-Vector Subroutine PVS

The input data and arguments required to call the equation solver, pvs, together with a
simple 21-equation example are given in this section. The user should have a limited
knowledge of parallel computing and the parallel FORTRAN language Force®* Pvs
contains a Force subroutine, PVS, which may be called by general purpose codes. It
should be emphasized that parallel FORTRAN language FORCE is used here, however,
others such as PVM, MPI etc... could also be used with minimum changes to the code.
The information required by PVS to solve systems of simultaneous equations (i.e., [K]
{Z} = {F} ) is transferred via arguments in the call statement:

Forcecall PVS (a,b,maxa,irowl,icolh,neq,nterms,iif,opf)

where:

a = a real vector, dimensioned nterms, containing the coefficients of the
stiffness matrix [K].

b = a real vector, dimensional neq, containing the load vector, {F}. Upon
return from subroutine PVS, b contains the displacement solution, {Z}.

maxa = an integer vector, dimensioned neq, containing the location of the diagonal
terms of [K] in vector {a}, notice that maxa (neq) is equal to the total
number of coefficients (including fill-ins, after factorization) of [K].

irowl = an integer vector, dimensioned neq, containing the row lengths (i.e., half-
bandwidth of each row excluding the diagonal term) of [K].

icolh = an integer vector, dimensioned neq, containing the column heights
(excluding the diagonal term) of each column of the stiffness matrix, [K].

neq = number of equations to be solved (= degree of freedom).

nterms = the dimension of the vector, {a}, [= maxa(neq)], refer also to Eqs. 5.8
through 5.11, in Section 5.2.

iif = 1 factor system of equations without internal zero check

2 factor system of equations with internal zero check
4  perform forward/backward substitution
5 perform forward/backward substitution and error check
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opf,ops = an integer vector, dimensioned to the number of processors (8 for Cray Y-
MP), containing the number of operations performed by each processor
during factorization and forward/backward substitution, respectively

For example, the values of these input variables to solve a system of 21 equations, whose
right-hand-side is the vector of real numbers from 1. to 21., and [K] is the symmetric,
positive-definite matrix in Figure 5.19 are given in Table 5.11.

The line in Figure 5.19 represents the skyline defined by the column heights
which extend up to the last nonzero in each column. The “extra zeros” outside the skyline
are required to achieve level 9 loop unrolling. The DO 2 loop in Table 5.2 (see line 2)
illustrates this for level 4 loop unrolling. The vector {a}, {b}, {maxa}, {icolh}, and

Figure 5.19 Example [K] matrix with 21 equations
{irowl} which are read by pvs are given in Table 5.11 (where neq=21 and nterms = 141)

Table 5.11 PVS input to solve [K] * {Z} = {F} (example with 21 equations)

i a(i) b(i) maxa(i) icolh(i) irowl(i)
1 1. 1. 1 0 11
2 2 2. 13 1 10
3 0 3. 24 i 9
4 4 4, 34 3 8
5 0 S. 43 3 7
6 0 6. 51 4 6
7 0 7. 58 2 5
8 0 8. 64 1 4
9 0 9. 69 5 3
10 0 10. 73 1 10
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11 0 11. 84 2 9
12 0 12. 94 3 8
13 5. 13. 103 3 7
14 6 14. 111 4 6
15 7 15. 118 5 5
16 8 16. 124 3 4
17 9 17. 129 3 3
18 0 18. 133 2 2
19 0 19. 136 3 2
20 0 20. 139 4 1
21 0 21. 141 1 0
22 0
23 0
24 10.
25 11

26-33 0
34 14.
35 15
36 16

37-38 0
39 19
135 0
136 76.
137 77
138 0
139 78.
140 79
141 80

The Force subroutine PVS should be called twice; first to factor the matrix (iif = 2), and
second to perform the forward/backward solution for displacements with error checking
(iif = 5).

5.12 Parallel-Vector Equation Solver Subroutine PVS

For the complete listing of the FORTRAN source codes, instructions in how to
incorporate this equation solver package into any existing application software (on any
specific computer platform), and/or the complete consulting service in conjunction with
this equation solver etc... the readers should contact:
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Prof. Duc T. Nguyen

Director, Multidisciplinary Parallel-Vector Computation Center
Civil and Environmental Engineering Department

Old Dominion University

Room 135, Kaufman Building

Norfolk, VA 23529 (USA)

Tel =(757) 683-3761, Fax = (757) 683-5354

Email = dnguyen@odu.edu

5.13 Summary

A parallel-vector Choleski method for the solution of large-scale structural analysis
problems has been developed and tested on Cray supercomputers. The method exploits
both the parallel and vector capabilities of modern high-performance computers. To
minimize computation time, the method performs parallel computation at the outermost
DO-loop of the matrix factorization, the most time-consuming part of the equation
solution. In addition, the most intensive computations of the factorization, the innermost
DO-loop has been vectorized using a SAXPY-based scheme. This scheme allows the use
of the loop-unrolling technique which minimizes computation time. The forward and
backward solution phases have been found to be more effective to perform sequentially
with loop-unrolling and vector-unrolling, respectively.

The parallel-vector Choleski method has been used to calculate the static
displacements for two large-scale structural analysis problems; a high-speed aircraft and
the space shuttle solid rocket booster. For both structural analyses, the static
displacements are calculated with a high degree of accuracy as indicated by the small
values of the absolute and strain energy error norms. The total equation solution time is
small for one processor and is further reduced in proportion to the number of processors.
The option to avoid operations with zeros inside the stiffness matrix further reduces both
the number of operations and the computation time for both applications.

Factoring the stiffness matrix for the space shuttle solid rocket booster, which
formerly required hours on most computers and minutes on supercomputers by other
methods, has been reduced to seconds using the parallel-vector variable-band Choleski
method. The speed of pvs should give engineers and designers the opportunity to include
more design variables and constraints during structural optimization and to use more
refined finite-element meshes to obtain an improved understanding of the complex
behavior of aerospace structures leading to better, safer designs. Since the algorithm is
independent of the number of processors, it is not only attractive for current
supercomputers, but also for the next generation of shared-memory supercomputers,
where the number of processors is expected to increase significantly.
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5.14 Exercises

5.1  Verify Eq. 5.88
5.2 Given the following coefficient (stiffness) matrix [K]:

:
3838. 0. 4. 4l 4. 43 0. O
4444, 45. 46. 0. 0. 0. O

4747. 48. 49. 0. 0. 0.

(K] - 5050. S51. 52 53. 0.
5454. 0.  56.  57.

SYM. 5858. 0.  59.
6060. 61.

6565. |

Assuming “loop-unrolling” level 3 is used
(a) Construct the one-dimensional arrays a(-), maxa(-), icolh(-), and irowl(-),
similar to the ones presented in Table 5.11?
(b) How many “real” words of computer memory are required by the array a(-)
for this example?
5.3 Given the following coefficient (stiffness) matrix [K], and load (or right-hand-
side) vector {F}:

2 -1 0 0
158 -1 0
[(K]1=10 51 2 -
0 0 -1 4
1
e
{F} = 1o
3

(a) Find the factorized matrix [U] using a row-by-row Choleski algorithm?
(b) Find the “forward solution” of the system [K] {Z} = {F}?
(c) Find the “backward solution” of the system [K] {Z} = {F}?
5.4  Repeat problem 5.3, but using the row-by-row LDL" algorithm?
5.5  For the data shown in problem 5.3, assuming the Choleski factorized matrix [U]
has already been obtained (in problem 5.3a):
(a) Using (and modifying, if necessary) Table 5.4, write a computer FORTRAN
program to obtain the “forward solution™?
(b) Using (and modifying, if necessary) Table 5.6, write a computer FORTRAN
program to obtain the “backward solution”
5.6  For the data shown in problem 5.3, assuming the Choleski factorized matrix [U]
has already been obtained (in problem 5.3a):
(a) Using(and modifying, if necessary) Table 5.5, write acomputer FORTRAN
program to obtain the “forward solution” with “loop-unrolling” level 2?
(b) Using(and modifying, if necessary) Table 5.7, write acomputer FORTRAN
program to obtain the “backward solution” with “vector-unrolling” level 2
5.7 Modifying the FORTRAN program(s) in problem 5.6, so that one-dimensional
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(instead of two-dimensional) array can be used to store the factorized matrix {U].
Hints:  You also need to use integer array MAXA(-) for diagonal locations,
ICOLH(-) for column heights, IROWL(-) for variable row lengths,
etc....
5.8  Forthe data shown in Problem 5.3, using (and modifying, if necessary) the LDLT
algorithm presented in Table 5.8, find the factorized matrix [U]?
5.9  Assumingthe factorized matrix [U] has already been obtained (say, either by hand
calculator, or by a computer program as have been done in Problem 5.8) from LDLT
algorithm (see Table 5.8)
(a) Write a FORTRAN subroutine to perform “forward solution”
(b) Write a FORTRAN subroutine to perform “backward solution”
5.10 For the coefficient (stiffness) matrix [K] data shown in Problem 4.1, assuming 3
processor (P, P,, and P,) are used in this example, and according to the following

information
Processor Number “Rows” of matrix [K]
Which Belong to a Processor
P, 1,2,3,10,11, 12, 19, 20, 21
P, 4,5,6,13,14,15
P, 7,8,9,16,17, 18

Without any actual computation, and assuming the first eight rows of the factorized
matrix [U] have already been completely factorized, identify which terms (if any) U; of
the matrix [U] can be factorized

by processor P,?

by processor P,?

by processor P;?

5.11 For the parallel-vector Choleski factorization algorithm presented in Section 5.6,
what do you think will happen (say, in terms of parallel speed) when the number
of processors (=NP) becomes very large?

(Hint: see Figure 5.8)

5.15 References

5.1 Agarwal, TK., O.0. Storaasli and D.T. Nguyen, “A Parallel-Vector Algorithm for Rapid Structural
Analysis on High-Performance Computers”, Proceedings of the AIAA/ASME/ ASCE/AHS 31" SDM
Conference, Long Beach, CA, AIAA paper No. 90-1149, April 2-4, 1990.

52 Bathe, K.J., Finite Element Procedures, Prentice-Hall, Inc., New York, (1996).

5.3 George, A. and J. W-H Liu, Computer Solution of Large Sparse Positive Definite Systems, Prentice-
Hall, Inc., Englewood Cliffs, NJ, 1981.

54 Jordan, H.F., M.S. Benton, N.S. Arenstorf, and A.V. Ramann, “Force User’s Manual: A Portable
Parallel FORTRAN”, NASA CR 4265, January, 1990.

5.5 Storaasli, 0.0., D.T. Nguyen, and T.K. Agarwal, “The Parallel Solution of Large-Scale Structural
Analysis Problems on Supercomputers”, Proceedings of the AIAA/ASME/ASCE/ HAS 30th
Structures, Structural Dynamics and Materials Conference, Mobile, AL, April 3-5, 1989, pp.859-
867, Paper No. 89-1259 (also appeared in AIAA Journal, September, 1990)



140
5.6
5.7
5.8

5.9

5.13

Parallel-Vector Equation Solvers for Finite Element Engineering Applications

Robins, W.A. et al., “Concept Development of a Mach 3.0 High-Speed Civil Transport”, NASA TM
4058, September, 1988.

Stewart, C.B. (compiler), “The Computational Structural Mechanics Testbed User’s Manual”, NASA
TM-100644, October, 1989.

Knight, N.F., S.L. McCleary, S.C. Macy, and M.A. Aminpour, “Large Scale Structural Analysis: The
Structural Analyst, The CSM Testbed, and the NAS System”, NASA TM-100643, March, 1989.
Knight, N.F., R.E. Gillian, and M.P. Nemeth, “Preliminary 2-D Shell Analysis of the Space Shuttle
Solid Rocket Booster”, NASA TM-100515, 1987.

Ashcraft, C.C., R.G. Grimes, J.G. Lewis, B.W. Peyton, and H.D. Simon, “Progress in Sparse Matrix
Methods for Large Linear Systems on Vector Supercomputers”, The International Journal of
Supercomputer Applications, Vol. 1, No. 4, Winter 1987, pp.10-30.

Simon, H., P. Vu, and C. Yang, “Performance of a Supernodal General Sparse Solver on the Cray
Y-MP: 1.68 GFLOPS with Autotasking”, Scientific and Computing Analysis Division Report SCA-
TR-117, Boeing Computer Services, Seattle, WA, March, 1989.

Storaasli, 0.0., D.T. Nguyen, and T.K. Agarwal, “Force on the Cray Y-MP”, /u/nas/news The
Numerical Aerodynamic Simulation Program Newsletter, NASA Ames Research Center, Vol. 4, No.
7, July, 1989, pp.1-4.

Storaasli, 0.0., “New Equation Solver for Supercomputers”, /u/nas/news The Numerical
Aerodynamic Simulation Program Newsletter, NASA Ames Research Center, Vol. 5,No. 1, January,
1990, pp.1-3.



6 Parallel-Vector

Variable Bandwidth
Out-of-Core Equation Solver

6.1 Introduction

For large-scale finite element based structural analysis, an out-of-core equation solver
is often required since the in-core memory of a computer is very limited. For example,
the Cray Y-MP has only 256 mega words incore memory compared to its 90 gigabytes
of disk storage. Furthermore, in a multi-user environment, each user can only have 10
mega words of main memory, while 200 mega words of disk storage is available. A
typical aircraft structure (High Speed Civil Transport Aircraft) needs 90 million (or
mega) words of incore memory to store the stiffness matrix, which is not usually
available in a multi-user environment.

This chapter presents vector and parallel out-of-core equation solution
strategies which exploit features of the Cray type computers. For out-of-core solution
strategies, considerable amount of input/output (I/O) is usually required. The
input/output (I/0) time can be reduced by using a synchronous BUFFER IN and
BUFFER OUT, which can be executed simultaneously with the CPU instructions. The
parallel and vector capability provided by the supercomputers is also exploited to
enhance the performance.

6.2 Out-of-Core Parallel/Vector Equation Solver (version 1)

To solve the following systems of linear equations
Ax = b (6.1)
where A is an x n symmetric, positive definite matrix, one first factorizes the matrix A
into the product of two triangular matrices
A=UU (6.2)

where U is the upper triangular matrix. Then, the solution vector x can be obtained
through the standard forward/backward elimination

Uy = b (solve for y) (6.3)
Ux =y (solve for x) 6.4)
141
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6.2.1 Memory usage and record length

The matrix A is stored in a one-dimensional array with row-oriented storage scheme
[6.1-6.2], and each 8 rows of the matrix A have the same last column number (loop-
unrolling level 8, or loop = 8), as has been described in Figure 5.26 of Chapter 5.
Assuming A is written in a file on the disk, the file contains m records (each record
contains one or more block-rows of A, here one block-row has 8 rows). The required
in-core memory is assigned in the variable “mtot” and the maximum half bandwidth of
A is “maxbw.” To reduce the input/output (I/O) time during the solution procedure, one
hopes to reduce the number of records “m,” while the available in-core memory “istorv”
should be capable to hold at least 3 records at any moment. When “istorv”’ and
“maxbw” are given, the procedure (given in Table 6.1) is used to determine the record
length and the number of records stay simultaneously in the main memory. In this
parallel-vector out-of-core (version 1) strategy, the total required incore memories is (6*
neq) + 1.1(maxbw)? where neq is the number of equations, or the number of unknowns
in Eq. 6.1, and maxbw is the maximum half-bandwidth.

Table 6.1 Procedure to find record length and number of records

1.C Definitions:

2.C istorv. = - in-core memory available.

3.C mtot - in-core memory required.

4.C loop - loop-unrolling level, here: loop = 8

5.C maxbw - maximum half-bandwidth.

6.C icstore ~ ----- number of records stay in the memory at any time.

7.C nloop - number of “blocks” in a record, one block = 8 rows.

8. nloop = maxbw / (4 + loop)

9. if (nloop.le.1) nloop = 1

10. C¥*xxxx* Find out the number of records required to be kept in the memory
% 3k 3k % %k k %k

11. icstore = 2 + max (1, maxbw / (nloop*loop) + 1)

12, CHx*x* Find out the in-core memory required: mtot

13. mtot = loop*nloop*maxbw*icstore
114.C

15. 100 continue

16.C

17. CH**xx Check if the available in-core memory is enough or not
% 3 3k %k %k 3k %k %k xk k k !
I18. if (mtot.lt.istorv) then |
! 19. C*¥**x* more blocks can be included in one record ****¥¥¥ ¥k kxkxk ;
120. idelt = (istorv-mtot) / (loop*icstore*maxbw)
121. nloop = nloop + idelt -
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22. if (nloop.le.0) nloop = 1

23. icstore = 2 + max (1, maxbw/(nloop*loop) +1)
24. mtot = loop*nloop*maxbw*icstore

25. idelt = (istorv - mtot) / (loop*icstore*maxbw)
26. nloop = nloop + idelt

217. if (nloop.le.0) nloop =1

28. icstore = 2 + max (1, maxbw/ (nloop*loop) + 1)
29. mtot = loop*nloop*maxbw*icstore

30. idelt = (istorv - mtot) / (loop*icstore*maxbw)
31. else

32, CH¥*xx Too many blocks in one record, take some out!*******x
33. idelt = (istorv - mtot - 1) / (loop*maxbw) - 1

34, idelt = idelt / nloop - 1

35. endif

36. nloop = nloop + idelt

37. if (nloop.le. 0) nloop =1

38. CH¥x*x Check again if mtot < iStorv or not ***¥¥¥xxkkixkkionk ks
39. icstore = 2 + max (1, maxbw / (nloop*loop) + 1)
40. mtot = loop*nloop*maxbw*icstore

41. mloop = nloop * loop

42, IF (MTOT.LT.ISTORV) go to 200

43. [ if (nloop.eq.1) then
44.) write (*,*)'** Please increase the in-core memory to: ',mtot+1

4s5. | stop
46. endif
47 go to 100

48, CH***xkkkkkrrRRRERKK Enq of looking for nloop, icstore *******
49. 200 continue

The above procedure will adjust the number of blocks in a record
automatically, and give the optimal values for “nloop” and “icstore.” It will also
determine the minimum incore memory required (=mtot+1) for a given “maxbw” (mtot
is close to maxbw*maxbw).

The following numerical data will help the readers to clarify the procedure
given in Table 6.1.

Assuming the maximum half-bandwidth maxbw = 600, and the incore memory available
is istorv = 900,000, then from Table 6.1, one has

from line 8: nloop = 50 blocks

from line 11: icstore = 4 records

from line 13: mtot = 960,000 words of required memory

from line 18: because of this IF statement, the algorithm will jump to line 33
from line 33: idelt = (900,000-960,000-1)/(8*600)-1=-13
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from line 34:

Parallel-Vector Equation Solvers for Finite Element Engineering Applications

idelt =-13/50 -1 =-1

from line 36: nloop=49

from line 39: icstore =4
from line 40: mtot = 940,800
from line 41: mloop =392

from line 42:

from line 33:

because of this IF statement, the algorithm will jump back to line
15, 18 and 33
idelt = (900,000-940,800-1)/(8*600)-1 = -9

from line 34: idelt = -1
from line 36: nloop = 48
from line 39: icstore = 4

from line 40:

mtot = 921,600

etc... etc... the value of mtot will keep gradually decreasing, until it reaches

mtot < 900,000, then the algorithm will stop.

It is a helpful exercise to consider another data case, where maxbw = 600 and istorv =
980,000

6.2.2 A synchronous input/output on Cray computers
Considerable input/output (I/O) work is required for an out-of-core equation solver
during the solution, which undoubtedly increases the solution time. Fortunately, the
Cray computers offer BUFFER IN and BUFFER OUT [6.3] as an extension of the
regular Fortran READ and WRITE statements. BUFFER IN and BUFFER OUT can
perform several I/O operations concurrently, and 1/O operations can be executed
concurrently with CPU instructions. It is required that the files should be declared as
unblocked.

A typical use of BUFFER IN and BUFFER OUT statements can be written as
shown in Table 6.2

Table 6.2 Formats of BUFFER IN and BUFFER OUT statements

CHxxkxk To read a record from file (or unit number) id *********
call setpos (id, ilocate)
buffer in (id, m) (a(start), a (start+length-1))
IF [unit (id). NE. -1.0] Go TO 99

CHxdrxk Calculation can be performed (with care!) during Buffer-In, by
CH¥xt*x removing the above IF statement
|CHRxRRR To write a record on file (or unit number) id *******x*x*

call setpos (id, ilocate)
buffer out (id, m) (a(start), a (start+length-1))
IF [unit (id). NE. -1.0] GO TO 99
C**xx* Calculation can be performed (with care!) during Buffer-Out, by removing the
i C***x* above IF statement
199 Write (6,*) ‘error encountered during buffer In/Out’
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C***** where

Ol 1« B is a unit identified (or a file name) number

[C****¥ jlocate  -------- is the beginning location of the record.

[CHF¥¥*m s is a mode identifier (m=1 in this chapter).

CH**x¥a e is an array (in-core memory) to hold the record.

C**x*¥start ~ —--moeee is the start location of the record in array a.

C***** length  -----—-- is the length of the record.

C***x* Note: in the above code, an IF check can be used to be sure that the code

C***** will go to the next statement only when Buffer-In/Out are “normally”

CHkxkx completed, or else the program will either wait or print error
message.

6.2.3  Briefsummary for parallel-vector incore equation solver on the Cray Y-

MP [6.1]

In order to facilitate the discussion of the out-of-core version of the equation solver in
the next section, the parallel-vector incore version {6.1] is summarized here.

Since the major portion of the total solution time for solving systems of linear
equations occurs during the factorization phase (A=UTU). Parallel-vector (incore)
factorization is summarized here. Using the Choleski method, the factorized upper
triangular matrix U can be computed as

i-1

Al] —E Ukl Ulrj

= d Jor i # (6.5)
y U J

i-1 172

U, = (Aii - Ukzr) Jor i =] (6.6)
k=1
As an example, for i=5 and j=7, one has:

U, = As; - U Uy - UpUyy - UssUs; - UysUy ©6.7)

USS

From the above formula, one can see that to update the term Uy, (of row 5),
one only needs information from columns 5 and 7. Therefore, to update the entire row#
i, one needs the complete updated information (right above row i) as shown in Figure
6.1 (where the matrix A is assumed to be banded to simplify the discussion). Also from
the above formula, one can see that if only rows 1 and 2 have been completed (even
though rows 3 and 4 have not been completed), the term U, (or the entire row 5) can
be partially completed.

For example
Us, (incomplete) = Ag; - U U, - Uys Uy (6.8)
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The above observation will immediately suggest the parallel procedure for
obtaining the factorized matrix U. Each processor will handle the updating of one row.
Furthermore, to exploit the vector capability of Cray type computers, loop-unrolling
technique [6.1] is used. In the above formula for Us,, assuming loop-unrolling level 2
is employed, what it means is that every 2 rows are grouped and processed by a
processor. In the real computer code implementation, loop-unrolling level 8 is used to
optimize the vector speed.

__ Rowi-NP
Rowi

B Completely Updated
Eﬂ Not completely updated

Figure 6.1 Information required to update row i (incore version)

6.2.4 Parallel-vector out-of-core equation solver on the Cray Y-MP

For an in-core solver, during the factorization of A, the rows of A will be updated
(which now becomes the rows_of U) and stored in the same locations of A (from row
1, row 2,..., to row N). For an out-of-core solver, however, since only a small part of A
is currently stored in the memory, it is necessary to write (BUFFER OUT) the rows of
U on the disk file, and to read (BUFFER IN) the other rows of A into the memory. In
this proposed out-of-core solver, a record will be BUFFER OUT when it is completely
updated, and a new record will be BUFFER IN as soon as the first row of a record is
begun to be updated (see Figure 6.2). This can also be shown in Table 6.3 (to simplify
the discussion, assuming NP = 1 processor).
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File #ID [Rec. 1]Rec. 2F ————]Rec. 6 [Rec. 7[-——-{Rec. 99

Buffer OQut

Buffer In ™™

Figure 6.2 Parallel-vector out-of-core Choleski

In Figure 6.2, assuming the incore memory available is enough to hold only, say 7
records, the first two “unmarked” records are used to store some temporary working
spaces. Information related to the descriptions of the (stiffness) matrix, such as: column
heights, variable row-lengths (or variable row bandwidths), diagonal pointers, right-
hand-side (or load) vector etc... (recall Egs. 5.3, 5.4 & 5.7, in Chapter S) will require an
additional (6*neq) words of incore memory. The remaining incore memories will be
used to hold, say 5 records at a time (=records 1, 2..., 5) of the stiffness matrix. The
parallel-vector out-of-core factorization can be summarized in the following key steps
(please also refer to Fig. 6.2):

Step 1:
Step 2:
Step 3:
Step 4:

Step 5:
Step 6:

Step 7:
Step 8:

The first record (=record 1) can be completely factorized (according to the
parallel factorized algorithm described in Section 5.6 of Chapter 5)

The “completely factorized” record 1 is used to “partially factorized” records
2, 3..., 5 (recalled that 5 records can be resided in the core memory, at any
moment)

Buffer-out (or write) record 1 into auxiliary storage files

Buffer-in (or read) record 6 into the core memory (overwrite the incore
memory of record 1)

Record 2 will be completely factorized (similar to step 1)

The “completely factorized” record 2 is used to “partially factorized” records
3, 4,..., 6 (similar to step 2)

Buffer-out record 2 (similar to step 3)

Buffer-in record 7 into the core memory (overwrite the incore memory of
record 2, similar to step 4)

The above 4-step cycle will be repeated until all records are completely

factorized.
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Table 6.3 Typical use of BUFFER IN and BUFFER OUT statements

1. DO 10001=1,n

2.C...  determine if “buffer in” is required

3. if (I - (d - 1)/ (nloop*loop)) * (nloop*loop). eq. NP) then

4, call setpos (id, ilocate)

5. call buffer in (a(start), a(start + length-1)

6. endif

7.c... update the I-th row of A

8 ..

9.

10.c The I-th row of A has been updated

1l.c...  determine if “buffer out” is required

12. if (I - ((I-1)/ (nloop*loop)) * (nloop*loop). eq.NP) then

13. call setpos (id, ilocatel)

14. call buffer out (a(startl), a(startl + length1-1)

15. endif

16. 1000 continue

In Table 6.3, assuming I = 64th row, NP = 1 processor, loop = 8 rows per

block, and nloop = 1 block, then according to the algorithm in Tables 6.3 (with I = 64th
row, or the last row of the record), one has

from line 1: [=64

from line 3: Because of this IF statement, the algorithm will jump to line 7

from line 7: row #64 (=last row of the current record) is being updated (or
factorized)

from line 12: Because of this IF statement, the algorithm will jump to line 16,
and go back to line 1

from line 1: I =65 (=beginning row of the next record)

from line 3: This IF statement will lead to line 4

from lines 4-6: Buffer-in (or read) a new record into the core memory

from lines 7-10: row #65 (=beginning row of the new record) is being updated
(or factorized)

from lines 11-12: This IF statement will lead to line 13

from lines 13-15: Buffer-out (or write) the previous (completely factorized) record
into auxiliary disk storage files

from line 16: the next row, =66, will be processed. The process will then be
repeated.

In actual computer code implementation, the addresses such as ilocate, start,

length, ilocatel, startl and lengthl should be properly defined to ensure a correct
solution. In a parallel computer environment, only one processor will be assigned to
deal with the I/O, while other processors will directly (and simultaneously) do the
calculations. A similar I/O pattern is used in the forward/backward elimination phases.
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Loop-unrolling level 8 is adopted in this work to enhance the vector
performance of the solver. A parallel Fortran Language Force (Fortran Concurrent
Execution [6.4] is used here to develop a parallel version of the out-of-core solver. For
a reference on the parallel/vector aspects of the in-core solver, see Ref. [6.1].
Algorithms discussed in this chapter can also be implemented in the PVM, or MPI
environments [see sections 4.5, and 5.5 of Chapters 4, and 5, respectively].

6.3 Out-of-Core Vector Equation Solver (version 2)

6.3.1 Memory usage

The matrix A is stored in a one-dimensional array using a row-oriented storage scheme
[6.1], and each 8 rows of the matrix have the same last column number (loop-unrolling
level 8). It has been concluded in Refs. [6.1-6.3] that for Cray-type supercomputers,
“saxpy” operations is faster than “dot product” operations, hence arow-oriented scheme
is a more preferred choice as compared to skyline scheme. Assuming A is written in a
file on disk, with [can be either “regular” disk, or_solid state disk (ssd)], the file
containing say, 10 records (or nbik = 10), and each record containing blocks of 8 rows.
The last record contains the remaining data for the coefficient stiffness matrix [A] (see
Figure 6.3). To simplify the discussion, it is further assumed the user wishes to declare
the available incore memory is (IM) words, and 4 blocks of data for the coefficient
stiffness matrix A can be brought into the core memory (or ntblk = 4) as shown in
Figure 6.3. Some important information on the incore and out-of-core memory
management schemes are defined in Table 6.4. It should also be emphasized here that
this out-of-core strategy has the flexibility to use as little incore memory as (6 *
neq)+(16* maxbw), or as much incore memory as specified by the user through the
input data variable IM [see Table 6.4].

This kind of flexibility in using the incore memory will enhance the performance of the
proposed out-of-core solve since the Input/Output (or I/0) time can be reduced when
more incore memory are specified.

6.3.2  Vector out-of-core equation solver on the Cray Y-MP

For an in-core solver, during the factorization of A, the rows of A will be updated
(which now becomes the rows of U) and stored in the same locations of A (from row
1, row 2,..., to row neq). For an out-or-core solver, however, since only a small part of
A is currently stored in the memory, it is necessary to write (BUFFER OUT) the rows
of U on the disk file, and to read (BUFFER IN) the other rows of A into the memory
(see Figure 6.3). In this proposed out-of-core solver, a record will be BUFFER OUT
when it is completely updated, and a new record will be BUFFER IN as soon as the first
row of a record is begun to be updated (see Figure 6.3). This can also be shown (with
key out-of-core strategies) in Table 6.5 (to simplify the discussion, assuming NP = 1
processor).
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Table 6.4 Definition of important variables used
in the memory management scheme

(a) nbkl (say = 10) = total number of records to write (and read) on (and from) the
disk.

(b) Each record contains multiple of 8 rows of data for the coefficient matrix [A].
The last record, however, contains the remaining data for [A].

(c) ntblk (input data, say =4) = number of blocks of data of the coefficient matrix
[A] that can be brought into the core memory.

(d) Each block has enough incore-memory (multiple of 8 rows, plus a small,
unused or left over incore memory) to hold the largest record of data [see
record number 7 in Figure 6.3].

(e) IM = user's input data for total available incore memory [see Figure 6.3].

® IM for [A] = available incore memory (in words) to store ntblk blocks of the
coefficient stiffness matrix [A]

® neqbk = M for [4] _ number of words per block

ntblk
(h) max (nblk) = req = maximum possible number of records
neqgbk 8
maxbw * 8

(1) neq = total number of equations

() maxbw = maximum bandwidth

(k) neqq = IMfor(d] _ number of equations (based on available incore memory for [A])

maxbw
) ntblkg = nesqq = number of block -rows of equations (based on IM for [A])
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Table 6.5 Major sketches of the vectorized out-of-core factorization

noh W=

A S

11.
12.

13.
14.
15.
16.
17.
18.

19

20.
21.
22.
23.
24.
25.

26.
27.
28.
29.

30.

31.

C*****

C*****

c*****

C*****

C*****

CHrdx*

C*****
C*****
C*****
C*****
CX*kk*
CH*k*x
c*****
CH¥¥*xk*

C*****

C*****

C*****

C*****

C*****

C*****

2

C*****
C*****

C*****

C*****

ntblk = 4 (say, user input data)
Loop through all records
DO 1 N = 1, nblk (say = 10 records, and currently N = 7)
KNM =N - ntblk + 1 (=7-4+1=4)
To factorize current record N, one needs information on all previous
records.
Hence, loop 2 is required
SRN = Starting Record Number (=known, or already computed value)
DO 2 M = SRN, N-1 (currently, say SRN = 1)
Find the (incore) block number nb that can be temporary used for
BUFFER-IN
information
Note: nb> 1 and nb < ntblk
If current updated (or factorized) block is block #3, then nb = 4 (always
= top block # of the current 4 blocks residing in the incore memory).
If current updated (or factorized) block is block #2, then nb =3
If current updated (or factorized) block is block #1, Then nb =2
If current updated (or factorized) block is block #4, then nb = 1
Some required info. Still stay in SSD (or in regular disk).
Thus, if check is used to see if BUFFER-IN is required
IF (M.LE.KNM) THEN

Read (or Buffer—IN) one record into the appropriate incore block # (say
nb). Thus,

Buffer-In data

Will be stored in the coefficient matrix array A (1, nb)

ELSE

some required information are already stayed in the incore memory
ENDIF

“Partially” factorize current record #N using loop-unrolling technique;
[6.1-6.2] |
Continue |
Calculate the “Final” factorized terms in the current record #N, then
BUFFER-OUT

Since “partially” factorization has already been done using the previous:!
record :

information, at this stage, we only need information from the current:
record #N |

Continue
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[Record [ Rec. 2[3[4 [5]6]78]9]10]

Buffer In

Blockl1,Rec. 1
Block2,Rec. 2

Block3, Rec.
Block4,Rec. 4 - ™ _;1 ;“
ese 4 blocks are
Blockl,Rec. 5 currently residing in
Block2,Rec. 6 the incore-memory

Block3,Rec. 7

Block4,Rec. 8

(Currently Update)

negxmax bw

Figure 6.3 Out-of-core Choleski factorization (version 2)

Let’s try to take a closer look at Table 6.5 and Figure 6.3, at the same time. In Fig.
6.3, we assume that records 4, 5, 6, & 7 are currently residing in the core memory, and
record 7 is currently being factorized (also, refer to line 3 of Table 6.5). The formula
shown in line 4 (KNM=4, in Table 3) will be used later on, in line 18 (of Table 6.5), to
determine which records have already been resided in the core memory (thus, to avoid
wasteful time to buffer-in these same records into the core memory). Since record N=7
is currently being factorized, previous completely factorized records (such as records
1, 2, .... 6) may be required, or to be more general, previous records SRN, SRN +1,
SRN +2, ...., N-1 may be required (where SRN is the starting record number, which can
be either record 1, or 2, or 4 depending on the problems). Statements on lines 9-15 are
basically used to describe the rule to select the incore block number to be used as
temporary incore storage space to hold those previously (& completely) factorized
records. Line 18 stated that if the previous record #M (which is needed in order to
factorize the current record N=7) is less than KNM (=4), then we need to buffer-in (or
read) from the auxiliary storage disk space. On the other hand, if M is greater than
KNM (=4), such as M = 5 or 6, then there is no need to buffer-in records #5 & 6 into
the core memory (since these records #5 & 6 have already been resided in the core
memory!) We just simply used the available records #5 & 6 to partially factorize record
# N = 7. By the time we have completed loop 2 (from line 8 to line 26), all previous
records have been used to partially factorize record N = 7. Hence, in line 27, the
“completely factorized” record N can be obtained by using the information from the
current record #N itself.
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The Solid State Disk (SSD) storage available on the Cray-YMP can further
significantly reduce the I/O time. For convenience, Table 6.6 summarizes the step-by-
step procedure to run the developed out-of-core solver (where outof is the name of
executable code, in is the name of the input data file, outputt is the name of output data
file, the original coefficient stiffness matrix [A] is generated and stored in the file fort.
11, and the factorized of [A] is computed and stored in fort. 22).

Table 6.6 Procedure to execute out-of-core solver (version 2)

On Fast Cray-YMP SSD
(Note: “>” is the computer prompt sign)

Step 1 >gsrfsg-ry 15 mw ; $ FASTDIR
Step 2 >y cp youtof ; $ FASTDIR

Step 3 >y cpyiny$ FASTDIR

Step 4 >, cd v $ FASTDIR

Step 5 > ; assign ¢ -s ¢ unblocked ; u:11
Step 6 > assign ¢ -s ¢ unblocked ¢ u:22
Step 7 >, outof y < in ¢ >outputt

Step 8 (to release fast SSD to other users)

> srfs o1 y Omw , SFASTDIR (by specifying zero million words required.)
>, srfs ¢ -i  SFASTDIR
>g srfs o-u

Version 2 of the out-of-core solver has been coded in a user’s friendly, modular
form as shown in Table 6.7.

Table 6.7 How to call the present out-of-core (version 2) subroutine “solve”??

Subroutine solve (b, a, maxa, kbin, neq, neqr, nblk, ntblk, neqbk, ihu)

C.. implicit real * 8 (a-h, 0-z)
C.. dimension b(neq), a(negbk, ntblk), maxa(neq+1), kbin(5, nblk), ihu(neq)
CHxxx notes:

C****(a) neqr =unused information (for future development)
C****(b) kbin(1, nblk) = lowest equation (global) number in a block

C kbin(2, nblk) = highest equation (global) number in a block

C kbin(3, nblk) = (local) number of terms in a block

C kbin(4, nblk) = (global) lowest coupled equation number (for every
record)

C kbin(5, nblk) = lowest coupled block number

C****(c) ihu(neq) = same as kbin (4, nblk), but for every row
C****(d) b(neq)= vector of known right hand side
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C****(e) a(neqbk, ntblk) = a 2-D array to store coefficient matrix in blocks

C****(f) maxa(neq+1) = locations of diagonal pointers for the coefficient matrix

C****(g) neq = number of equations

C****(h) ntblk = number of blocks (for incore memory) of the coefficient matrix
[a]

C****(i) neqbk = number of words (memory) per block

The objective of the following section is to find the mapping (or, the corresponding
location) of a general term of global stiffness matrix, such as K;, in a local stiffness
matrix which is resided in four in-core memory blocks.

Record] [Rec2 |3 (3 (S |6 |7 |8 | 9|10
ultiple of
rows)

> Buffer In

ﬂ'h row

Theoe 4 blocks are
axrently rosiding in
the istore-memory

- neqxmax bw
Row m = begin row ¥ of the first block (depends on where the current update block is)
Locate 1 mmaxa (i) + - i (6.9)

Locate 2 =locate 1 - maxalm) +1 (6.10)

Local N = locate 2 (6.11)

Figure 6.4 Mapping between global (K;) location and local (N) location (version 2)

In the above formulas (Egs. 6.9-6.11), assuming m™ row = 100" row, K; i = Kizo128
MAXA(i)= Maxa(120) = 1200, MAXA(m) = MAXA(100)= 1000, then

Locate 1 = Maxa(i) +j -i = Maxa(120) + 128 - 120 = 1208

Locate 2 = 1208 - Maxa(100) + 1 =209

Local N =209
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Thus, the stiffness matrix term K ,, 4 is located at the 1208™ global location.

Its corresponding local location is the 209™ location.

A step-by-step procedure to generate and assemble element stiffness matrices

(of structural applications) in an out-of-core fashion (version 2) is shown in Table 6.8.

Table 6.8 A step-by-step procedure to generate and assemble element stiffness

matrices of real structures in an out-of-core (version 2) fashion

Step 1:

Step 2:

Step 3:

Step 4:

Step 5:

Step 6:
Step 7:

Step 8:

Step 9:

Knowing element connectivities and the global DOF associated with each
element, we can find the so-called MA X A(-) array (diagonal pointer locations)

Knowing MAXA(-) array, we can find maximum and average bandwidth (say
max bandwidth = 120, ave. bandwidth = 80 and neq = 88000)
Knowing Incore Memory (= IM) available for [K], and knowing the number
of blocks (=ntblk = 4, usually) that the user wishes to partition the IM for [K],
we can find the number of words per block (= neqbk)
I Mfor [K]

ntblk
Based on the known max. bandwidth and neqbk, we can find how many block
rows (each block row = 8 due to loop-unrolling) a record (on regular disk or
SSD disk) can hold

negqbk

NBlkrows =
. max, bandwidth x8) .
Find how many rows (must be a muitiple of 8 due to loop-unrolling) a record

(on regular disk or SSD disk) can hold

Nrows=Nblkrows *8 (Say Nrows=1000)
Find the maximum record length (on regular disk or SSD disk) we can have
Record Length =Nrows * maximum bandwidth (say record length = 120,000)
Find how many records (on regular or SSD disk) can we have.
Nrecords=(neq*max. bandwidth)/record length (say=88000* 120/120,000=88)

Thus in this example, each record (on regular or SSD disk) can hold Nrows
(=1000 rows). There are a total of Nrecords (=88) on the regular or SSD disk.
Hence, record 1 will store information from row 1 to row 1000; record 2 will
store information fromrow 1001 to row 2000; record 87 will store information
from 86,001 to row 87,000; (last) record 88 will store information from
remaining rows

neqbk-=

Assuming a particular 9 x 9 element global stiffness is associated with the
Global DOF {101, 102, 103, 104, 105, 106, 2078, 2079, and 2080} . Then, the
element will be generated, assembled and “partially” stored in Record
1(correspond to global DOF #101 -~ 106) and also “partially” stored in Record
3 (correspond to global DOF 2078 - 2080).

6.4

Out-of-Core Vector Equation Solver (version 3)

The solution strategies used in this section is quite similar to the one discussed in the
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previous section. However, this proposed out-of-core, vectorized equation solver
strategy is believed to be more efficient than the previous one, as it will be explained
in the following paragraphs.

There are a total of 10 records of the global stiffness matrix to be stored in the
Solid State Disk (SSD), as shown in Fig. 6.5. A small fraction of the total Incore
Memory available (=IM words) is used to store certain information about the stiffness
matrix (such as column heights, variable row lengths, diagonal location pointers etc....).
The remaining incore memory will be partitioned into 3 blocks (instead of 4 blocks as
discussed in the previous section), as indicated in Figure 6.5. The key out-of-core
equation solution strategies can be explained by referring to Fig. 6.6. To make the
discussion more general, we assume that records 5, 6 and 7 are currently residing in the
core memory, and record 7 is being factorized according to the following step-by-step
procedure:

Step 1: Use record 5 to partially factorize record 7

Step 2: Use record 6 to partially factorize record 7, and simultaneously buffer-in (or
read) record 1 into the core memory (and overwrite memory spaces previously
occupied by record 5)

Step 3: Use record 1 to partially factorize record 7, and simultaneously buffer-in
record 2 (and overwrite memory spaces previously occupied by record 6)

Step 4: Use record 2 to partially factorize record 7, and simultaneously buffer-in
record 3 (and overwrite memory spaces previously occupied by record 5).

The above steps are repeated until all previous records have been used to factorize the

current record 7.
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Figure 6.6 Out-of-core Choleski factorization

6.5 Application

6.5.1 Version 1 performance

To test the effectiveness of the proposed out-of-core parallel-vector equation solver
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(pvsolve-ooc), described in Section 6.2, three large-scale structural analyses have been
performed on the Cray Y-MP supercomputer at NASA Ames Research Center. These
analyses involved calculating the static displacements resulting from initial loadings for
finite element models of a High Speed Civil Transport aircraft (HSCT) and the space
shuttle Solid Rocket Booster (SRB). The aircraft and SRB models are selected as they
were large, available finite-element models of interest to NASA. The characteristics of
the stiffness matrix for each of the above practical finite element models is shown in
Table 6.9.
Table 6.9 Characteristics of finite element models

HSCT Refined HSCT SRB
Max Bandwidth 600 1272 900
Ave. Bandwidth 321 772 383
Matrix Terms 5,207,547 12,492,284 21,090,396
Non-zero Terms 499,505 373,752 1,310,973
No. Operations 171,425,520 9.2x10°
No. Equations 16,146 16,152 54,870

In the following applications, code is inserted in pvsolve-ooc to calculate the
CPU time for equation solution. The Cray timing (TSECND) is used to measure the
time.

Example 1: High Speed Civil Transport Aircraft (HSCT) Application

To evaluate the performance of the parallel-vector out-of-core Choleski solver,
a structural static analysis has been performed on a 16,146 degree-of-freedom finite
element model of a high-speed aircraft concept [6.5]. Since the structure is symmetric,
a wing-fuselage half model is used to investigate the overall deflection distribution of
the aircraft. The half model contains 2851 nodes, 4329 4-node quadrilateral shell
elements, 5189 2-node beam elements and 114 3-node triangular elements. The stiffness
matrix for this model has a maximum semi-bandwidth of 600 and an average bandwidth
of 321. The half-model is constrained along the plane of the fuselage centerline and
subjected to upward loads at the wingtip and the resulting wing and fuselage deflections
are calculated.

The time taken for a typical finite element code to generate the mesh, form the
stiffness matrix and factor the matrix is 325 seconds on a Cray 2 (802 seconds on a
CONVEX 220) of which the matrix factorization is the dominant part. Using pvsolve-
ooc, the factorization for this aircraft application requires 6.98 and 1.01 seconds on one
and eight Cray Y-MP processors, respectively, as shown in Table 6.10.
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Table 6.10 Performance of pvsolve-ooc on Cray Y-MP

No of Processors HSCT Refined HSCT SRB
1 6.98 (sec.) 43.87 (sec.) 31.26 (sec.)
2 3.50 20.00 15.53
4 1.85 10.00 7.80
8 1.01 5.71 421

Example 2: Refined Model for HSCT problem

More details and more realistic model of the HSCT structure than the crude
model (in Example 1) is used. The characteristics of the resulted stiffness matrix is
shown in Table 6.9. The numerical performance of the proposed parallel-vector out-of-
core solver for this example is presented in Table 6.10.

Example 3: Space Shuttle Solid Rocket Booster (SRB) Application [6.6-6.7]

In addition to the high-speed aircraft, the static displacements of a two-
dimensional shell model of the space shuttle SRB have been calculated.

This SRB model is used to investigate the overall deflection distribution for
the SRB when subjected to mechanical loads corresponding to selected times during the
launch sequence. The model contains 9205 nodes, 9156 4-node quadrilateral shell
elements, 1273 2-node beam elements and 90 3-node triangular elements, with a total
of 54,870 degrees of freedom. The stiffness matrix for this application has a maximum
bandwidth of 900 and an average bandwidth of 383. A detailed description and analysis
of this problem is given in references [6.6-6.7]. The times required for a typical finite
element code to generate the mesh, form the stiffness matrix and factor the matrix are
about one-half hour on the Cray 2 (15 hours on a VAX 11/785) of which the matrix
factorization is the dominant part. Using pvsolve-ooc, the factorization for this SRB
problem requires 31.26 and 4.21 seconds on one and eight Cray Y-MP processors,
respectively, (as shown in Table 6.10).

6.5.2  Version 2 performance

To evaluate the performance of the vector out-of-core Choleski solver discussed in
Section III, a “simulated” structural static analysis has been performed on a 16,146
degree-of-freedom finite-element model of a high-speed aircraft concept [6.5]. Since
the structure is symmetric, a wing-fuselage half model is used to investigate the overall
deflection distribution of the aircraft. The half model contains 2851 nodes, 4329 4-node
quadrilateral shell elements, 5189 2-node beam elements and 114 3-node triangular
elements. The stiffness matrix for this model has a maximum semi-bandwidth of 600
and an average bandwidth of 321. The half-model is constrained along the plane of the
fuselage centerline and subjected to upward loads at the wingtip and the resulting wing
and fuselage deflections are calculated.
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Since this is only a “simulated” high-speed aircraft model, the input data can
be easily prepared with only a few defined variables: neq, (number of equation), avebw
(average bandwidth), IM (Incore Memory Available), ntblk (number of incore memory
blocks).

In the following numerical examples, the variables neq, avebw, and ntblk are
settobe 16146, 321, and 5. However, the input parameter IM (specified Incore Memory
available) will be varied in order to see how the solution time varies with the specified
incore memory available. For this “simulated” aircraft model, 3 numerical cases will be
studied. Since this is a simulated problem, maxbw= avebw = 321.

Case 1: IM = (6* neq) +(16 * maxbw)

Case 2: IM = (6 * neq) + (1.1 * maxbw?)

Case 3: IM = (6 * neq) + (neq * avebw)

Thus, Case 1 uses the minimum incore memory, Case 2 uses the same minimum incore
memory as in Section 6.2, and Case 3 uses complete incore memory. The performance
of this simulated aircraft model in all 3 cases are summarized in Table 6.11. All results
are accurate as compared to known solutions.

From the results presented in Table 6.11, one can see that there is no general
trend on the wall clock time (wct). This es expected, since the wct is heavily depended
on how busy the system is at the time the code was executed. The CPU time, however,
is more stable and reliable. It shows that case 1 [where only a minimum (16 * maxbw)
words of incore memory was used to store the coefficient matrix] requires the most
CPU times during the factorization, forward and backward phases. Case 3 [where the
equation solution is completely solved by incore memory] requires the least CPU time.

The incore memory used in Case 2 [where (1.1 * maxbw?) words was used to
store the coefficient matrix] is the same as used in Section 6.2. Thus, the trend in CPU
time behaves as can be expected: more incore memory used will lead to less CPU
solution time.

Table 6.11 CPU (and wall clock) Cray-YMP time (in seconds) performance
of the “simulated” high speed civil transport aircraft model

CASE 1 CASE 2 CASE 3

CPU Time 14.29 8.38 8.31
Factorization

WCT Time 164.31 34.25 23.40

CPU Time 0.22 0.14 7.15%102
Forward

WCT Time 0.88 0.54 7.15%10?

CPU Time 0.27 0.17 9.29*%102
Backward

WCT Time 1.67 0.49 9.37*%107?

6.5.3  Version 3 performance
The 16,146 degree-of-freedom HSCT model will be used to evaluate the numerical
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performance of version 3 out-of-core strategies.
Two cases have been considered in version 3 of the computer codes.

Case 1: The income memory provided is large enough to hold “all” arrays inside the
core memory. Thus, in this case, only 1 block is used, with a total (integer and
real) memory requirement is 5,304,434 words.

The factorization, forward and backward times (for a single Cray-YMP
computer) are shown in Table 6.12 as 6.8985 seconds, 0.0433 seconds and
0.0743 seconds, respectively. The total CPU time (including “everything™)
is 7.0164 seconds, and the total wall-clock-time is 39.6494 seconds.

Case 2: The incore memory provided is less than half of the required incore memory.
Thus, in this case, 13 blocks are used, with a total (integer and real) memory
provided is only 1,999,988 words.

The factorization, forward and backward times (for a single Cray-YMP
computer) are shown in Table 6.13 as 6.9577°, 0.0436*°, and 0.0748°,
respectively. The total CPU time (including “everything”) is 7.0764*, and
the total wall-clock-time is 40.7307 seconds.
Comparing the performances in the above 2 cases, one can see that the
proposed out-of-core strategies are quite efficient, since the penalties for the overhead
time (when out-of-core strategies are used) is quite small.

Table 6.12 Performance of (version 3) out-of-core solver on HSCT application
(incore memory used = 5,304,434)

No. Equations 16,146

Non-zero Terms 499,505

Factorization (CPU) Time 6.90 seconds (Cray-YMP)
Forward (CPU) Time 0.0433 seconds
Backward (CPU) Time 0.0743 seconds

Total (CPU) Time 7.01636 seconds

No. Blocks Used 1

Incore Memory Used 5,304,434 real words
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Table 6.13 Performance of (version 3) out-of-core solver on HSCT
application (incore memory used = 1,999,988)

No. Equations 16,146

Non-zero Terms 499,505

Factorization (CPU) Time 6.96 seconds (Cray-YMP)
Forward (CPU) Time 0.0436 seconds

Backward (CPU) Time 0.0748 seconds

Total (CPU) Time 7.07636 seconds

No. Blocks Used 13

Incore Memory Used 1,999,988 real words

6.6 Summary

A parallel-vector out-of-core Choleski method (pvsolve-ooc) for the solution of large-
scale structural analysis problems has been developed (see Section 6.2) and tested on
Cray supercomputers. The method exploits both the parallel and vector capabilities of
modern high- performance computers. To minimize computation time and memory
requirement, BUFFER IN and BUFFER OUT statements are used for effective 1/0
operations. In this version (see Section 6.2) the total incore memory requirements is
(6*neq) + (1.1* maxbw?). The method performs parallel computation at the outermost
DO-loop of the matrix factorization, the most time-consuming part of the equation
solution. In addition, the most intensive computations of the factorization, the innermost
DO-loop has been vectorized using a SAXPY-based scheme. This scheme allows the
use of the loop-unrolling technique which minimizes computation time. The forward
and backward solution phase have been found to be more effective to perform
sequentially with loop unrolling and vector-unrolling, respectively.

The proposed parallel-vector Choleski method has been used to calculate the
static displacements for three large-scale structural analysis problems; a high-speed air
craft and the space shuttle solid rocket booster. The total equation solution time is small
for one processor and is further reduced in proportion to the number of processors.

Factoring the stiffness matrix for the space shuttle solid rocket booster, which
formerly required hours on most computers and minutes on supercomputers by other
methods, has been reduced to seconds using the parallel-vector variable-band Choleski
method. The speed and low incore memory requirement of pvsolve-ooc should give
engineers and designers the opportunity to include more design variables and
constraints during structural optimization and to use more refined finite-element meshes
to obtain an improved understanding of the complex behavior of aerospace structures
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leading to better, and safer designs.

The single-processor, vectorized out-of-core strategies developed in Sections
6.3 and 6.4, and the corresponding incore memory requirements are (6*neq) +
(16*maxbw), and (6*neq) + (24*maxbw), respectively. In both proposed vectorized,
out-of-core strategies, the required incore memory is significantly less than Version 1
(of Section 6.2). Version 3 (of Section 6.4) is more preferable than Version 2 (of
Section 6.3), since with a little more incore memory requirement (24*maxbw, as
compared to 16*maxbw), Version 3 is significantly faster than Version 2
(approximately 7 seconds CPU time as compared to approximately 14 seconds CPU
time).

6.7 Exercises

6.1 Following the algorithms presented in Table 6.1, and using the data
maxbw=600 and istorv=980,000, find the value of “mtot” after 4 iterations??
6.2 Given the following system of equations [A] {x} = {b}
where [A] is symmetrical, positive definite matrix and is given as

2 -1
514
| -1 6 -
4] = 108 -l

110 -1

112
i
2
| a
by - | ¢
8
1

Assuming each record in Fig. 6.5 (a) can only hold 1 row of [A], each of the
(3) block shown in Fig. 6.5 (b) can only store 1 row of [A], and the first 3 rows of [A]
are currently residing in the incore memory:
(a) Use the out-of-core strategies, shown in Fig. 6.6, to factorize [A]. Please also
clearly indicate how and where to Buffer IN/Out the information
(b) Find the out-of-core forward solution
(¢) Find the out-of-core backward solution
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7 A Parallel-Vector

Skyline Equation Solver for
Distributed-Memory Computers

7.1 Introduction

It is now generally acknowledged that the most feasible and economical means of
solving extremely large computational problems in the future will be with massively
parallel computers and distributed memory. Though the relatively rapid growth in
microprocessor technology over the last decade has lead to the development of
massively parallel architectures capable of performing Giga arithmetic operations in a
single second, the software required to efficiently solve large-scale problems remains
a challenge to scientists and engineers today. A lot of effort has been made to develop
efficient equation solvers on parallel computers [7.1], but most of them are either
designed for computers with shared memory [7.2-7.6], or for special form of matrices
[7.7-7.9], such as tridiagonal matrix, triangular matrix or banded matrix. Since in most
scientific and engineering applications, the final systems of equations to be solved are
large, symmetrical matrices with variable bandwidths, it is desirable to develop an
efficient equation solver that can exploit such special features of the coefficient matrix.

In this chapter, an equation solver for symmetrical matrices with variable
bandwidths is developed to solve large-scale problems on massively parallel computers
and distributed memory, such as the Intel iPSC/860 hypercube, the IBM-SP2, or Meiko
parallel computers [7.10-7.11].

7.2 Parallel-Vector Symmetrical Equation Solver [7.10]

7.2.1 Basic symmetrical equation solver
Systems of linear, symmetrical equations can be represented as

Ax=b (7.1)

One way to solve Eq. (7.1) is first to decompose the coefficient matrix A into the
product of two triangular matrices

A=U"U (7.2)
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where U is an upper-triangular matrix which can be obtained by

i-1
aij —; U ukj
= —tL (i)

u;

(7.3)

i-1 12
u,, =( a;-y, u,f,.) (i=)) (7.4)
k=1

Then the unknown vector x can be solved through the forward/backward elimination,
such as to solve

Uly=b (7.5)
for y, with
j-1
b, - u,y,
y, - — % (7.6)
i
and to solve
Ux=y (7.7)
for x, with
Vi T 2. W%
xj — i=j+1 (7.8)

Since the number of operations involved in the factorization phase is much more
than that in the forward/backward elimination phase, more efforts will be focused on
developing an efficient parallel-vector algorithm for matrix factorization.

7.2.2 Parallel-vector performance improvement in decomposition

The efficiency of an equation solver on massively parallel computers with distributed
memory is dependent on both of its vector performance and its communication
performance. Since for the Intel/iPSC860 hypercube, the dot product performance is
better than its saxpy performance, we have decided to adopt a skyline column storage
scheme (column-by-column, from the diagonal term and up of a stiffness matrix{A]) to
exploit dot product operations. Moreover, the skyline column storage scheme [7.6,7.10-
7.11] requires less memory than the row-storage scheme [7.5, 7.10]. To enhance its
vector speed through vector-unrolling, the symmetrical matrix A is stored in a block-
skyline scheme with block size equal to 4 (thus, each block consists of 4 columns).
Figure 7.1 shows this storage scheme for multiprocessors (assuming NP = 3 processors
are used). Thus, processor 1 stores column 9-12, 21-25 of the matrix A, while columns
13-16, 25-28 and columns 17-20 are held by processors 2 and 3, respectively (recalled
Section 3.6 of Chapter 3).
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row 9

PI(K’Q'

Figure 7.1 Block column storage scheme for matrix [A] (in a one-dimensional array)

The decomposition (or factorization) is processed for i=1, 5, 9,..., n, where for
each i the corresponding rows (from i to i+3) can be updated concurrently, by
multiprocessors in a row-by-row fashion. Thus, for i=1, rows 1 through 4 (or rows i
through i+3) will be factorized by multiple processors. Similarly, for i=5, rows 5
through 8 will be factorized by multiple processors. Assuming the first eight rows of the
matrix A (see Figure 7.1) have already been updated by multiple processors, and row
9 is currently being updated. Thus according to Figure 7.1, terms such as U, ,....U,, |, and
Uy y1--Ugyqare processed by processor 1. Similarly, terms such as U ;..U cand
Uy »5--Uy 3 are handled by processor 2, while terms such as U, ,,...U, ,, are executed
by processor 3.

As soon as processor 1 completely updated column 9 (or more precisely, updated
the diagonal term U, ,, since the terms U,,, U,,, ...Ug, have already been factorized
earlier, it will send the entire column 9 (including its diagonal term) to all other
processors. Then processor 1 will continue to update its other terms of row 9. At the
same time, as soon as processors 2 and 3 receive column 9 (from processor 1), these
processors will immediately update its own terms of row 9. In addition to the above
parallel computation strategy, more vector speed can be obtained through the concept
of “vector unrolling” which has been introduced in Ref. [7.6] for shared memory
computers (such as the Cray-2 and Cray Y-MP). Referring to Figure 7.1 and Eqs 7.3
and 7.4, one can see that having completed column 9, updating the remaining terms of
row 9 (such as Uy o, Uy, ....U,,) involve with the dot product between 2 columns
(column 9 and columns 10, 11, ..., n).

Since column 9 in this example is used repeatedly in the dot product operations,
it is desirable to keep column 9 to stay longer in the CPU (or fast memory). Thus, vector
unrolling level 4 is used to enhance the vector speed. For example, the following dot
product operations
SUMI = SUMI + ( column 9) - ( column 9)

SUM2 = SUM2 + (column 9) - (column 10)
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SUM3 = SUM3 + (column 9) - (column 11)

SUM4 = SUM4 + (column 9) - (column 12)

are executed by processor 1, while the following dot product operation
SUM1 = SUMI + ( column 9) - ( column 13)

SUM2 = SUM2 + ( column 9) - (column 14)

SUM3 = SUM3 + (column 9) - (column 15)

SUM4 = SUM4 + (column 9) - (column 16)

are processed by processor 2 etc... .

A skeleton pseudo-code of the above parallel-vector Choleski factorization is
shown in Table 7.1

It is also noticed that if the increment 4 in loop 100 (see Table 7.1) is changed into
1, then no vector unrolling is used.

To further improve the computational efficiencies, block-wise updating strategies
are also employed. A block-wise updating (see Figure 7.2) means there are four rows
being concurrently up-dated by multiprocessors. A block-wise updating also means that
having completed all 4 columns (say 9, 10, 11, and 12 in Figure 7.1), processors 1 will

send all these 4 columns to all other processors.
9 P 1B P 1T R N P25 P2 P

.»-"'// ™

row ¢
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Figure 7.2 Block-wise (rows) factorization for matrix A (in a 1-D array)

In block-wise updating (for factorizing) strategies, each processor will
independently factorize its appropriate terms in 4 (or more) consecutive rows. Assuming
the first 8 rows of the matrix A (shown in Fig. 7.2) have already been completely
factorized, then processor P, (which is the owner of columns 9-12) will factorize the
following terms.
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U9,9 U9. 10 U9,l 1 U9, 12

Uoro Yot Uiz
Uit Ui
Uiaia
and send its 4 completely factorized columns (9 through 12) to all other processors,
before continuing to factorize other terms (of the 4 consecutive rows 9-12), such as

U9,2 1 U9,22 U9,23 U9,24

UIO,ZI U10,22 UlO,23 Ul 0,24
Ul 1,21 Ul 1,22 Ul 1,23 Ul 1,24
UlZ,Zl U12,22 UlZ,Z3 U12,24

At the same moment, processor P, (and processor P, etc...) will receive the 4 columns
9-12 (from P,) and will factorize the following terms

U9,25 U9,26 U9,27 U9,28

x
c
<
-

9,13 9,14 9,15 9,16
Uiz Uioss Yioss Uigus
i Y Yias Yie | !
Uiz Unis Unps Une Uiyas Ulpas
and
Us17 Usis Use Us o Us2e Uszo Uszi Uy
and 1 | by P,
Uppir ——— Ui Uz9 Unn

A skeleton pseudo-code for this block-wise updating is similar to the one

discussed in Table 7.1, with few “minor” modifications, such as:

(a) Deleting the 2nd do-loop in Table 7.1 (thus, lines 5, 6 and 23 need be deleted)

(b) A new, different formula for index I need be defined before entering DO 400
loop (on line 7)

(c) Inside do 500 loop, sixteen (16) dot product operation need be done (instead of
just 4 dot product operations as shown in Table 7.1)

(d) Lines 16, 18 and 20 (in Table 7.1) need be expanded for calculating 16 terms
(instead of only 4 terms)

(¢) Line 17 (of Table 7.1) needs be modified in order to send 4 columns (instead of
sending just 1 column) to all other processors

(f) Line 26 (of Table 7.1) should be changed into: receive columns II, II+1, I1+2,
and I1+3

(g) Line27 (of Table 7.1) should be changed into: update the appropriate processor’s
terms of rows II, II+1, 1I+2 and 11+3

Still another strategy can be employed to further enhance the performance of
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parallel-vector skyline solver, which is iltustrated in Figure 7.3. This parallel strategy
will be referred to as “Twice” Block-wise Factorization algorithm. Basically, this
additional improved strategy can be viewed as applying the previous idea of block-wise
updating twice. Having received 4 columns 9-12 from processor P, (see Figure 7.3),
processor P, will compute the 16 factorized terms (exactly the same ways as discussed
earlier).

9 M 13 P2 17 Ps 21 M 25 P2 20 Pg

row §
») 11
4
& i row 13
row 17
\\\
N
\\
N
N
N

\

Figure 7.3 “Twice” block-wise (rows) factorization for matrix A (in a 1-D array)

U9,13 - U9,l6

U12,13 - U12,16

Processor P, then proceeds to the next 4 more rows (rows 13-16) to factorize the
following terms
Usis Usie Uisys Uise
Uisia Yiass Uise
Uisas Uis.e
Uig 16

(and send the completely factorized columns 13-16 to all other processors) before
returning back to rows 9-12 to factorize its remaining terms, such as
U9,25 "““U9,28

U12,25 - U12,28
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This enhancement will clearly help other processors to have less additional idle time.
This so-called “Twice” Block-wise factorizing algorithm can be summarized in Figure
74

A
Pia [Paa |Pia |Pis |Poc [Pz [Pic [P |Pic Block of (4) rows

P Block (of 4) rows

Figure 7.4 Flows of “twice” block-wise (rows) factorization algorithm

In Figure 7.4, the first subscript of P represents the processor number, and the
second subscript of P represents the computation order. For example P, represents 16
factorized terms computed by processors P,, will be followed by P, which represents
the next 16 terms to be factorized by processor P,. The convention we adopt in Fig. 7.4
is A is computed first, then B is computed next, then C, then D, then E etc...

To further improve the vector performance of the equation solver, we use a library
subroutine DDOT as the kernel for dot product operations. Table 7.2 shows the vector
performance for different options.
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Table 7.1 A skeleton pseudo-code for parallel-vector Choleski factorization

Loop=4
— Parallel DO 100 i" row =1, n, 4 (Sayi=9)
... me = processor number; NP = Number of Processors
If (“me” have the i column) then
- D0200j=0,3 (this loop is required due to skipping occurs in
the first loop)

DR WN -
O

6 II=(Globalrow #)=i+]

7 — DO 400 column # JJ =11, n, NP*Loop (The values of JJ maybe skipped,
depending on the value of “me

8 SUMI1 = SUM2 = SUM3 =SUM4 =0

9| =»DO 500 row k=1,2,....11-1

10 SUMI = SUMI™+ U, * U, ;

11 SUM2 = SUM2 + U,y * Uy iy
12 SUM3 = SUM3 + Uy, * U,‘W2
13 SUM4 = SUM4 + U, ), * Uy jies

14| 500 Continue

15 If (I11.LEq.JJ) then

16 u; ;= (A; ; - SUMI)”
17 send column jj to all other processors
18 U, - A,.,,,]_.,.'l,] ~SUM2 - ,,”';j ~SUM3 o A4, ”,,U SUM4
i if it fi i, Jj
;g e;se Ay SUML Ay, SUMZ Ay, - SUMS Ay SUMY
i, jj i > Tk jj+l Uﬁ > Yii g2 = U" > Yiijja3 = U,.,
21 Endif
22 400 Continue
23 200 Continue
24 Else
25 C... all other processors do the following
26 ® receive column # 11 (from processor “me”)
27 ® update the appropriate, processor’s terms of row ii
28 End if

29 100 continue

Additional explanations about Table 7.1 will be given in the following paragraphs

Line 1: Assuming unrolling level 4 is used, thus, every 4 columns are grouped
together
Line 2: The increment of 4 for this do-loop is required, since every 4 columns

are grouped together
Line 4: The processor (say processor “me”) which owns the i column will
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Line 5:

Line 6:
Line 7:

Lines 8-14:

Lines 15-18:

Lines 19-21:

Lines 22-26:
Line 27:

Lines 28-29:
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execute statements in lines 5 through 23. All other processors will
execute statements in lines 25 through 27
This loop is required in order to compensate the increment 4, used for
the index i (on line 2)
Global row number II is defined
This do-loop (with the index JJ) is required to cover all terms in row I1.
Special care need be done to have appropriate starting point, ending
point and increment value for the index JJ.
Assuming II = 9 (thus row 9 is being factorized), then JJ = (9, 10, 11,
12), (21, 22, 23, 24) etc... for processor P,, JJ = (13, 14, 15, 16), (25, 26,
27, 28) etc... for processor P, and JJ = (17, 18, 19, 20), (29, 30, 31, 32)
etc... for P,

However, if Il = 10 (or row 10 is being factorized), then JJ = (10, 11,
12), (21, 22, 23, 24) etc... for P,
Thus, in actual computer coding, the “real” formulas (or algorithm) for
the index JJ is more complicated than the “pseudo-formula” given on
line 7 for the index JJ.
Four dot-product operations are required (for unrolling level 4), such as

column II ® column JJ

column II ® column (JJ+1)

column II ® column (JJ+2)

column II ® column (JJ +3)
If column #JJ has the same value as row # I1, then we know the diagonal
term (and its adjacent 3 off - diagonal terms) are being factorized (for
example: Uyg, Ug 16, Uy, and U, |, are being factorized).
If column #JJ has different value with row #II, then we know we are
dealing with all off-diagonal terms of row II (for example: U, ,,, Uy,
Uy, and Uy ,,)
self -explained !
All other processors (except processor “me”) will factorized their
appropriate (off-diagonal) terms of row #I1. For example
Processor 2 will factorize (Ug 5...U; ), (Ug 5s...Uq 5) etc...
Processor 3 will factorize (Us ;..U 5), (Ug ..Uy 3,) etc...
self explained

Table 7.2 Vector performance with different options

Options Time (seconds)

No vector-unrolling 44.8

Vector-unrolling level 4 35.8

Vector-unrolling + block-wise updating 22.2

DDOT + vector-unrolling + block-wise updating 20.2

DDOT + vector-unrolling without block-wise updating 14.5

Note: Decomposition of a 1000 x 1000 matrix on one processor (Intel iPSC/860)
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Table 7.3 Communication schemes

Single-send scheme Double-send scheme
1 DO 100i=1,n,4
1 DO 100i=1,n,4 2 IF (“me” have the i* column) THEN
2 If (“me” have the i column) 3 DO 200j=0,3
3 D0200j=0,3 4 update the (i+j)* column
4 update the (i + j)™ column 5.1 send the (i + j)™ column to the
5 send the (i + j)* column to next processor
all other processors (fan-out) |5.2 send the (i + j)* column to all
6 update portions of (i + j)* row other processors
7 200 continue 6 update portions of (i + j)™ row
8 ELSE 7 200 continue
9 DO 300j=0,3 8 ELSE
10 receive the (i + j)* column 9 DO 300j=0,3
11 update portions of (i + j)™ row |10 receive the (i + j)® column
12 300 continue 11 update portions of (i + j)* row
13 ENDIF 12 | 300 continue
14 100 continue 13 ENDIF
14 | 100 continue

Table 7.4 Communication performance

Options Time (seconds)
Single -send (with CSEND, CRECV) 231
Single-send (with ISEND, IRECV) 192
Single-send (DDOT + ISEND, IRECV) 120
Double-send (DDOT + ISEND, IRECV) 108
Sequential-send (DDOT + CSEND, CRECV) 104

Note: Decomposition of a 4000 x 4000 matrix on 16 processors (Intel iPSC/860)
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Table 7.5 Sequential send (or RING) scheme
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O XX 9 oaondh W N -

— —
—_— O

—
[\

13
14
15
16
17

DO 100i=1,n,4
IF (“ME” have the i column) Then
DO200J=0,3

® Update the (i +j)th column
® send (i + j)th column to next processor
® update portions of (i +j)th row

200 continue
ELSE
DO 300J=0,3
*Every processor receives info. from previous processor
* If (ME # processor which owns column # [i - 1]) Then
® send info. to next processor which owns column # (i + 4)
® with exception : last processor will send information to processor 0
Endif
* update portions of (i + j)™ row
300 continue
Endif
100 continue

i* column belongs to processor Py =P,

nosend " X T~ send
Pu.. (i+4)® column € Py, , =P,
send
send
i( (i+8)" column € P,
send send

3 X (i+12)" column € Py, ,=P;
X\ //
"

send

Figure 7.5 Sequential (or ring) sending message



176 Parallel-Vector Equation Solvers for Finite Element Engineering Applications

7.2.3 Communication performance-improvement in factorization

On the Intel iPSC/860 hypercube, the maximum communication rate (massage-passing
rate) between two nodes is only 0.35 MWORDS (in practice, it is only 0.1 MWORDS),
which is much slower than its maximum arithmetic operation rate 60 MFLOPS (in
practice, it is only 25 MFLOPS). The communication rate is even slower when more
nodes are involved.

In general, a skyline (column storage scheme) equation solver on distributed
memory computers needs to transfer the current updated column (say, stored in node
i) to all other nodes, which is called fan-out. This fan-out becomes slower if the number
of nodes increases. As these communication routines (for fan-out) are designed by the
computer manufacturer, it is not practical for the users to make any changes in them.
However, we have tried to overcome this difficulty by introducing the so-called double-
send scheme. Table 7.3 shows both single fan-out scheme and the double-send scheme
for factorization. Another simple scheme is called sequential-send (please refer to Table
7.5) which means each node (say, node i) only receive information from its preceding
node (node i-1) and only send information to the next node (node i+1). Both double-
send and sequential-send schemes are based on the idea that the closest node should get
the message first. Table 7.4 presents communication performance with different
message-passing techniques.

In Table 7.4, the sending and receiving messages (ISEND, IRECV) is better than
(CSEND, CRECYV). In simple language, CSEND can be interpreted as a person who
drops (or sends) the mail in the mail box, he then waits in the mail box for a little while
(say until the mailman arrived at the mail box), then he leaves the mailbox. On the other
hand, ISEND can be interpreted as a person who drops (or sends) the mail in the mail
box, and he immediately leaves the mail box. Depends on the applications and the
problems at hands, proper use of the appropriated communication messages need to be
observed.

Single send and double send schemes are self-explained in Table 7.3. Sequential
(or ring) send scheme shown in Table 7.5, however, needs further explanations for
better understanding.

(a) Lines 1 -8 (of Table 7.5) are essentially the same as lines 1 - 8 (of Table 7.3,
double-send scheme), but with lines 5.2 deleted (from Table 7.3, double-send
scheme)

(b) Lines9, 10, 14-17 of Table 7.5 play the same role as lines 9-14 of Table 7.3.

(c) The IF statement provided on line 11 of Table 7.5 will make sure that
processor “ME” (which owns the i column) will not receive its own message
(from its previous neighbor processor ) which it has sent (in a ring fashion)
to all other processors, as clearly explained in Figure 7.5

(d) Line 12 of Table 7.5 will make sure that a processor will send the message
(which it receives from the previous neighbor processor) to the next neighbor
processor. For example, P, sends message (which it receives from P,) to
processor P,. Processor P, sends message to P,, P, sends message to P,.
Assuming P, is the last processor in this process, P, will NOT send the
message to Py (since P, is assumed to be the original processor which
supposes to be a starting processor to send the message to all other
processors!)
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7.2.4 Forward/backward elimination

In linear static applications, factorization is the most time consuming portion of a finite
element analysis. In many other applications (such as nonlinear static/dynamic,
eigenvalue, design sensitivity analysis and optimization), however, the
forward/backward elimination has to be done repeatedly. Thus, forward/backward
solution time becomes quite important for the above applications.

A. Forward Elimination
Assuming the first 8 unknowns of the solution vector y in the forward elimination phase
have already been calculated, and the forward solution for y, through y,, are sought. For
simplicity, assuming the factorized lower triangular matrix U” is full as shown in Figure
7.6. According to Eq. 7.6, one has:

8
b,-) u.,y
9 ,Z=1: i9 yr (79)

U9,9

Yo =

or

by ~(uygyy tuygy, te tugg V)
Yo = (7.10)
Ugg

Thus, one can clearly see that processor 1 (see Figure 7.6) can easily calculate
unknowns y, through y,, since y, through y; have already been “completely” calculated.
As soon as processor 1 finishes computing y, through y,,, it will broadcast these
complete solutions (y, through y,,) to all other processors (fan out). This fan out
process is illustrated by columns 9 — 12 below the diagonals as shown in Figure 7.6.
Having broadcasted the solutions y, — y,, to all other processors, processor 1 continues
to compute the “partially” updated solutions for portions of the remaining unknown
solution vector .

For example, processor 1 (or P,) will compute:

b, - (UZl_,y1 +..0+ 21,1zy12) ~(unknownl)
U

21,21

¥, (incomplete or partially complete) = (7.11)

Since the factorized matrix has been stored in the upper triangular portion, Eq (7.11)
can be re-written as

b,, ~(U1,21y1 +o +U12,2] ¥1,)-(unknownl)
U21,21

¥y (incomplete)= (7.12)

Similar expressions can also be written for y,, (incomplete), y,; (incomplete) and y,,
(incomplete)

In Eq (7.11), we define
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unknownl =U\; 5,y 5 *.....¥Uy 5 ¥y (7.13)

At the same time, processor 3 (or P,) will compute:
by =(Uy 12¥y +eee gy 19) = ()
Uigir

¥y, (incomplete) = (7.14)

and will also compute:
y,5 (incomplete) through y,, (incomplete), and y,, (incomplete) through y,, (incomplete).

P1 P2 P3 P1 P2

7 re 7 re 24

] [l ] — -] — /]
5 i [ bs
9 Voo Y9 by
13 BN .
1 ] ] y =
H iP3IP3NG 1 17 17
25 I IIEAN
20 1P2iP2; :
| ip3ip3! Ly, - [ by,
Figure 7.6 Parallel forward elimination
B. Backward Elimination:

Assuming the last 8 unknowns of the solution vector x in the backward elimination
phase have already been calculated, and the backward solution for x, g, x, 4, x,_,,and

x,_, are sought. To simplify the discussion, assuming n = 100 and the factorized upper
triangular matrix U is full as shown in Figure 7.7. According to Eq. (7.7), one has:
n =100
Yo, = Uy, . X.
e :":93 2 (7.15)
)
Us 92

_ Yoy ~(gy 93%93 +Ugy g4 Xg4 * -+ *+Usy 100 X 100)

92 (7.16)

Usy 02

Thus, one can clearly see that processor 1 (see Figure 7.7) can easily calculate
unknowns X,, through xg,, since X, through x,, have already been “completely”
calculated.

Having completed the final solution for x,, through x,,, processor 1 continues to
compute the “partial” (or incomplete) solution for x4, through x,,. Processor 1 then send
these partial solutions to the next processor (on its left neighbor, say processor 3) and
processor 1 continues to find the partial solution for x,, through x,.

For example:

y; - (known portion) - (unknown portion)
U

i

(7.17)

x; (“partial” solution) =
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In Eq. (7.17), i = 84—1, and j = 88, the known and unknown portions are defined as

known portion = (u;;,; Xjuy+.....t Ui, X,)

unknown portion = (U; j; Xjs; + U j4p Xisp Foeree

P1 PZP3 P1 P2 P3

[

ol
by

l{m

AR

92nd row = (n-8th row

N

Xp-28

X8
Xn4

L Xy —

Figure 7.7 Backward elimination

"

¥n-28

Yn-8
Yn-4

Ly,

(7.18)
(7.19)

Meanwhile, a “if check” is performed in order to determine the workloads for the
remaining processor (not including processor 1). If a processor is adjacent to the left of
processor 1 (say processor 3), it will receive the “partial” solutions (for example, X g
through x ;) from all other processors (fan in), say processors 1 and 2. All the other
processors (not including processor 1 and the adjacent processor 3) will send the
required information to processor 3. Therefore, processor 3 is now ready to compute the

“final” solution for x4 through xq;.

The above backward solution strategies can also be conveniently cast in the
following step-by-step procedure (also refer to Figure 7.8).



180 Parallel-Vector Equation Solvers for Finite Element Engineering Applications

L LA L

0 B
by [2] 8] % — 2
A AglA Srewblacks | X7 | E
TGS pomie 5 o]
% % ; 1 = [
el R s
o SR = R
1] V1]
nu . .
Figure 7.8 Backward solution
Processor P,'s tasks:
Step1: Solve for unknowns x;, X, .... X, (refer to the triangle region C, in Fig.
7.8)
Step 2: P, uses 8 x 8 block A, (see Fig. 7.8) together with the corresponding

-

(known) portions of the X vector to compute the so called “known
portion” as indicated in Eq. (7.18)
Step 3 : P, sends the “known portion” to its adjacent (left) neighbor processor P,
Step 4 : P, continue to use (bigger) block B, (see Fig. 7.8) together with the
corresponding (known) portions of the 3 vector to compute the so called
“known portion” as indicated in Eq. (7.18)

The adjacent (left) neighbor processor P,'s tasks:

Step 0: P, receives “known portions” from all other processors
Step 1: solve for unknowns X, , X,, ..., X;5 (refer to triangular region D, in Fig.
7.8). Then P, will perform tasks similar to steps 2-4 of processor P,

Tasks to be done by each of the remaining processors (say P,, P,...)

Step 0: P, (and also P, ...) will send its own “known portion” to processor P,
Step 1: Waiting for its turn to compute subsequent unknowns. Then P, (and also
P ,...) will perform tasks similar to steps 2-4 of processor P,

The above process is repeated until the final solution for x, is found. It should also
be noted here that each processor also holds a vector x of length n. At the end of the
backward elimination process, each processor only has its own portion of the solution
in a vector X. The system subroutine GDSUM is then used to effectively merge each
individual processor’s solution to obtain the final global solution (as shown in Figure
7.9).
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Pl
P2
P3
Pl
P2
P3
Pl

Figure 7.9 GDSUM is used to merge partial (processor) solution for final solution

The arithmetic operations in the forward elimination and in the backward
elimination phases are essentially the same. In the forward elimination phase, the
calculations are performed in parallel and the massages are passed by “fan-out”.
However, in the backward elimination phase, the calculations are mostly done in
sequential and the communications are completed by “fan-in”. Table 7.6 gives key ideas
of the algorithm for forward/backward elimination.

Table 7.6 Algorithms for forward/backward elimination

Forward elimination

Backward elimination

DO 100i=1,n,4
IF (“me” have the i* row) THEN

C ... For 1 processor
update y(i),y(i+1),y(i+2),y(i+3)
fan-out (or send to all)
y(),y(i+1),y(i+2),y(i+3)
partially update y(j)(for i+3 <j <n)

for processor “me”™’ portion only C..

to
ELSE

C ... For all other processors
receive y(i),y(i+1),y(i+2),y(i+3)

partially update y(j) (for i+3 <j<n) |C..

ENDIF

100 continue

DO200i=n,1,-4

C ... For 1 processor

200 continue

IF (“me” have the i column) THEN

update x(i),x(i-1),x(i-2),x(i-3)

send partially updated x(i-4),x(i-5),x(i-6)

x(i-7) to the next processor

partially update x(j) (for 1 <j <i-7)

ELSE

. For 1 processor (the adjacent processor
“me”)

if (“me” have the (i-4)™ column) then fan-

in (or receive) x(i-4),x(i-5),x(i-6),x(i-7)

else

. For all other processors

send information correspond to row (i-4),

(i-5), (i-6) and (i-7) to processor which

contains the (i-4)" column

ENDIF

ENDIF

7.3 Numerical Results and Discussions

Several numerical examples are run on the Intel iPSC/860 hypercube and on the
MEIKO (Ref 7.11) parallel computers with the presented equation solver. Some results
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are shown in Tables 7.7 through 7.10.

Table 7.7 Timings for solving 1000x1000 equations
on the Intel iPSC/860 (Lagrange machine)

Nodes 1 2 4 8 16 32 64 128
Deco. 1445 | 8.117 | 5.403 | 3.800 | 2.962 | 2.522 | 2.321 | 2.26
Forw. 0.231 | 0.156 | 0.123 | .0870 | .1086 | .1789 | .3243 | .640
Back. 0.122 | .0823 | .0569 | .0545 | .0539 | .0651 | .0829 | .108
Total 14.80 | 8.355 | 5.583 | 3.942 | 3.125 | 2.766 | 2.718 | 3.01

Note: Sequential-send scheme with vector-unrolling level 8.

Table 7.8 Comparison of equation solvers
(n = 16152, nbw = 328, using 32 nodes on Intel iPSC/860 Gamma)

Intel Pro-solver (SES) The present solver*
Decomposition: = 51.18 (sec) Decomposition: = 25.85 (sec)
Forward: =9 (sec) Forward: =0.8156 (sec)
Backward: =62 (sec) Backward: =0.9401 (sec)
Total: = 122.18 (sec) Total: =27.607 (sec)

* Sequential-send scheme with vector-unrolling level 8.

Two real structural problems are also solved by the proposed solver in order to
evaluate its performance. The first one is a hinged-cylinder model with 1808 degrees
of freedom (or n = 1808), average half bandwidth nbw = 200, and maximum half-
bandwidth maxbw = 300. It should be noted here that for this problem, the block-
skyline storage scheme only needs 254644 words of memory, which is about 70% of
that required by a row storage scheme. The second one is an aircraft structure [7.5, 7.6]
with n = 16148, nbw = 324, and maxbw=604. Numerical results for these 2 practical
models are shown in Tables 7.9-7.10. Table 7.10 gives the total timing for solving the
problem on 8, 16 and 32 nodes.

Table 7.9 Hinged-cylinder structure

When only one node is used, the required memory is 254644 < 1808*200.
Node(s) 1 2 4 8
Total Time (sec.) 3.225 2.482 2.806 3.045
Note: Double-send scheme with vector-unrolling level 4.
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Table 7.10 Gamma computer timing (sec) for aircraft structures

183

nodes
Task
8 16 32 32*
Decomposition 35.9 30.7 28.7 26.0
Forward elimination 1.6 1.4 1.4 0.8
Backward elimination 1.4 1.5 1.7 1.0
Total 38.9 33.6 31.8 27.8

Note: Sequential send scheme with vector-unrolling level 4(* = level 8).

A 2-D Truss Structure with Multiple Bays and Stories: In this example, a 750 bay
X 6 story (and a 1096 bay x 41 story) truss structure is shown in Figures 7.10. A
horizontal force F is applied at node 100. The former (750 bay x 6 story) has 18006
elements. The resulted structural stiffness matrix has 9016 degree-of-freedom (or
equations). The average bandwidth for this stiffness matrix is 1512.

The latter (1096 bay x 41 story) has 179785 elements. The resulted structural
stiffness matrix has 89960 degree-of-freedom (or equations). The average bandwidth
for this stiffness matrix is 2208.

In both the former and the latter, both the Intel Gamma Parallel Computer
(with 128 processors) and the Intel Delta Parallel Computer (with 512 processors) were
used to solve the resulted systems of simultaneous equations. It should be mentioned
here that the Delta parallel computer has more processors as well as more memory per
processor than the Gamma Computer. Due to the relatively large-size problems, at least
16 processors and 8 processors need to be used (for the 750 bay x 6 story structure) by
the Gamma and Delta computer, respectively.

At least 256 processors need to be used (for the 1096 bay x 41 story) by the
Delta computer.

The parallel-vector performance for the 750 bay x 6 story and the 1096 bay x
41 story are given in Tables 7.11 and 7.12, respectively.
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« 750 bays >
F

v o N e R

b stories

Figure 7.10 2-D truss structure

Table 7.11 Comparison of MPFEA finite element code on the Gamma and Delta
computers (750 bays, 6 stories, 18006 els., NEQ = 9016, Ave. BW = 1512)

8 16 32 64 128 256 512
Gamma fac. - 80.20 | 61.383 | 57.018 | 48.081 - -
forward - 0.8228 | 0.6241 | 0.7751 | 1.2786 - -
backward - 0.5411 | 0.5405 | 0.6015 | 0.7090 - -

Detta fac. 136.05 [ 75.69 | 54.85 | 46.89 | 40.85 39.04 39.40

forward 1.265 | 0.795 | 0.603 0.735 | 0.596 | 0.552 | 0.575

backward 0.616 | 0428 | 0356 | 0.468 | 0399 | 0.478 | 0.589
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Table 7.12 Parallel Performance of MPFEA on 256 processors
(1096 bays, 41 stories, 179785 els, NEQ=89960, Ave. BW=2208)

Task(s) CPU time Mflops
(seconds)
factorization 662.417 631.56
Forward elimination 4.9654 77.94
Backward elimination 3.1579 120.16
Others (overhead, etc.) 3.4624 -
Total 674.13 621.73

From the examples considered in the above sections, one can see that the
vector performance is more than doubled through the use of vector-unrolling and the
DDOT system subroutine. The communication performance is also improved by using
the so-called double-send and sequential-send schemes. The sequential-send scheme is
better than the double-send scheme when the number of processors increases. Further
improvement in the performance can be expected if the users are allowed to make
changes in the communication subroutines.

7.4 FORTRAN Call Statement to Subroutine Node

Based upon the parallel-vector algorithms discussed in the previous sections, a parallel
Fortran subroutine “Node” has been written for the Intel type computers (massively
parallel, distributed computers). The call statement to subroutine node, the meaning of
various arrays (or arguments) in the call statement, the dimension requirements for each
array and how to obtain various arguments in the subroutine are explained in the
following sections. All real arrays are declared in double precision.

Subroutine node (nodes, iam, n, nbw, imod, a, z, y, X, maxa, irow, icolg, tem, kflag)

nodes = number of processors

iam = my node id#

n = degree-of-freedom

nbw = maximum bandwidth (include diagonal)

imod =1 (for real problem)

a = stiffness matrix (dimension = nterms)

z = working array, z (nbw, 8)

y = load vector, y (n)

X = displacement vector, x (n)

maxa = diagonal locations, dimension > {[(”'1 + 1)/Nodes] +2} *8
*irow = i" row length( include diagonal), dimension > (n; +1)




186 Parallel-Vector Equation Solvers for Finite Element Engineering Applications

n-1 +1)
*Notes: (a)  All processors need to have these information

(b)  Only the information of row-lengths (and column heights) of the
last row (and last column) of each block is needed
tem = real array, dimension > nbw

*icolg = column height, dimension > (

Kfla _ | L, for factorization
g ELSE, for forward/backward

The above subroutine arguments can be better understood by referring to
Figure 7.11 and the following comments

ST 2 “extra™ columns/rows
NUNRQL =4 &é are added so that
NEQ = 16 = mutltiple of NUNROL
[X X® xoooe -
XX X eoeoe® X
(=4 Q) -14
XXoXXeoeoeeeee o R St ztros for
XXX X®XoXooe® unrolling purposes
[K]= XX XX X®oXooe
XXX X® X ooe®
XXXeXooe®
XXX XXeoe®
XX X X ®@®
v *X¥ee
-
SYM. X o®
1@
b 10'e )

Figure 7.11 Massively distributed storage scheme for equation solver

Comments on Figure 7.11: In Figure 7.11, the following data is assumed
(NEQ) actual = 14
NUNROL =4
NP (= No. of Processors) =2 = (processor 0 and 1)
Thus: NEQ = 16 (=multiple of NUNROL)

(a) column height : from diagonal upward (include diagonal term)

(b) row-length : include diagonal term.

(c) Since NUNROL = 4 is used in the equation (Intel) solver, each block (of 4)
columns must have same level high= Extra ZEROES (see symbols ® as shown in
Figure 7.11) need be added

(d) The last column height in each block (of 4) must be a multiple of NUNROL and
must be > NUNROL

(e) For the above example of [K], max NP = 4 (processors 0, 1, 2, 3), f NP > 4, then

we’ll have idle processors 1
2
. 1) (4
(f) We need GLOBAL column height — Icolh | - =Icoln| 3| ={§
NEQ-1 |, 4) 2
NUNROL
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where only global column height of the LAST column in each block (of 4 columns)
need be calculated
(g) We also need GLOBAL row-length information

1
2

IROWL| - - IROWL
[ NEQ-1 }ﬂ

ALIN—
1}
—N\ON

NUNROL

where only Global row-length of LAST row in each block (of 4 rows) need be
calculated.
(h) We also need LOCAL (for each Processor) MAXA information

1 1
2 y 2
3 4
= MAXA ‘5‘"'?'*4 171 For Processor 0

6 .16
7 22
8 29

! 1

2 6

Z 12

and MAXA | 3= %9, Jor processor 1

6 » 36

7 , 46

8 57

For the complete listing of the FORTRAN source codes, instructions in how to
incorporate this equation solver package into any existing application software (on any
specific computer platform), and/or the complete consulting service in conjunction with
this equation solver etc... the readers should contact:

Prof. Duc T. Nguyen

Director, Multidisciplinary Parallel-Vector Computation Center
Civil and Environmental Engineering Department

Old Dominion University

Room 135, Kaufman Building

Norfolk, VA 23529 (USA)

Tel = (757) 683-3761, Fax = (757) 683-5354

Email = dnguyen@odu.edu

7.5 Summary
The parallel-vector Choleski equation solver on distributed memory computers has been

described and tested on several applications. Parallel, vector and communication
strategies have also been discussed. Incore memory requirements and the number of
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operations are small since the skyline storage scheme is used. Furthermore, the entire
coefficient stiffness matrix is not resided in 1 processor. Rather, the entire coefficient
matrix is splited and distributed across all processors. Thus, as the number of processors
is increased, the incore memory requirement for each processor is decreased nearly in
proportion with the number of processors used. The vector speed is enhanced by the
vector unrolling technique. The parallel-vector performance of the proposed solver on
several applications seems to be quite good. Furthermore, it should be emphasized here
that the forward and backward solution of the present solver are quite effective, and
therefore this solver can be nicely incorporated into other applications, such as eigen-
values analysis, nonlinear analysis and structural optimization.

7.6 Exercises

7.1 Using the symmetrical coefficient (stiffness) matrix data shown in Figure 5.27 of
Chapter 5, assuming 3 processors are available (P,, P, and P,) and using unroll
level 4:

(a) Find global column height (ICOLH) information???
(b) Find global row - length (IROWL) information??
(c) Find local diagonal locations (MAXA) information
Hints: Read Section 7.4 of Chapter 7

7.2 In Fig. 7.1, one realizes that even though column-by-column fashion is used to
store the coefficient matrix, but row-by-row fashion is used to factorize the matrix.
What will be the problem(s) if we adopt the column-by-column factorization
strategies???

7.3 In the algorithm presented in Table 7.1, only the “key ideas” behind the index JJ
(of loop 400) are given and explained. Explain in greater details how the index JJ
changes??

7.4 Given the size of the coefficient (stiffness) matrix is N (say N = 10,000 equations),
the flop rate is FR (say FR = 10 MFLOPS per processor), the number of processors
is NP (say NP =4), and the communication rate is CR (say CR =0.1 Million Words
per second). Using the Choleski factorization algorithm, and assuming the
coefficient (stiffness) matrix is symmetrical and full.

(a) Estimate the “purely” computational time (assuming no communication)
(b) Estimatethe “purely” communication time (assuming communication time will
not overlap with computational time).
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8 Parallel-Vector

Unsymmetrical
Equation Solver

8.1 Introduction

Unsymmetric matrices are not uncommon in large-scale structural analysis. In panel
flutter analysis, for example, one has to deal with unsymmetric equations due to the
appearance of the unsymmetric aerodynamic influence matrix. When large deflections
and unsteady third-order piston theory aerodynamics are considered in the flutter
analysis, it is necessary to solve the unsymmetric equations incrementally and/or to
solve the unsymmetric generalized eigen-problems interactively. Thus, an efficient and
accurate unsymmetric equation solver plays an important role in structural analysis.

In this chapter, an efficient and accurate equation solver for unsymmetric
matrices is presented. The proposed method exploits both parallel and vector
capabilities provided by modern, high-performance supercomputers, such asthe CRAY
2 and CRAY Y-MP. With minor changes in the computer coding, the proposed
algorithms can also be implemented on distributed computers, such as the Intel Paragon,
the IBM-SP2 multi-processor computers.

In order to optimize the vector performance, a special storage scheme is used
to store the coefficient matrix A4 so that the loop-unrolling technique can be applied in
most of the calculations. A parallel FORTRAN language'®'! is adopted to develop a
parallel code in a multiple processing computer environment, such as the CRAY 2,
CRAY-J918, CRAY Y-MP and CRAY-C90.

8.2 Parallel-Vector Unsymmetrical Equation Solution Algorithms

8.2.1 Basic unsymmetric equation solver
Systems of unsymmetric linear equations can be represented as

Ax = b 8.1
One way to solve Eq. 8.1 is first to decompose A4 into the product of two triangular

matrices
A=LU 8.2)

191
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where U is an upper-triangular matrix and L is a lower-triangular matrix with unit
diagonal elements. For r from 1 to n, the " row elements of U and the ™ column
elements of L can be obtained by the following formulas:

r-1
U(r,i)=A(r,i)-Y. L(r,k) x U(k,i) (i=r,.,n) 8.3)
k=1

r-1
AGn -3 L(i,k)*U(k,r)J 3 8.4)
(1 =r+] ,...,n)
U(r,r)

L(i,r)=

Then the unknown vector x is determined by the forward/backward elimination, for
example, to solve

Ly =b (8.5)

for y, with
i-1

y(i) = b(i) - ,; L(ik)*y(k) (i=1,.,n) (8.6)
and to solve

Ux =y 8.7)
for x, with
- y(i) - k;l U(i,k) * x(k) Gemh) (8.8)

U(i,i)

Since the number of operations involved in the decomposition (or
factorization) is usually much more than that in the forward/backward elimination,
emphasis will be placed on developing an efficient parallel-vector algorithm for the
factorization. In the forward/backward elimination, however, it has been concluded in
Ref. [8.2] that it is more efficient to use one processor with long vectors rather than
introducing synchronization overhead on multiple processors.

In practice, both L and U can be stored in the same array previously used to
store 4. Moreover, do-loops in Eqgs. 8.3 and 8.4 need to be rearranged to adopt the loop-
unrolling technique, as the decomposition procedure can be simply described as:

— \

1 For/=1,2,3,....,n
: stepa. Find the I'" row of U.
: step b. Find the /" column of L. o
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8.2.2  Detailed derivations for the [L] and [U] matrices
In order to better understand the derived formula shown in Eqs. 8.3 and 8.4, let us try

to compute the factorized [L] and [U] matrices from the following given 3 x 3
unsymmetrical matrix [4], assuming to be a full matrix to simplify the discussion.

) 4 4y
(4] = |ay ay ay (8.9)
a3 Ay ds

The above unsymmetrical matrix 4 can be factorized as indicated in Eq. 8.2, or in the
long form

ay ap, ag 1] (1) 8 Uy Uy Y3
ay 9y 3| = | ; x 10wy, uy (8.10)
a3 Gy Az 5l 1 0 0 uy

The nine (9) unknowns, according to a special ordering u,, u,,, u,3; thenl,, I;;; then uy,,
u,5; then 1,,; and finally u,; from Eq. 8.10 can be found by simultaneously solving the
following system of equations

a, = Uy

a;, = Uy

;3 = U

ay = 521 Uy

a3 = i3 Uy ¢ 8.11)
ap = le U * Uy

a3 = 121 Uiy + Uy

a; = /31 Uy + Ly uy,

ayy = Ly + byuyy + uy,

Thus, from Eq. 8.11, one obtains

uyy = 4ap
Up = 4ap
U = dyy
L. = 21
21
up
a;,
b = , 8.12
Uy (8.12)
Uy = ay - bu,
Upy = Ay = Lyuy
_ 4y - (131 “12)
L, =
u
2
Uzy = d33 ~ (131 U+l “23)
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It can be seen clearly that the nine unknowns shown in Eq. 8.12 can also be obtained
by directly using Eqs. 8.3 and 8.4.
The ordering appeared in Eq. 8.12 suggests that the factorized matrices [L] and
[U] can be found in the following systematic pattern:
step 1: The 1* row of the upper triangular matrix [U] can be solved for the
solution of u,,, u,, and u,,
step 2: The 1* column of the lower triangular matrix [L] can be solved for the
solution of L,, and 1,
step 3: The 2™ row of [U] can be solved for the solution of u,, and u,;
step4: The 2™ column of [L] can be solved for the solution of 1,
step 5: The 3™ row of [U] can be solved for the solution of u,,

For the case » = 8 and i = 9, Eqgs. 8.3 and 8.4 become:

Ugg = Qg g ~ (ls,l Upgtlyth gt ..+, "‘7,9)
_ G55~ (19,1 Upgtly gt ¥l ”7,8) (8.13)
l =
9,8
Ug g

Observing Eq. 8.13, one can see that to factorize the term ug, of the upper triangular
matrix [U], one only need to know the factorized row 8 of [L] and column 9 of [U].

Similarly, to factorize the term 1, ; of the lower triangular matrix [L], only need
to know the factorized row 9 of [L] and column 8 of [U].

8.2.3  Basicalgorithms for decomposition of “full” bandwidths/column heights
unsymmetrical matrix

To exploit the vector capability provided by supercomputers!®), it is necessary to
arrange the data appropriately. To do this, matrix A4 is stored in a mixed row oriented
and column oriented fashion. This storage scheme allows the use of the loop-unrolling
technique in both steps a and b, described in section 8.2.1. Figure 8.1 shows how the
coefficient matrix A is stored in one-dimensional array. In Figure 8.1, P,, P,, P,. . .
represent processor numbers. The basic FORTRAN code corresponding to steps a and
b can be written as shown in Table 8.1.

Table 8.1 Basic algorithm for decomposition (full matrix)

for I=1,2,3,...,n

Do 1 K=11I1
Scalar = a(l, K)
c do loop2 is used to update (or factorize) the I" row of U due to the

contribution of the K™ row (refer to Eq.8.3)

Do2 J=1,n
a(l,J) =a(l,J) - scalar x a(K, J)
2 | Continue
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c do loop 3 is used to “partially” update the I column of L due to the
contribution of the K™ column (refer to the nominator of Eq.8.4)

Scalar = a(k, I)

Do3 Jl=1+1,n
a(Jl, 1) =a(Jl,I) - scalar * a(Jl, K)
3 | Continue
1 Continue
c do loop 4 is used to compute the “final” update of the I column of L

Dod Jl = I+1,n
a1, 1) =a(Jl, 1) A, 1)

Continue (for loop I)

[A] = [{frow 1}, frow2}, {row 3}, . ., frow n},
{column 1}, {column 2, .. .. {column n-1}]

o B~

PP P PP

Py R Ps Py PaPs Py By

Figure 8.1 Storage scheme for unsymmetrical matrix A in a one-dimensional array

In order to better understand the basic algorithm shown in Table 8.1 for
factorization of a full and unsymmetrical matrix, a 3 x 3 matrix [4] given in Eq. 8.9 of
Section 8.2.2 will be used to verify Table 8.1.

For i = 1, then (please refer to Table 8.1)
*loop 1 will be skipped
*from loop 4
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a(2, 1) = "g 1; =L, (refer to Eq. 8.12)
a(3,1) = aE? 1; = 1, (refer to Eq. 8.13)
*notice:

The first row of [U] (such as u,,, u,, and u,;) are not required to calculate, because
they are the same as the original matrix [A] (u,, =a,,, u, =a,and u;; =a,;)

For i =2, then
*from loop 2

a(2,2) =a(2,2) -a(2, 1)*a(1, 2) = u,, (refer to Eq. 8.12)
a(2,3)=a(2,3) -a(2, 1)xa(1, 3) = uy, (refer to Eq. 8.12)

+from loop 3 3
|

a(3,2) =a(3,2) -a(l,2) xa(3, 1) = partial solution for l,,
from loop 4

a(3,2) = a3,2) final solution for I, (refer to Eq. 8.14)

Fori=3, thea(2 2)

*from loop 2 (with K = 1) i
a(3,3) =a(3,3)-a(3,1) xa(l,3) = partial solution for u,, |

*loop 3 will be skipped |

*loop 4 will be skipped &

*from loop 2 (with K =2) i
a(3, 3)=a(3, 3)-a(3, 2)*a(2, 3) = final solution for u,; (refer to Eq817) ,

+loop 3 will be skipped

*loop 4 will be skipped

Comments on Table 8.1:

(a) The operations in the innermost loops 2 and 3 are “saxpy” operations (a vector +
a scalar * another vector), thus these operations can be done quite fast on vector
computers, such as Cray-YMP, Cray-C90, Intel Paragon, or IBM-SP2 computers.

(b) Inloop 2, the J* column of U keeps changing, thus it is important to store the upper
triangular matrix U according to a row-by-row fashion (see Figure 8.1). This will
assure to have a stride 1 in vector computation.
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(c) Inloop 3, the J1" row of L keeps changing, thus it is important to store the lower
triangular matrix L according to a column-by-column fashion (see Figure 8.1). This
will assure to have a stride 1 in vector computation.

(d) The “scalar” defined in Table 8.1 is also referred to as “multiplier”. In general, the
average upper bandwidth or UBM of [U] is different from the average lower
bandwidth or LBW of [L]. Factorizing the ' row of [U] and the '™ column of [L]
can be done much more efficiently by skipping some operations when the
multiplier is zero. Figures 8.2 and 8.3 show what information is truly needed to
factorize the I' row and the '™ column of the given unsymmetrical matrix [4].

; i
LBW ;
\ Di------ information required (plus 0C)

[ to factorize the Ith row

C 0 ~— Ith row (currently factorized)

information required (lplus 0oD)
to factorize the Ith column —|

]
'
I
|

f Ith column (currently factorized)

Figure 8.2 Unsymmetrical factorization (UBW > LBW, OD = OC)

usw

LBW
|_ information required (plus OF)

( to factorize Ith row
---- = Ith row (currently factorized)

information required (plus OF)
to factorize Ith column \

Tlih column (currently factorized)

Figure 8.3 Unsymmetrical factorization (UBW <LBW, OF = OE)
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8.2.4 Basic algorithm for decomposition of “variable” bandwidths/column
heights unsymmetrical matrix

For many practical engineering applications, the unsymmetrical matrix is not full.

Instead, the unsymmetrical matrix will have variable bandwidths and variable column

heights as shown in Figure 8.4

Ith column
_>l ~— length of Ith row

- - - ITOP = 4th row

length of Ith columé :{ : =~ Ithrow = 9th row

Figure 8.4 Unsymmetrical matrix with variable bandwidths/column heights

In this case, to avoid unnecessary operations with zero values, the algorithm given in
Table 8.1 needs to be modified slightly as shown in Table 8.2.

Table 8.2 Basic algorithm for decomposition
(variable bandwidths and column heights)

(ForI=1,2,3,...n)

c ITOP is the row number of the top-most nonzero element of the I" column
c ITOP also represents the column number of the left-most nonzero element of
the I'" row
DO1 K=ITOP,I-1
c do-loop 2 is used to update the I"™ row of U due to the contribution of the K™

a(l,J) =a(l,J) -a(l,K) x a(K, J)
CONTINUE !
c do-loop 3 is used to update the I'" column of L due to the contribution of the
K™ column i

row
{DO 2J =1, K + length of the K" row
2

a(J1,1) =a(Jl,I) -a(K,I) *x a(JI, K)
CONTINUE

1 Continue

{DO 3J1 =1+ 1, K + length of the K™ column
3
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DO 4 Jl =1 + 1,1 + length of the I"" column

a(Jl, 1) = a(Ji, I)
a(l, 1)
4 | CONTINUE

Continue (for loop I)

Comparing the algorithms shown in Table 8.2 and Table 8.1, these two algorithms are

quite similar, with the following key differences

(a) The starting value for the index K in loop 1 of Tables 8.1 and 8.2 are 1 and ITOP,
respectively. This change is necessary to include the effects of column height of
the I™ column of [U] and/or row length of the ™ row of [L]. If the matrix is
completely full, then ITOP = 1.

(b) The ending value for the index J in loop 2 of Table 8.1 and 8.2 are N and K +
length of K™ row, respectively. This change is necessary to include the effects of
having “variable bandwidths”. If the matrix is full, then K + length of K" row =
N.

(c) The ending value for the index J1 in loop 3 and loop 4 of Table 8.1 and 8.2 are
N and K + length of K™ column, or / + length of " column, respectively. This
change is necessary to include the effects of “variable column heights”. If the
matrix is full, then K + length of K column = N or / + length of /" column = N.

8.2.5  Algorithms for decomposition of “variable” bandwidths/column heights
unsymmetrical matrix with unrolling strategies

The basic vector version of Table 8.2, with small modifications to include loop-

unrolling level 6, is given in Table 8.3. It should be noted here that the compiler

directives®* are used to force the compiler to ignore potential vector dependencies in

trying to vectorize the loop.

Table 8.3 Vector algorithm for factorization

(Fori=1,2,3,...,n)
DO1K=ITOP,I-1,6
CDIRS IVDEP
DO 2 J =1, K + length of the K™ row
a(L,J) = a(L,J) - a(LK) * a(K + L)

+ -a(LK+2)*a(K+2J)-a(,K +3)*a(K +3,])
+ ~a(LK+4)*a(K +4,))-a(LK +5) * a(K + 5,))
2 Continue

CDIRS IVDEP
DO 3 J1 =1+ 1,K + length of the K™ column
a(J1,l) = a(J1,1) - a(K,D) * a(J1,K) * a(K + 1,1) * a(J1,K + 1)
+ ~a(K+2,)*a( LK +2)-a(K +3,) *aJ 1K +3)




200 Parallel-Vector Equation Solvers for Finite Element Engineering Applications

+ -a(K+4,D)*a(J1,K+4)-a(K+5]*a(J1,K+5)
3 Continue
1 Continue

DO 4 J1 =1+ 1,11+ length of the I column
a(J1,D =a(J1,I)/ a(LD)
4 Continue
Continue (for loop i)

From Table 8.2, one can clearly see that the previously factorized rows (please
refer to loop 1) are used to partially factorize the current I'" row (please refer to loop 2)
of the upper triangular matrix U. Thus, to improve the vector performance, one should
try to increase the work loads of the innermost loop 2. This can be done by unrolling the
outer loop 1. For example, a block of six, instead of just one, previously factorized rows
are used to partially factorize the current I row (please refer to Table 8.3).

Similarly, the previously factorized columns (please refer to loop 1) are used to
partially factorize the current I'" column (please refer to loop 3) of the lower triangular
matrix L. A block of six instead of just one previously factorized columns are used to
partially factorize the current I'™ column (please refer to inside loop 3 of Table 8.3).

Thus, Table 8.3 can be obtained by simply making the following minor
modifications to Table 8.2:

(a) The increment of loop 1 is changed from 1 to 6 (to consider a block of 6
rows/columns at a time)

(b) Expanding the FORTRAN statement inside loop 2 to include the effects of using
6 rows at a time to partially factorize the current I'" row of [U].

(c) Expanding the FORTRAN statement inside loop 3 to include the effects of using
6 columns at a time to partially factorize the current I' column of [L].

8.2.6  Parallel vector algorithms for factorization
Assume the NP processors are specified during the execution. In a sequential code
(Table 8.3), it is always known that before updating the I row and the ' column, the
previous (7 - 1)" row and (/ - 1) column, have already been updated. In the muitiple
processors environment, however, only the previous (/- NP)" row and (/ - NP)™ column
have been updated. Thus, the calculation of the contributions by rows and columns
(fromthe (/- NP + 1) to the (/ - 1)™) should be synchronized among the NP processors.
It should be noted here that the parallel strategy employed here is quite similar to the
one discussed in Chapter 5 for variable bandwidths symmetrical equation solvers.
The parallel FORTRAN language Force!®! is used in this work to develop a
parallel code on multi-processors computer CRAY 2 and CRAY Y-MP. In Force,
Presched DO allows all processors to execute the same statement simultaneously with
a different do-loop index assigned to each processor. Produce K = J assigns a value J
to K and makes K “full”. Copy K into L will store K into L only when K is “full” or else
the processor has to wait. The combined use of Produce and Copy can provide
communications among processors.
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Table 8.4 gives a parallel algorithm for the factorization phase on supercomputers
with multiple processors, such as CRAY 2 and CRAY Y-MP. By comparing Tables 8.2
through 8.4, it is helpful to identify the differences between the parallel and/or vector

algorithm codes and the corresponding sequential one.

Table 8.4 Parallel algorithm for decomposition

Presched DO 1001=1,n
DO 1 K=ITOP, I-NP, 6
CDIRS IVDEP
Do 2 J = 1,K + length of the K™ row
a(L) =a(L)) - a(LK) * a(K,J) - a(LK + 1) * a(K + 1))

+ -a(LK +2) * a(K +2,J) - a(LK + 3) * a(K + 3,J)
+ -a(LK +4) * a(K +4,J) - a(LK + 5) * a(K + 5,J)
2 CONTINUE

CDIRS IVDEP
DO 3 J1 =1+ {,K + length of the K column
a(1,l) =a(1,) - a(K,D) * a0 1,K) - a(K + 1,1) * aJ LK + 1)
+ -a(K+2,h)*a(JI,K+2)-a(K+3,))*a(J1,K +3)
+ -a(K+4,1) * a(J1,K +4) - a(K + 5,)) * a( 1,K + 5)
3 CONTINUE
CONTINUE
DO 10 K=I-NP + 1, I-1
Copy Asyn(K) into KK
DO 20 J =LK + length fo the K" row
a(L)) = a(L,)) - a(LK) * a(K,J)
120 CONTINUE
| DO 30 J1 =1+ 1,K + length of the K column
| a(1,l) = a(1,]) - a(K,) * a(J1,K)
130 CONTINUE
110 CONTINUE
DO 4 J1 =1+ 1,K + length of the I' column
| a(JL,)=a(J 1, /a(,D
‘4  CONTINUE
: Produce Asyn(I) = 1.0
1100 End Presched DO
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A careful comparison between Table 8.3, vector algorithm for factorization, and
Table 8.4, parallel-vector algorithm for factorization, suggests that the latter can be
obtained from the former with the following modifications:

(a) The outermost loop, for index 7, is executed in parallel, instead of sequential mode,
by using a “Presched” parallel Fortran statement

(b) Loop 1, forindex X, in Table 8.3 is separated into 2 loops, loops 1 and 10, in Table
8.4. In Table 8.3, the index K goes from “ITOP” to “I - 1". In Table 8.4, the index
K goes from “ITOP” to “I - NP”, see loop 1, and then, from “/- NP+ 1"to “J- 1"
(see loop 10).

(c) The “copy” parallel Fortran statement inside loop 10 of Table 8.4, will assure that
the previous K™ row have been completely factorized or else the processor will
wait, and can now be safely used to partially factorize the current /" row (see loop
20) and I column (see loops 30 and 4).

(d) The “Produce” parallel Fortran statement (after loop 4) is used to broadcast to all
other processors that the ' row/column have been completely factorized now.

It is important to recognize in here that parallel and vector factorization of the
upper triangular matrix [U] in this chapter (unsymmetrical solver) is “quite similar” to
the algorithms used in Chapter 5 (symmetrical, positive definite solver).

Furthermore, parallel and vector factorization of the lower triangular matrix [L] in
this chapter is similar to the “image” of the algorithms used in obtaining the upper
triangular matrix [{U].

8.2.7 Forward solution phase [L] {y} = {b}
To simplify the discussions, let us consider a 6 x 6 full-system as shown in the
following equation

1 o o o o]lp]| Io
Ly 1.0 0 0 0}}y, b,
Ly L, 1 0 0 Of]y b
3r =43¢ 8.14
Ly Ly Ly 10 01y, *b‘; @.14)
Ly Ly Lgg Ly, 10 Vs by
Lle L Lgy Lgy Lgs 1_ Lvs by
The forward solution for the unknown vector {y} can be proceeded as follows:
y=b
Yy = by - Lyy,
: (8.15)
-1

yr=b, - El Ly

since the lower triangular matrix has been generated and stored in a column-by-column
fashion (please see Figure 8.1), thus column 1 of [L] has stride 1. Furthermore, to
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improve the vector performance, one should try to work with a long vector in the
innermost do-loop. Thus, a good strategy is outlined in the following paragraphs:

step 1: Solve for the unknown y, (according to Eq. 8.15)

step2:  Use the first column of [L] and operate on the known scalar y, in order to
update the right-hand-side vector {b}. Thus, the unknown y, can be
found.

step 3: Use the second column of [L] and operate on the known scaler {}. Thus,
the unknown y, can be found.

step 4: Continue to do “similar” operations as mentioned in steps 2 and 3, until
all unknowns of vector {y} are found.

The above step-by-step procedure can be simply coded as shown in Table 8.5.

Table 8.5 Basic algorithm for forward solution

c solve for the first unknown (Note: Solution vector {y} will overwrite right-hand-
side vector {b} to save computer memory)

b(1) =b(1)
c Try to solve the subsequent unknowns
DO11=2,n,1
DO2J=Ln
c Use the previously known solution to update the right-hand-side vector {b}
b(J)=bJ)-LJ,I-1) *b(I-1)
Next solution is readily found
b(I) = b(I)
1 continue

It should be mentioned at this time that inside loop 2 of Table 8.5, one has “saxpy”
operations (a vector {b} + scalar b(J - 1) * another vector L), thus the innermost loop
2 can be executed very efficiently on the vector computers, such as the CRAY Y-MP,
CRAY-C90, etc..

However, a careful observation of the above 4-step procedure and the data
structure shown in Eq. 8.14 suggests that even better vector performance can be
achieved by suing the “loop-unrolling” technique, with a simple modification to Table
8.5

The key idea in “loop-unrolling” technique is to add a more heavy work load
(“saxpy” operations) into the innermost do-loop (see loop 2 of Table 8.5). A simple way
to achieve this objective is to use 2 or more columns instead of just ! column of matrix
[L] and operate on previously known 2 (instead of just 1) solutions. Thus, a loop-
unrolling algorithm for a forward solution can be shown in Table 8.6.
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Table 8.6 Loop-unrolling (level 2) for forward solution

Solve the first 2 unknowns
b(1) =b(1)

b(2) = b(2) - L(2,1) * b(1)
For subsequent unknowns
DO 11=3,n,
DO2J=Ln

b(J) = b(J) - L(J,I-1) * b(I-1)
-L(J,I-2) * b(I-2) i

CONTINUE |

Next 2 solutions can be found

b(I) = b(l)

b(I+ 1)=bI+1)-LA+1,1)*b()

continue ]

Comments on Table 8.6:

(@
(b)
(©

(d)

In actual computer implementation, loop-unrolling level 6 or 8 can be used, instead
of just using level 2 (see the increment 2 in loop 1 of Table 8.6).

For a general matrix with dimension #, the use of the loop-unrolling technique will
require “special” treatments for the “left-over” columns of the matrix L.

To simplify the discussions, the matrix system of equations shown in Eq. 8.14 is
assumed to be “full”. However, in actual computer implementation, variable
column-heights of the lower triangular matrix [L], and variable row-length or
bandwidth of the upper triangular matrix [U] can be accommodated to avoid
unnecessary operations (on the zeros).

In actual computer implementation, the lower and upper factorized matrices [L]
and [U] will be stored in a 1-D array and the original matrix, which is also stored
in a 1-D array, will be overwritten by [L] and [U] in order to save computer
memory.

8.2.8  Backward solution phase [U] {x} = {)}
To simplify the discussions, let us consider the following 6 x 6 full system of equations

Uy Up Uz Uy Ups ulJ X Y|
0 uy Uy Uy Uy Uy | |% be)
0 0 uyy uy s Uy x5 _ ﬁy” (8.16)
00 0wy uy | |x Va

0 0 0 0 wuy ugl| |xg Vs
0 0 0 0 0 wugl [x Ve

The backward solution for the unknown vector {x} can be proceeded as follows:
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Y
x6 D —
Ug 6
o = U5 T Hse¥e
5
Uss
(8.17)
N
Yr - E Ui kX
_ k=i+1
Xy

Yy - (“23x3 Uy Xyt UpsXs F u26x6)
U.

2,2
The operations involved in the above parenthesis are called “dot-product”
operations. It is the dot product between the 2 vectors

As an example, x, =

{”23’ Upg» Ups» “26} T x

Since the upper triangular matrix has been generated and stored in a row-by-row
fashion (please refer to Figure 8.1), thus, each row of [U] has stride 1. However, each
column of [U] has very undesirable stride (column stride of [U] is greater than 1). Due
to this reason, it is not efficient, in this case, to use loop-unrolling technique (for
example, having found the unknown xg, then using column 6 to operate on the scalar x
for the purpose of updating the right-hand vector {y}) as discussed in the previous
section. The backward solution (please refer to Eq. 8.17) can be coded using “dot-
product” operations, instead of “saxpy” operations as discussed in the forward solution
phase, as shown in Table 8.7.

Table 8.7 Basic algorithm for backward solution

c Solve the last unknown
x(N) =y(N) / U(N,N)
c For subsequent unknowns
DO1I=N-1,1,-1
c Performing the summation (or dot-product) operations in Eq. 8.17
DO2K=I+1,N
2 SUMI = SUM!1 + U(I,K) * x(K)
x(I) = y() - SUM1/U(LI)
1 continue
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It should be mentioned here that the dot-product operations inside loop 2 of Table
8.7 can be vectorized quite well, on vector computers, since the row vector of [U] has
stride 1 (recall that the matrix U is stored in a row-by-row fashion).

However, a careful observation of Eq. 8.17 and the storage scheme used for matrix
[U] shown in Eq. 8.16 suggests that an even better vector-performance can be achieved
by using the “vector-unrolling” technique, with simple modifications to Table 8.7.

The key idea in “vector-unrolling” technique is to add more work loads (dot-
product operations) into the innermost do-loop (see loop 2 of Table 8.7). A simple way
to achieve this objective is to use two (or more) rows, instead of just one row of matrix
[U] and operate on the previously known two (or more) rows, instead of just one row
of solutions. The results “vector-unrolling” (level 2 unrolling is assumed), algorithm for
backward solution is illustrated in Table 8.8.

Table 8.8 Vector-unrolling algorithm for backward solution

c Solve the last 2 (or more) unknowns
x(N) =y(N)/ U(N,N)
x(N-1) = y(N-1) - UN-1,N) * x(N) / UN-1,N-1)

c For subsequent unknowns
DO 11=N-2, 1,[-2]
c Performing 2 (or more) dot product operations in Eq. 8.17

DO2K=I+1,N

SUMI = SUM1 + U(I,K) * x(K)
2 SUM2 = SUM2 + U(I-1,K) * x(K)

x(I) = y(D) - SUM1 / U(LD)

x(I-1) = y(I-1) - SUM2 - U(I-1,I) * x(I) / U(I-1,I-1)
1 continue

8.3 Numerical Evaluations

The numerical performance of the proposed unsymmetrical solver is presented in this
section. Both “test” problems as well as practical engineering problems are considered.
To check the accuracy of the solution, a residual vector r is defined as

r=Ax - b (8.18)
where x is the solution of Eq. 8.1 by the proposed solver. The (machine dependent)
precision parameter E is defined as

1.0 + E> 1.0 (8.19)

which means E is the smallest positive number that satisfies Eq. 8.19.%4 In this work
the partial coefficient matrix 4 is automatically generated as
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a(ij) _1]_0 (for j > i)
a(ijy =22+ 0 (forj< i)
Jo Gi+))
a(i,i) =i (for 1 <i<n)
b(i)=1.0 (for 1 <i<n)
300
Fexctorizetion For ward/badoward solution
] Bolver in merth fibrory
200
T
L%
2 Bolver in merth librery
v d
100
Present solver
] Present solver
0 0.21
Solver

The solution is regarded as accurate as long as all the elements of the vector r

A = 1452 x 1452 full matrix
Figure 8.5 Different solvers on CONVEX C220

207

(8.20)

(8:21)

(8.22)

(8.23)

remain less than n * E, i.e. IH < n * E, where n is the largest absolute value of a(i, /).

Example 1:

*E.

In the example, matrix 4 and vector b are automatically generated with
n= 1452, NBWU = NBWL = n = 1452. The CPU time for solving this
equation on the CONVEX C220 computer is given in Fig. 8.5 and is
compared with the time given by the equation solver form the library
subroutines installed on the CONVEX C220. The machine precision
parameter E for the CONVEX C220 has a value of 2.22024605 x 10'°,
The computed residual norm is | |r||.. = 1.0 x 10°""%, which is less than n
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Example 2:

Example 3:
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In this example, 4 is automatically generated with » = 2000, and the
bandwidths on the CRAY Y-MP with 1, 2, 4 and 8 processors. The
results are presented in Fig. 8.6 (for the CRAY Y-MP, the precision
parameter is E = 7.105427357601 x 10°%).

I
212.5 Speed up = 7,486
MFLOPS Eficiency = 93.5Me
Netrix size = 2000

Hedf-benchwiclth = 383

4231
MFLOPS
] ol0./
MFLOPS 1587
MFLOPS
1 2 4 8

Number of processors
Figure 8.6 Factorization of A = LU on CRAY Y-MP

The non-linear (large deflection and non-linear aerodynamics) 3-D panel
flutter analysis (as shown in Fig. 8.7) by the finite element method
similar to the method proposed in Mei and Gray®®* for 2-D panels, is
used to evaluate the performance of the proposed parallel-vector
unsymmetric equation solver for engineering applications on super-
computers. The panel is modeled by (12 x 12) = 144 conforming
rectangular elements. There are six degrees-of-freedom per node for
each element. The element nodal dis-placements are: two in-plane
displacements u and v, the transverse deflection w and its derivatives w,,
w, and w,, at each node. Thus, there is a total of 24 degrees-of-freedom
per element. Due to the non-linear damping effects encountered in the
non-linear aerodynamics, the configuration solution space is transformed
to a state solution space. This, in effect, doubles to total number of active
degrees-of-freedom!®*). The final coefficient matrix A is a 1452 x 1452
unsymmetric matrix, with its upper half-band-width NBWU = 778 and
lower half-bandwidth NBWL = 727. 1t is required that during the flutter
analysis, the coefficient matrix 4 should be updated, decomposed and
the unknown vector should be found repeatedly. Numerical results are
obtained on the CRAY Y-MP, using 1, 2, 4, 6 and 8 processors in a non-
dedicated time and are shown in Figs. 8.8 and 8.9%¢. The elapsed time
for the same size problem on the CRAY 2 (Voyager using 1, 2 and 4
processors is also presented in Fig. 8.10
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Air flow

V = velodity
g=1/2p, vi. dynamic pressure
M = Mach number

/fPressure

Wh ;h, panel thickness
avity~, 4 X

panel length
Y

“1,W

Figure 8.7 Finite element panel flutter analysis

233.6
3 | MFLOPS n = 1452
| NBWU = 778
| NBWL = 727
g 3 464.2
5 » MFLOPS
O 2
J 915.4
] MFLOPS 1355.8 1778.7
] j MFLOPS p
| MFLOPS
0 ]
1 2 ! ¢ 8

Number of processors

Figure 8.8 Panel flutter analysis on CRAY Y-MP (CPU time for
factorization and forward/backward elimination)
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8
.
807

Ideal speedup
6

. 7929

Present speedup
&
2 ‘065
2
[77)
2

8996
0
(o] 2 4 6 8

Number of processors

Figure 8.9 Speedup for panel flutter analysis on Cray Y-MP

6 200.089
MFLOPS n=1452
5] NBWU =778
] NBWL=727
T H
N
g 393.700
= MFLOPS-
-
2
S 9 694.800
T MFLOPS
15

1 2
Number of processors

Figure 8.10 Elapsed time for factorization on the CRAY-2 (Voyager)

From the above numerical results it can be seen that the proposed equation solver is
efficient both in the vector and parallel computer environment and gives accurate results

to the machine precision.
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8.4 A Few Remarks on Pivoting Strategies

During the factorization phase for obtaining the lower triangular matrix [L] (see Egs.8.4
and 8.12), if the diagonal term U(r, r), shown in Eq. 8.4, is close to zero, then numerical
difficulties will occur. Pivoting strategies are, therefore, required in these cases. For the
unsymmetrical matrix, with it supper bandwidth UBW and its lower bandwidth LBW,
switching rows will, in the worst case, double the upper bandwidth and make the lower
bandwidth to become full. Considering Fig. 8.11, for example, if the factorized diagonal
term U, ; becomes zero, row number 5 can be switched to any row between rows
number 6 and 9 (since we would also like to make sure that after switching rows, none
of the diagonal terms are zero). Thus, the worst case will occur if row number 5 is
switched with row number 9, since the upper bandwidth UBW of row number 5 will be
increased from 4 (not including the diagonal term) to 8. Furthermore, when row number

5 is switched to row number 9, the lower bandwidth of column number 1 will be

increased from 5 to 8. At a later stage of the factorization process, the factorized

diagonal term of the “new” row number 4 may become zero, assuming that the “new”
row number 9 needs to be switched with row number 14, then the maximum upper
bandwidth UBW of the “new” row number 5 still remains to be 8. However, the
maximum lower bandwidth of column number 1 will become full!

Three more remarks are in order:

(a) when the rows of the (unsymmetrical) coefficient matrix [A4] are switched, the
corresponding rows of the right-hand-side vector {4} (see Eq. 8.1) need to be
switched also.

(b) when the rows of the (unsymmetrical) coefficient matrix [4] are switched, the row-
lengths and the diagonal pointer array MAXA(-) (please refer to Chapter 5) need
to be re-defined.

(c) when the rows are switched, the total number of non-zero terms (including fills-in
terms) upon completion of the factorized process can be predicted, and therefore
memory allocations can be assigned (based on the worse situations where UBW
can be doubled, and LBW can be full) even before performing the factorization
phase.
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UBW
<—>
1 X X XX
X 2 X XXX
LBW X X 3 XX X X
X X X 4X X XX
X XX X 8§ X XXX
X XX XX 6 XX XX
X XX XX7XXXX If these two rows are switched, then
X XXX xsxxxx UBW of row S will be increased
XX XXX9XXXX from 4 to 8. Thus UBW can be
x ;’;’; i’;’fli :,’: double, in the worst case.
X XX X X 12X X
X XX X X13Xx
X XX X X 14

(a) “Before” Switching rows # 5 and # 9

UBW
<>
A |1 X x xx
‘ X 2 X XX X
LBW X X3 XX XX
X X X 4X X XX
X X X9X XXX
X XXX X7XXXX
X XX X X 8XXXX
X XX XS§XXXX
X XX X X10X X X X
X XX X X 11X X X
X XX X X 12X X
X XX X X1 X
X XX X X 14

(b) “After” Switching rows # 5 and # 9
Figure 8.11 Effects of switching rows on UBW and LBW
8.5 A FORTRAN Call Statement to Subroutine UNSOLVER

Based upon the algorithms discussed in Tables 8.1 through 8.3 for solving a system of
unsymmetrical equations, a vectorized version of subroutine UNSOLVER has been
written for general users.

The subroutine’s arguments will be explained in the following paragraphs.

Subroutine UNSOLVER (A, N, NBWU, NBWL, ISEG, NROL, IROWLU, IROWLL,
$ TU, MAXU, MAXL, X, Y, B)

where:

A = A real, One-dimensional array (with the dimension N * N) to store the
unsymmetrical matrix, as explained in Fig. 8.1

N = Number of equations

NBWU = Maximum upper-bandwidth (including diagonal term) of the
unsymmetrical matrix

NBWL = Maximum Lower-bandwidth (excluding diagonal term) of the
unsymmetrical matrix
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ISEG

NROL

IROWLU

IROWLL

TU
MAXU

MAXL

X
vector
Y
B
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For a certain vector computer, such as the IBM-R600/590
Workstation, the vector performance increases with the vector length.
However, the vector performance decreases when the vector length
exceeds a certain threshold value, say 300, as an example. Thus, if the
upper and/or lower bandwidth is large, say NBWU = 700, NBWL =
800, then the user should input the value of, say 300, for ISEG. Thus,
in this example, the vector length of 700 or 800 will be broken into
segments 300 + 300 + 100 or 300 + 300 + 200.

16 (unrolling level number, with dimension N, to represent the row-
length, or the variable bandwidth)

an integer, one-dimensional array, for each row including the diagonal
term, of the upper-triangular matrix portion of the unsymmetrical
matrix [A]

an integer, one-dimensional array, with the dimension N, to represent
the column-height for each column, excluding the diagonal term, of
the lower-triangular matrix portion of the unsymmetrical matrix [A]
A real, one-dimensional working array, with the dimension 16 * N
An integer, one-dimensional array, with dimension N, to represent the
starting location for each row of the upper-triangular matrix portion of
the unsymmetrical matrix [A]

An integer, one-dimensional array, with dimension N, to represent the
starting location of reach column of the lower-triangular matrix
portion of the unsymmetrical matrix [A]

A real, one-dimensional array, with dimension N, to store the solution

A real, one-dimensional working array, with dimension N
A real, one-dimensional array, with dimension N, to store the right-
hand-side vector of a system of unsymmetrical equations.

Using the example shown in Figure 8.11(a), one has

N
NBWU
NBWL

14

= 5 (including diagonal term)

5 (including diagonal term)
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1 5 1 5
2 5 2 5
3 5 3 5
4 5 4 5
5 5 5 5
6 5 6 5
71 _ s 71 _ s
IROWLU | ¢ | = 131 IROWLL | ¢ | = {3}
9 5 9 5
10 5 10 4
11 4 11 3
12 3 12 2
13 2 13 1
14 1 14 0
1 1 1 I
2 6 2 6
3 11 3 11
4 16 4 16
5 21 5 21
6 26 6 26
7 31 7 3]
MAXU | ¢ | = {361 MAXL | ¢ _436>
9 41 9 41
10 46 10 46
11 51 1 50
12 55 12 53
13 58 13 55
14 60 14 55

8.6 Summary

A parallel-vector unsymmetric equation solver for supercomputers has been developed.
Both tested problems and practical engineering problems have been used to evaluate the
performance of the proposed solver in a parallel and vector computer environment.
Results obtained to date have indicated that the proposed solver is fast and accurate.
Finally, the developed solver has been demonstrated to interface with the existing finite
elements’ computer code with minimum effort and substantially improves the solution
performance of non-linear iterative methods.

8.7 Exercises

8.1 Given the following system of unsymmetrical equations
[4]{x} = {5}

where
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2 -1 0 0 1
|12 4 -1 0 1
[4] = o 2 4 - and {b} = 0
0 0 -3 8 5

(a) Using a hand calculator, find the [L] [U] factorization of {A]
(b) Find the forward solution {y} from [L] {y} = {b}
(c) Find the backward solution {x} from [U] {x} = {y}

8.2  Assuming the given matrix [A4] in problem 8.1 is full, and using the algorithm
shown in Table 8.1 as the basic building block, write the FORTRAN computer
program to perform the [L] [U] factorization. Also, verifying your FORTRAN
program by using the same matrix [4], given in Problem 8.1.

8.3  Modifying the FORTRAN computer program in Problem 8.2, so that the effects
of the upper-bandwidth (JUBW) and lower-bandwidth (/LBW) can be exploited.
Also, verifying your program by using the same matrix [4], given in Problem 8.1

8.4  Suppose the entire given, unsymmetrical matrix [4] is stored in a row-by-row
fashion, as shown in Figure P8.4

|

YYY

YYVYY

\

[A]=

YYVYVYY
YYYYY

Figure P8.4 Row-by-row storage scheme for an unsymmetrical matrix

For “stride 1” operations, will you have SAXPY or DOT-PRODUCT operations for
obtaining the

(a) Lower triangular matrix [L]?

(b) Upper-triangular matrix [U]?

(¢) Forward solution {y}?

(d) Backward solution {x}?

Please explain your reason(s) in great detail!

8.5 Re-solve problem 8.4, but assuming the entire given, unsymmetrical matrix [A4]
is stored in a column-by-column fashion, as shown in figure P8.5
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vVvy VL v v l v w;\J

Figure P8.5 Column-by-column storage scheme for an unsymmetrical matrix

Re-solve problem 8.4, but assuming the entire given, unsymmetrical matrix [A]
is stored as column-by-column fashion for the upper-triangular matrix [U] and
row-by-row fashion for the lower-triangular matrix [L].
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9 A Tridiagonal Solver for

Massively Parallel
Computers

9.1 Introduction

Efficient solution of large tridiagonal systems of linear equations is important in many
engineering applications®'*?, Many algorithms have been developed in the last two
decades for efficiently solving large tridiagonal systems on vector and/or parallel
computers (for a complete survey, see [9.3 - 9.5]). Among them, the cyclic reduction
method®® seems to be the most suitable one on vector computers®’*®. To optimize
the performance, Madsen and Rodrigue®® suggested to use the cyclic reduction
combined with the standard Gaussian elimination. Recently, Fabio®'" developed a
tridiagonal solver using parallel cyclic reduction along with recursive Gaussian
elimination, the maximum speedup is NP/4 (NP is the number of processors used).
Similar work can also be found in Plum!®'" and Hajj"®'?. It is interesting to note that
the maximum speedup in [9.12] is also bounded by NP/4.

For many engineering applications, we need to solve a large tridiagonal
systems with a lot of right-hand-side®'*? vectors, thus it is desirable to perform LU
factorization only once and followed by repeated forward/backward substitutions. In
this chapter, we develop an efficient tridiagonal solver for solving large systems of
equations on massively parallel (distributed) computers.

9.2 Basic Sequential Solution Procedures for Tridiagonal Equations

Consider a tridiagonal linear system of equations

bx,_\+ax +c;x,, =y, i=1,2,3,.,n 9.1

1

or in the matrix form

Tx -2

I
<

with

217
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a ¢
b, a, ¢,

9.3)

b, = ¢, = 0. The standard Gaussian elimination for solving these equations is to

decompose T into T = LU by

d, = a
Y, =b xd,
d"=(ai-7ici-1)_1f0"i=2,3,...,n
such that
1
Y, 1
L=l 7l
Y, 1
d’ ¢ 1
d' ¢,
U =
cn-l
d-!

Then defining Ux = z and solve Lz =y by

Z, =N

X))

9.5

(9.6)

9.7)

9.8)

9.9
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z;=y;-Y;z;_\ Jori=2,3,.,n (9.10)

and solve Ux = z by

x, =z, *d, 9.11)

x.=(z,.—c.x. )d,. fori=n-1,n-2,...,1 9.12)

i+l

If the upper triangular matrix [U], shown in Eq. 9.8, is defined as
(al G

0 6
U= T 9.13)

as

o =a;-c;_ *vY, ,for i=2,3,..n (9.16)

However, Egs. 9.9 and 9.10 for forward solution phase will remain to be unchanged.
Finally, Egs. 9.11 and 9.12 for backward solution phase will be changed into:

x"=

;" .17)
X, = — 9.18)

Remarks:
(1)  Factorization, forward and backward equations, as shown in Egs. 9.14 through
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9.16, Egs. 9.9 - 9.10, and 9.17 - 9.18, are recursive equations. Thus, these
computations are highly sequential in nature.

(2)  The total number of operations for factorization (see Eqs. 9.14 through 9.16),
forward substitution (see Egs. 9.9 and 9.10), and backward substitution (see Eqs.
9.17 and 9.18) are 3n, 2n, and 3n + 1, respectively. Thus, total number of
operations are approximately 8n operations.

The following simple example is used to clarify the above derived Eqs. 9.4 through 9.6,
9.9-9.10,9.11 and 9.12:

i
Given the following 3 x 3 tri-diagonal matrix and the right-hand-side vector j = {J,
Y3
a ¢ 0
T=1b a (9.19)
0 b, a
One can factorize the above 3 x 3 matrix [T] as
(7] =[L][U] (9:20)
or
-1
a, ¢, 0 1 0o0l|d ¢ O
by ay =12 1 Ol o 4 (9:21)
0 b3 a, 0 Y3 1 0 0 d3‘l

From Eq. 9.21, one can see that the five unknowns ( y,, v;,d |, d ,, and d ;) can be
obtained by simultaneously solving the following five equations:

a = d;’! or d, = a

b, = v, all'l or Y, = b,d,

a, = ,¢, + dy' or d, = (a2 -Y,¢ )" > 9.22)
by = v, ;" or Y, = byd,

a, = Y56, + dy' or L = (a3 -156,)" J

Eq. 9.22 can be readily identified as the same one given by Eqgs. 9.4 through 9.6.
The forward solution of [L] {z} = {y} can be written as

10 0] [ v,
1ot - §y 9.23)
0 v, 1] |z Vs



Duc T. Nguyen 221
From the 1%, 2™ then 3™ equation of Eq. 9.23, one obtains:

2 =0
22 = y2 - YZ Z] (9.24)
23 =¥V V3%,

It is obvious that Eq. 9.24 can also be obtained directly from Eqs. 9.9 and 9.10.

The backward solution of [U] {x} = {z} can be written as

1 1 4
0 d' ¢ | %) = iz (9.25)
0 0 d'| % Z3
From the 3%, 2™ then 1* equation of Eq. 9.25, one obtains
Xy = zyd,
x, = (22 -c, x3) d, (9.26)

X = (zl 'clxz) d,
Eq. 9.26 can also be obtained directly from Egs. 9.11 and 9.12.

In practice, the z and x vectors are all stored in the y vector and the y and d
vectors are stored in b and a vectors, respectively. Thus, the storage requirement for this
algorithm is only 4*n and the number of operations needed is 9*n (Note: only n
divisions are needed during the LU factorization, no divisions required for
forward/backward eliminations). This scheme is faster than the one in Ref. [9.1,
pp.115], even though only 8*n operations are needed there. Since all the above three
equations (Egs. 9.4 through 9.6,9.9-9.10 and 9.11 - 9.12) are recursive, this algorithm
usually can not be vectorized on most vector computers. That is why the cyclic
reduction algorithm has been widely used!® - °% 3 27-9:10.9.13],

9.3 Cyclic Reduction Algorithm

The key idea in the cyclic reduction algorithm is, through a sequence of row operations,
to transform the original tridiagonal system into smaller tridiagonal systems. In order
to better understand the details of the cyclic reduction algorithm, let us try to obtain the
solution for the following 8 x 8 tridiagonal system:



222 Parallel-Vector Equation Solvers for Finite Element Engineering Applications

2 -1 X 1
-1 2 -1 Xy 0
-1 2 -1 X, 0
-1 2 -1 .
425 s it 9:27)
-1 2 -1
-1 2 -1 | .

In the cyclic reduction algorithm, one can modify the "EVEN" row number of the
augmented matrix

f2 -1 0 0 0 0 0 0 |1
-1 2 -1 0 010
0 -1 2 -1 0 [0
0 -1 2 -1 010
0 -1 2 -1 0 0 (-28)
0 -1 2 -1 00
0 -1 2 -110
00 00 0 0 -1 110

by the following row operations

Step (a) Multiply the "ODD" row number by a factor 0.5, this factor can be
different for different tridiagonal systems, then the resulted odd row will
be added to the "EVEN" row BELOW it in order to create new even rows.

Step(b)  Multiply the "ODD" row number by a factor 0.5, then the resulted odd row
will be added to the EVEN row ABOVE it in order to create new even
rows.

Step (¢) Obtain the reduced tridiagonal system from Step (b). This can be seen
easily by extracting only EVEN rows/columns at the end of Step (b).

Step(d)  Go back to Step (a) until the reduced tridiagonal system has the dimension
Ix1.

Detailed implementations of the above 4-Step procedure is given in the following

sections.

Step (a)
0.5%* 2 1 0 0 0 0 0 0 i1
a2 1 o0 o o o o lo
0.5 0 -1 2 1 ©6 0 0 0 10
o 0o 1 2 1 0 o0 0 10
0.5* 0 0 0 -1 2 1 0 0 10
0 0 0 0 12 1 0 10
0.5* 0o 0 o0 0 o0 12 110
0 0 0 0 0 0 11 10
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20 10 0 0 0 0 0 0 1.0

0 15 -0 0 0 0 0 0.5

0.5% 0 10 20 -10 0 0 0 0

- 0 0.5 0 15 -1.0 0 0 0 0
0.5* 0 0 0 10 200 10 0 0 0

0 0 0 -05 0 15 -10 0 0

0.5* 0 0 0 0 0 210 20 -10 0

0 0 0 0 0 0.5 0 0.5 0

Notes: 1. Original tridiagonal system size is 2° = 8
2. Column #9 of the above matrix represents the right-hand-side vector {y} in

Eq. 9.2
Step (b)
2 1 0 0 0 0 o0 0 i1
0 1 0 05 0 0 0 0 105 05 1 -0 0 0 tos g,
0 -1 2 1 0 ©6 0 0 1O
0 05 0 1 0 05 0 o0 !o 05 1 -0 0o to
0 0 0 1 2 -1 0 0 {0 um
0 0 0 05 0 1 0 05140 05¢ 0 -0 10510y
0 0 0 0 0 -1 2 -1 1to
0 0 0 0 0 05 0 0510 0 0 0 0510y

Note: Reduced Tridiagonal System size is 2> = 4

Step (c)
] 05 0 0 0.5 1 -0.50 0 0 05
0 075 050 0 025 0 0.5 0 025 025
05* 0 0.5 1 -0.50 0 = -0.50 1 050 0
0 02 0 025 0 0 025 0 025 0
0.5 025 025 05% 05 -0.25 025y,
0 0125 | o125 -0.25 0.25 0 x,

Note: Reduced tridiagonal system size is 2' = 2

Step (d)
From the above reduced 2 x 2 system, one obtains

0.125 * x,=0.125
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Hence:
xg = 1 (9.29)

Note: Reduced tridiagonal system size is 2° = 1

Having obtained the solution for x,; from Eq. 9.29, we can substitute the value of x;
back into step (c) to obtain

x, =1 (9.30)

Then, substituting the solutions for x, and X, back into step (b) to obtain

x, =1 and xo =1 9.31)

Finally, substituting all “even” solutions (x,, X,, X;, and X,) back into step (a) to obtain
X, =Xy =% =x, =1 (9.32)

A general formula for cyclic reduction of systems Tx = y with a tridiagonal
matrix T can now be derived. Using the following elementary row operations:

-0y, * Row(2i-1) + Row(2i) - B,; * Row(2i+1)

with ay; = b,/a,,, and B,; = c,/a,,,. Then the modified tridiagonal system of equations
becomes:

“(byio 0y) * Xy + (@ =6y 105, byy By) Xy =650 By * X500

=YYy " By, Sor i=1,2,..., 24! (-33)

where b, =c,=0. In general, each step of a cyclic reduction reduces a (2**k) * (2**k)
system to one of size 2**(k-1) * 2 ** (k-1), and after k steps we obtain one equation for
the unknown.

As an example, for i = 1, then Eq. 9.33 becomes

=(byay)xy + (ay = ¢y 0, = by B,)x, ~ ¢y By Xy =y, 0y, - Byyy
where:
b c
uz = _2. , and BZ = _2
q, a,
Substituting the numerical values (using the data shown in Eq. 9.28) into Eq. 9.33, one
obtains

(1)x, - (05 x,) =05 (9.34)

For i =2, then Eq. 9.33 becomes
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~(byo ) x, +(ay—c30, = bsB)x, — 5 Byxg =y, — 4 y; ~Byys

where:
c
a4 = .._4_ , and B4 = _4
a, as
Using the data shown in Eq. 9.28, one obtains
-0.5x, + 1x, - 0.5x, = 0 9.35)

Similarly, for i = 4, then Eq. 9.33 becomes:
“[b 0] xg + [ag ~croq - by By I xg ~[cg By 1 Xy = Y5 ~ gy ~ Bgs

where:

c
asz_s_, and Bgz_s
a, a,
Substituting the numercial values (using the data shown in Eq. 9.28) into Eq. 9.33 one
obtains:
-1 -1
-[(-1)*(7) xs*| 1 ‘(‘1)(—5—) =(0)(Bg) |x3 = 0
-0.5x,+0.5x,=0 (9.36)

Eqgs. 9.34 through 9.36 are exactly the same as the numerical results presented in step

(b).

Some Remarks on Cyclic Reduction Algorithm:

Q)] The operations involved in steps a, b, ¢, and d of the cyclic reduction algorithm
are not recursive, they are essentially independent. Thus, better vector speed
can be expected in the cyclic reduction algorithm.

)] During the cyclic reduction steps, the stride (distance between two consecutive
numbers) becomes larger and larger. Also, the vector lengths become shorter
and shorter.

3) Total number of operations is approximately in the order of (17*n) operations
(see Homework Problem No. 9.2).

@) Memories are required to store, for example, 8 x 8, then 4 x 4, then 2 x 2, etc.
... reduced system of equations.

) Communications are needed whenever a row is updated by row(s) from other
processors.
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6) Special attentions are required for handling multiple right-hand-side vectors.

9.4 Parallel Tridiagonal Solver by Using Divided and Conquered Strategies

To facilitate the discussions in this section, a tridiagonal (coefficient) matrix [T}, with
n = 16 degree-of-freedom (dof) is shown in the following equations
1 2 3 4 6 8 10 12 14 16
a, c,
b, a, c,
by ay c,
b, a, ¢,
by ag c
bs ag ¢
b, a, ¢,
by ay ¢ 9.37)
by ay cq

10 by ay ¢y
11 by ay ¢
12 by, a, ¢y
13 b3 a3 ¢y
14 by, ay, ¢y
15 bis a5 ¢
16 b ay

(7] =

O 03O R W -

Assuming there are four processors (NP = 4) available, and processors P,, P,,
P, and P, store rows number 1 through 4, numbers 5 through 8, numbers 9 through 12,
and numbers 13 through 16, respectively.

The parallel algorithms to solve tridiagonal system of equations can be
conveniently described by the following step-by-step procedures:
Step 1(a):

Using elementary row operations to make the terms (b,, b,, b,), (bg, b, by), (b,
b,;, b;2) and (b,,, b,s, b)¢) become zeros (see Figure 9.1).

As an example, the terms b, through b, in Eq. 9.38 can be made to become
zeros by using the following elementary row operations (by processor P,):

"New" row 2 (with b, = 0) = "Old" pivot row 1 * (appropriate constant) +

"Old" row 2

"New" row 3 (with b; = 0) = "New" pivot row 2 * (appropriate constant) +
"Old" row 3

"New" row 4 (with b, = 0) = "New" pivot row 3 * (appropriate constant) +
"Old" row 4

Simultaneously, processor P, can be used to perform elementary row
operations to make the terms b,, through b, in Eq. 9.38 to become zeros:
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"New" row 14 (with b,, = 0) = "Old" pivot row 13 * (appropriate constant) +

"Old" row 14

“New" row 15 (with b,; = 0) = "New" pivot row 14 * (appropriate constant)
+ "Old" row 15

"New" row 16 (with b,, = 0) = "New" pivot row 15 * (appropriate constant)
+ "Old" row 16

It is important to recognize that during the process to make the terms by, b;; and b, to
become zeros, three extra fill-in terms (see symbol F in Figure 9.1) are created.

Remarks:

(1) The elementary row operations need to be applied to the right-hand-side vector
also. Thus, this algorithm is not efficient for multiple right-hand-side vectors.

(2) Inthis step, there are no communications among processors. Thus, 100% parallel
computation can be achieved in this step.

Step 1(b)
Using elementary row operations to make the terms (C;s, Cy4, €13); (€11, €105 Co)s
(¢, €, C5) and (c;, C,, ¢;) become zeros (see Figure 9.2).

Remarks:

(1-2)  Same remarks as have been mentioned in Step 1(a)

3) Extra fills-in (see symbols F in Figure 9.2) are created during this process
4) This step is quite similar to previous step 1(a).

Step 2:

Using elementary row operations to make the terms F, F,, F3, X,, X5, Fe, X5, X3,
F,, F,o, F,, and F, (see Figure 9.3) to become zeros (according to the given orders F,,
then F,, . ... F}y).

Remarks:

(1) Some communications among the processors are required. For example, to make
the term F, becomes zero (see Figure 9.3), one needs to perform the following
elementary row operations
"New" row 13 (with F, =0) = "Old" pivot row 12 * (appropriate constant) + "Old"
row 13
Thus communications between processor P; and P, are necessary, since row 12
belongs to processor P; and row 13 belongs to processor P,

(2) During the process to make F, term becomes zero, the extra fill-in term F |, is
created. However, this newly created extra fill-in term F, will also be made to zero
(by using elementary row operations) at the end of this step!

(3) Using "New" row 13 (with F, =0, and F, # 0) as pivot row, the terms F, (in row
12) and F, (in row 9) can also be made to zeros (through elementary row
operations).

(4) Then, using row 8 as a pivot row, the term x, (see Figure 9.3) can be made to zero.
As a consequence, the extra fill-in term F, is created. However, this newly created



228 Parallel-Vector Equation Solvers for Finite Element Engineering Applications

term F,, will be made to zero, at a later time in this step.
(5) At the end of this step, one will obtain the matrix as shown in Figure 9.4

Step 3:
Using elementary row operations to make the terms (F,, F,), (F,, Fy), (F., F;
F), (F, F), (F;, F) and (F, F,, F,) to become zeros (see Figure 9.4).

Remarks:

(1) Some communications among processors are required in this step. For example,
to make the terms F, and F, (which belong to processor P,) to become zeros, one
needs to use pivot row number 4 (which belongs to processor P;). Thus, some
communications between P, and P, are necessary.

(2) The "orders" of those terms to be driven to zeros can be different. For example,
the orders for the terms (F,, F), (F,, Fy) and (F,, F, F,) to be driven to zeros, can
be changed into (F, Fy, F)), (F, Fy) and (F,, F).

0‘%\ X Pl
N P
:‘ *0 Y X ’
XN XX
F O, N\ N P
AN\ ¢ 3
AN
N X
: 0 ) X| P‘ 2 0
Figure 9.1 Step 1(a) of pFaralleol Figure 9.2 Step 1(b) of f)arall%l
divide & conquer divide & conquer
N

Figure 9.3 Step 2 of parallel divide Figure 9.4 Step 3 of parallel divide
and conquer and conquer
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(3) Atthe end of this step, the matrix (shown in Figure 9.4) will become a diagonal
matrix.

9.5 Parallel Factorization Algorithm for Tridiagonal System of Equations
Using Separators

One way to do parallel computation for Eqs. 9.4 through 9.6, 9.9 through 9.12 is to
uncouple the tridiagonal matrix T into T, so that the operations in Egs. 9.4 through 9.6
are independent and can be done concurrently. We first define a separator as a diagonal
element of T, say a; (1 <i <n). The locations of the separators are determined so that
they are equally distributed in T. Assuming NP processors are available, we need NP-
1 separators to divide T into NP portions, so that each processor stores only one portion
(each portion has roughly (n-NP)/NP equations) plus the NP-1 separators. The T"
matrix can be obtained from T matrix simply through relocating the rows and columns
related to these NP-1 separators to the end of the matrix. In fact, for separator a, we
only have to relocate four elements, i.e., ¢, b, b, and ¢,,. For example, let NP =4 and
the NP-1 = 4 - 1 = 3 separators are located at i, j, and k, respectively. Then matrix T
can be obtained by moving the i-th row and column to the (n+1)-th row and column, the
j-th row and column to the (n+2)-th row and column, the k-the row and column to the
(n+3)-th row and column, respectively. After renumbering, T" will have the same size
as T, as shown in Figure 9.5 (only the upper portion of T" is shown here).

X [x
X |x|x
X|X 41
XiX |,.l|
XIx|x B 3
XIx =‘i-_"w
K{X |
= X|x|x ]

=
-
-
-

Figure 9.5 The uncoupled T* matrix

In Figure 9.5, F represents the fill-in elements in the LU factorization. The vectors
“low” (not shown in Figure 9.5) and “up” are used to store these fill-in elements in L
and U matrices, respectively. In practice, there is no need to renumber or to relocate the
T matrix, the T" matrix can be generated directly from the definitions. The LU
factorization of T" can be done in two steps:

a. LU factorization of the NP uncoupled portions can be done by the NP
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Step 1:

Step 2:

Step 3:
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processors concurrently without any communications. When NP > 1, the extra
work required is to find out the fill-in elements.

b.

When NP > 1, the LU factorization of the separators is done sequentially
with communications among the NP processors.

As for the forward elimination, there are also two steps:

a.

Forward elimination of the NP uncoupled portions can be done
concurrently by the NP processors without any communications. When
NP > 1, the extra work needed is to calculate the dot-product of the
solution vector z and the fill-in vector “low”.

When NP > 1, the solution portion corresponding to the separators can
be found with communications among the NP processors.

Similarly, the backward substitution involves the following steps:

a.

b.

When NP > 1, find the solution portion corresponding to the separators
first.

Backward substitution in the NP portions can be done concurrently
without any communications. When NP > 1, the extra work to be done
is the saxpy operations on the fill-in vector “up”.

In order to better understand the above parallel algorithm, let us considera 15
x 15 degree-of-freedom tridiagonal system as shown in Figure 9.6.

For parallel computational purposes, the coefficient tridiagonal matrix T
should be partitioned (to simplify the discussions, assuming two processors are used)
and factorized according to the following step-by-step procedure.

Introducing the extra (artificial) degree-of-freedom number 16 (for matrix
partitioning purposes) into the original tri-diagonal matrix T. The extra 16"
row and 16" column have zero values everywhere, except 1 at the diagonal
location (please refer to Figure 9.6)

Switching row (and column) No. 8 with row (and column) No. 16 (please
refer to Figure 9.7). Since there are 16 degree-of-freedom, and two
processors are available, the separator should be approximately at degree-of-
freedom No. 8.

Removing the “artificial” 8" row (and column). Thus, the final partitioned
matrix can be shown in Figure 9.8. It should be noted here that if the tri-
diagonal system is symmetric, then ¢, = b,, ¢, = b, ¢; = b, etc.....
Furthermore, there will be “fills-in” in the last column during the
factorization. These “fills-in” are denoted by the symbol “F” in Figure 9.8.
For a separator g, (at location i = 8, as shown in Figure 9.7), then according
to a more general case (as shown in Figure 9.5), ¢, (or ¢;) and b,,, (or b,)
terms need to be moved toward the end columns. These facts have been
confirmed in Figure 9.8
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a, ¢
b, a, c,
by a; c
by a, ¢,
bs as cs
bg ag c
b, a; ¢,
by ag cy
by a, ¢,
by ay ¢
by a, ¢y
b, a, ¢
by a3 ¢y
by ayy ¢y
bis ays
o 0 0000 OO O O O O0O 0 o0 o
Figure 9.6 Introducing extra degree-of-freedom # 16

a, c, 0
b, a, c, 0
by ay c, 0
b, a, c, 0
by ay c 0
b ag ¢ 0
b, a, 0 c,
01 0 0
0 ay c by
by ay ¢y 0
by ay ¢ 0
b, a;, ¢y 0
by a3 ¢y 0
by ay ¢y O
bys a5 0

0 0000GO0BO0Oc 0 0 0 0 0 0 g

0NN WnM A WN —

— 0000000000 OO O
Ptk e p—) sk e
AL — o 9

—
=)}

—_ —_——
O Pl —m o0V AN A W~

16

Figure 9.7 After switching row (and column) # 8 with row (and column) # 16
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Step 4:

Step 5:
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a ¢
b, a, ¢,
by a; ¢
b, a, ¢,
by ag cq
bg ag c

7 @ ¢y
dy Cg b,
by ayy ¢y F
b ay ¢y F
b, a, ¢y F
by a3 ¢y F
by ay ¢y F
bis a5 F
by ¢4 ag

Figure 9.8 After deleting row (and column) # 8

Assuming the tri-diagonal system is symmetrical (if it is not symmetrical,
then the reader should refer to Chapter 8 for an unsymmetrical equation
solver).

Based upon the pattern shown in Figure 9.8, and assuming two processors
are used [i.e. processor one will store the first seven rows (or columns),
and processor two will store the last eight rows (or columns)]. Then
parallel factorization can be done more effectively in a column-by-column
fashion (instead of row-by-row fashion).

In a column-by-column factorization strategy, even though column 7 has
not been completely factorized, columns 8, 9 through 14 can still be
proceeded independently for factorization. Only the last (or 15th) column
factorization requires information on the factorization of column 7.

On the other hand, if factorization is conducted in a row-by-row fashion,
then there will be more dependency on previous calculation and therefore,
less parallel speed-ups can be expected. Referring to Figure 9.8, one can
clearly see that processor 2 can not factorize row 8 (which contains the
non-zero values of a,, ¢y, and by) unless row 7 (which contains the non-zero
values of a, and c,) has been completely factorized by processor 1.

It should be emphasized at this time that factorization of columns 1 through
7 (by processor 1), and columns 8 through 14 (by processor 2) can be done
concurrently without any communication required. However, factorization
of the last (or 15") column by processor 2 will require some
communication, since the factorized column 7 (possessed by processor 1)



Duc T. Nguyen 233
is required.

Using the same 15 x 15 tridiagonal matrix (as shown in Figure 9.6) and
assuming three processors (or NP = 3) are used (hence 2, or NP-1 separators are
required), then each processor should have the following work loads

15 - (NP-1) _15-2
NP

= 4.333 rows (or columns) per processor.

Thus, the work load partitioning for each processor should be:

Processor 1: row (or columns) 1 through 4
Processor 2: row (or columns) 6 through 9
Processor 3: row (or columns) 11 through 15

Rows (or columns) 5 and 10 are used as processor separators and these diagonal values
are possessed by ALL processors.

The original 15 x 15 tridiagonal matrix can, therefore be partitioned as
shown in Figure 9.9, or Figure 9.10 if one introduces (then removes) these two extra
rows (and columns).

In actual computer implementation, there is no need to introduce (and then
remove) the extra rows/columns as shown in Figure 9.9. Instead, Figure 9.9 can be
directly and efficiently generated as shown in Figure 9.11. Assuming the tri-diagonal
system is symmetrical, then processors one, two and three can be used to independently
factorize columns 1 through 4, 5 through 8 and 9 through 13, respectively. Factorizing
the last two columns (column numbers 14 and 15) will require some communications
among processors.

In terms of storage assignments to different processors, processors one, two
and three will store rows 1 through 4, 5 through 8, and 9 through 13, respectively. The
two diagonal terms a,, and a, (see Figure 9.11) are stored by all processors. It should
be mentioned here again, that Figure 9.11 has the same pattern as shown in the general
Figure 9.5.
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a, c
b, a, c,
by ay c,
by a, 0 c,
01 0 0
0 a, c b
b, a, c F
by a; ¢ F
by a, 0 c, F
01 O 0 0
0 a, ¢, by, 0
b, a, ¢, F 0
by a; ¢y F 0
by ay ¢y F O
bs a5 F 0
by 0 ¢ a, F
by 0 c F a

Figure 9.9 Row 5 becomes last row (or row n = 17); row 10
becomes next to last row (or row n-1 = 16); total "fills-in" = 8

a ¢
b, a, ¢,
by ay ¢
b, a, 0 c,
010 0
0 a ¢ b
b, a, c, F
by a; ¢ F
by a, 0 F ¢
01 0 0 0
0 a,; ¢ 0 by,
b, a, ¢ 0 F
by a3 ¢ 0 F
by, ay ¢4 0 F
bs a5 0 F
byOcc FF FOO 0 0 0 0 a F
b, 0 ¢, F F F F F a

Figure 9.10 Row 5 becomes row n-1=16; row 10 becomes row n =17,
total "fills-in" = 8
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a, c
b, a, c,
by ay c,
b, a, 0 c,
0 a4 ¢ by
b, a, c, F
by ag ¢4 F
by a; 0 c, F
0 a, ¢ b, O
by, ay, ¢y F 0
by a3 ¢y F 0
by ay ¢, F 0
bis a5 F 0
bo ¢y F F F F ay F
by ¢ F F F F a

Figure 9.11 Directly partitioning (without introducing artificial rows 16 and 17)

For structural applications (tri-diagonal, or block tridiagonal matrices), since
the matrix is generally symmetric, one can minimize the amounts of "fills-in" by
adopting the following numbering scheme for the cantilever beam (shown in Figure
9.12)

1, 2—»K, K, <2, 1 Ky«—2, 1 K, €«—2, 1

Figure 9.12 Special numbering scheme to minimize “fill ins”

In Figure 9.12, assuming four processors are used, and processors P, P,, P,
and P, will store K,, K,, K, and K, interior nodes, respectively. The nodes B,, B, and
B, represent boundary nodes (nodes which belong to two or more processors). Using
the partitioning scheme discussed in the earlier sections, the partitioned matrix
corresponds to Figure 9.12 can be given as shown in Figure 9.13
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>
o)

K, X

!l X >4
\X ! F
K, X i
1 X
\X

K, X

Bl

B2

B3
Figure 9.13 Minimizing “fill-in” of symmetrical tri-diagonal
system by using proper node numbering system

9.6 Forward and Backward Solution Phases

To simplify the discussion, assuming we have a symmetrical tri-diagonal system. Thus,
in Figure 9.11, the upper tridiagonal matrix is merely an image of the lower tridiagonal
matrix. Furthermore, for the forward/backward solution phases, Figure 9.11 should be
used only for the purpose of identifying the locations of non-zeros and "fills-in".

9.6.1 Forward solution phase: [L] {z} = {y}

Considering Figure 9.11, with the assumption that all terms in the upper tridiagonal
portion are zero. It can be seen obviously that the unknowns z, through z,, z; through
zg and z, through z,, can be found concurrently by NP (=3) processors. There is no
communication required among processors for solving the first thirteen unknowns.
However, the last two unknowns in the forward solution phase does need
communications among processors. For example, to solve for the unknown z,,, one has

y14'(blozs+cloz9+leo+an +lezJ'lez)

Zy =

(9.38)

A0

In Eq. 9.38, 1;10 , Crp» @y > and F represent the non-zero values of the
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factorized tridiagonal matrix [T]. In actual computer implementation, only the upper
triangular portion of the matrix T is computed and stored (in a column-by-column
fashion). Thus, the operations shown in the parenthesis of Eq. 9.38 is basically
involved with the dot product of the two vectors

blo %8
€y Z
VEL . o)
F Z
F 212
F Z13

or, to be more precise (in actual computer implementation)

,C_g 2
bl-l zZ,
{ £ 12‘0‘
F Zn
F Z12
F 213

where again, the "over-bar" notations in the first vector symbolically represent the non-
zero values of [T] after factorization.

Similarly, the last unknown (z,;) to be solved during the forward solution phase
can be given as (please refer to Figure 9.11)
Yis '(5524 tegzg + Fzg +17z7 +Fzs)

215 =

(9.39)

as

Again, the operations shown in the parenthesis of Eq. 9.39 is involved with the
dot product of two vectors

b [
c 5 z 5
E[ " Vs
E| |7
F Zg

or, to be more precise (in actual computer implementation)

S 2
F i
F 4
F Zg8

where again, the "over-bar" notations in the first vector symbolically represent the non-
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zero values of [T] after factorization.

9.6.2 Backward solution phase: [U] {x} = {z}
Considering Figure 9.11, with the assumption that all terms in the lower triangular
portion are zero.

The last two unknowns (involved with the separators) can be solved first as
follows:

X5 = — (9.40)

where the "over-bar" notation appeared in the denominator of Eq. 9.40 symbolically
represents the non-zero value [U] after factorization.
Having solved for the unknown x,, the next unknown (x,,) can be computed as

_Zn
Xy = =2 (9.41)
A

However, in actual computer implementation, the new right-hand-side vector {z} will
be updated right after each unknown is solved. As an example, having solved for the
unknown x,; (according to Eq. 9.40), the right-hand-side vector {z} can be updated as
(please refer to Figure 9.11):

{z—}new = {Z}old X5 ) ( (9'42)

coocooTM TS Ilhiooco

The operations involved in Eq. 9.42 is called Saxpy (Summation of a{x}+{y})
operations and can be done very fast on vector computers (such as the Cray-YMP, or
Cray-C90 supercomputers).

Similarly, having solved for the unknown x,, (according to Eq. 9.41), the right-
hand-side vector can be updated again as (please refer to Figure 9.11):



Duc T. Nguyen 239

Sloocococococo

. (9.43)

1

Y

The remaining unknowns X,; through x,, x, through x, and x, through x, can be solved
independently (please refer to Figure 9.11) by NP (=3) processors without any
processor communications involved.

9.7 Comparisons between Different Algorithms

The price paid for the parallel algorithm is the increased number of operations and the
communications among the processors. First, 3*n extra operations are needed in the LU
factorization to compute the fill-in elements (see Homework Problem 9.3). Then 4*n
extra operations are needed for forward/backward substitutions (see Homework
Problem 9.4). The total operations counts is 16*n, compared with the 9*n operations
for the sequential Gaussian elimination. One may expect a maximum speed up of
(9/16)*NP when NP processors are used. However, higher speedup is possible since
some of the extra operations can be well vectorized, this can be seen in the following
paragraphs.

The implementation of the parallel algorithm in Sections 9.5 and 9.6 can be
done differently depending on the vector performance of the computers. For example,
the LU factorization within each portion can be done by standard Gaussian elimination
(Egs. 9.4 through 9.6) or by cyclic reduction. Since we intend to develop a tridiagonal
solver for multiple right-hand-side vectors, we focus on the performance of the forward
backward substitution rather than on the LU factorization. Even though the Eqgs. 9.9
through 9.12 are recursive, they can be executed at a rate of about S Mflops on an Intel
iPSC/860 processor using single precision. Any other method seems to double the
operation counts, so it needs a rate of 10 Mflops or higher to justify its use. Reference
[9.14] gives a formulation for forward elimination by cyclic reduction that needs 5*n
operations. Table 9.1 gives the performances of the Cyclic Reduction and the Gaussian
elimination on Cray Y-MP and Intel iPSC/860, respectively.
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Table 9.1 Cyclic reduction vs Gaussian elimination*

Computer Cyclic Reduction Gaussian Elimination
Cray Y-MP 8.309x 107 1.273 x 107
iPSC/860 2.499 x 10" 5.713x 107

* bidiagonal matrix with n = 131072

It can be seen from Table 9.1 that cyclic reduction is faster than the serial
Gaussian elimination on the Cray Y-MP, but not on the Intel iPSC/860. Thus, the
implementation of the parallel algorithm on the Intel iPSC/860 computers can be
described as (see Ref. 9.15):

1)  The LU factorization is done by Gaussian elimination (Eqs. 9.4 through

9.6). The LU factorization of the separators is done by processor Zero,
which receives necessary information from all the other processors, then
the factored separators are sent to all the other processors.

2) The forward elimination is done using Eqs. 9.9 and 9.10, and each
processor will find the solutions corresponding to the separators by
passing information to each other.

3) Since all the processors have the solutions corresponding to the
separators, the backward substitution can be done concurrently without
any communications.

This parallel algorithm®'®! requires 16*n operations and 5*NP

communications, in which 7*n operations and 3*NP communications are needed for
factorization.

9.8 Numerical Results

Two examples are shown in this section to demonstrate the efficiency of the present
tridiagonal solver. The timings for one processor are corresponding to 9*n operations.

Example 9.1:  The (unsymmetrical) tridiagonal systems to be solved have the
following coefficients:
a,=10,b,=2,¢,=1,f,=a,+b, +c, (i=1,2,3,...,n)
by =0,c,=0,
n = 38,400,000
so that the solutions willbe x,=1(1=1,2,3,...,n)

Table 9.2 gives the timings for solving this problem on NP processors. Since
NP = 128 processors are needed to solve this problem, the timings for NP < 128 are for
problem size of n = 300,000*NP, where 300,000 is the largest problem size which can
be solved by a single processor.
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Table 9.2 Timings for parallel solutions on Intel iPSC/860 (single precision)
Processors 1 2 4 8 16 32 64 128
Factorization .362 .509 510 Sl11 S12 515 5190 | 526
Forward 124 156 158 .158 .159 .160 .1629 | .170
Backward 216 216 216 217 217 218 2191 219

Example 9.2: This tridiagonal systems of linear equations come from the finite
element model of the one-dimensional truss, as shown in Figure 9.14. The solid dots,
shown in Figure 9.14, represent the elements which are used as the separators in the

solution. The structural parameters are:

E (Young Modulus) = 29,000 (k/in*), A(area)=4(in?), L (Length) =240 (in),

and the load y = 10 (kips) acting on the last element.

There are totally 150,000*NP (i.e. n = 150,000*NP) one-dimensional truss
elements. The resulted tridiagonal equations are symmetric but not diagonally

dominant:
a =L b -c--05a (i=2,3,4,..
(Ln)
by=c,=0,b,=a,,a =a,,¢c,=c¢c,,a, =05aq,
/

Lol ] Tl T Te ]

Figure 9.14 Finite element model

., n=-1)

—py=10F

Table 9.3 Presents the timings for solving this problem, using up to 128 processors.

Table 9.3 Timings for solving example 9.2 (using double precision)

Processors 1 2 4 8 16 32 64 128
Factorization 284 .366 .366 367 369 372 376 .387
Forward .082 108 .108 .109 .109 111 114 121
Backward 116 127 127 127 134 136 128 129

9.9 A FORTRAN Call Statement to Subroutine Tridiag

Assuming that the original tridiagonal equations has been partitioned for parallel
processing, the following FORTRAN subroutine will be called by each processor to

simultaneously complete the computation.
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Subroutine tridiag (iam, np, n, b, a, ¢, f, up, low, bond, bonu, bonl)

where:
iam

up, low

bond

bonu, bonl

I

[l

The identification number of each processor (0 < iam < np-1). This
is an input variable

The number of processors. This is an input variable.

The size of the partition in each processor. This number can be
different for different processors

Vectors (each has length n) to store the tridiagonal coefficient
matrix. These are input vectors

Vector of length n+(np-1) to store the right-hand-side vector. This
is an input vector

Vectors (each has length n) to store the upper (= up) and lower (=
low) parts of fills-in, respectively. The array low should be declared
as areal array. These are both input and output vectors

Vector of length (np-1) to store the diagonals of the separators.
This is an input vector

Vectors (each has length np-2) to store the upper (= bonu) and lower
(= bonl) parts of fills-in around the separators, respectively. These
are output variables. Referring to Figure 9.11, one should realize
that vectors bonu, bonl and the diagonal of the separators (= a,,, a;)
together will also have the tridiagonal form

As an example, the matrix data shown in Figure 9.11 will be used to prepare
for the subroutine tridiag.

For Processor P, (iam = 0, np = 3, n =4)

i location
b(i)
a(i)
c(i)
f(i)
up(i)

low(i)
bond(i)
bonu(i)
bonl(i)

1 2 3 4 5 6
b, b, b, b,

4 3
F (Output array)
F (Output array)
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For Processor P, (lam = 1,np=3,n=4)

i location
b(i)
a(i)
c(i)

up(i)
low(i)
bond(i)
bonu(i)
bonl(i)

1
by,

F

2

as

3 4 5 6

(Output array)
(Output array)

For Processor P, (iam=2,np=3,n=15)

i location
b(i)

a(i)

c(i)

up(i)
low(i)
bond(i)
bonu(i)
bonl(i)

1

2 3 4 5 6
b, bs by, by
a, a3 a, A5
C2 Cs3 Cy 0
0. 0 0. 0
0. 0 0. 0
a5
(Output array)
(Output array)
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For the complete listing of the FORTRAN source codes, instructions on how to
incorporate this equation solver package into any existing application software (on any
specific computer platform), and/or the complete consulting service in conjunction with
this equation solver etc..., the readers should contact:

Prof. Duc T. Nguyen

Director, Multidisciplinary Parallel-Vector Computation Center
Civil & Environmental Engineering Dept.

Old Dominion University

Room 135, Kaufman Building

Norfolk, VA 23529 (USA)

Tel= (757) 683-3761, Fax = (757) 683-5354
Email= dnguyen@odu.edu

9.10 Summary

A parallel tridiagonal solver has been developed for solving large systems of linear
equations on massively parallel computers. The FORTRAN implementation of this
solver on Intel iPSC/860 computers is presented. Comparing with the standard
sequential Gaussian elimination, this proposed parallel solver only requires 50% more
memory. More importantly, there is no need to rearrange the data, and this feature
makes the implementation easier on parallel computers. Even though the theoretical
maximum speedup for the proposed parallel solver is (9/16)*NP, the practical speedup
can be very close to NP since the extra operations can be executed much faster in a
vector computer environment. More careful optimization of the code, such as using the
4K cache available on Intel iPSC/860 processors properly, will further improve the
performance of the proposed solver.

9.11 Exercises

9.1 For [4],,.,{x},., = ],

where:

n = 12

a, = a, = a,, 10
c, = ¢ = ch = +1
b, = b, b, = -1
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{f}

11 a, c W
%8 b, a,

= {7 and [4] =
1'0 Y
L9 i by, ay

Using a hand calculator, performing parallel divide and conquer algorithm discussed in

the text to find the solution for {x}

Hint:

9.2

9.3

94

9.5

9.12
9.1
9.2

9.3
9.4

9.5
9.6

9.7

|
1

\IJ
Prove that the number of operations in the Cyclic Reduction algorithm is
approximately in the order of 17*n, where n is the size of the tridiagonal system

Prove that 3*n "extra" operations are needed in the LU factorization to compute
the fills-in elements (as shown in Figure 9.5)

Prove that 4*n "extra" operations are needed in the forward & backward
solution phases (as described in Section 9.6)

Using the data shown in Figure 9.8, and assuming two processors are available
(NP = 2). Prepare the necessary data for Subroutine TRIDIAG (as explained
in Section 9.9)
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10 Sparse Equation Solver with
Unrolling Strategies

10.1 Introduction

The solution of linear systems of equations on advanced parallel and/or vector
computers is an important area of ongoing research. The development of efficient
equation solvers is particularly important for static and dynamic (linear and non-linear)
structural analyses, sensitivity and structural optimization, control-structure interactions,
ground water flows, panel flutters, eigenvalue analysis etc.... [10.1-10.19]. Modern high-
performance computers (such as Cray-YMP, Cray-C90, Intel Paragon, IBM-SP2) have
both parallel and vector capability, thus algorithms that exploit parallel and/or vector
capabilities are the most desirable.

In the past years, a lot of efforts have been devoted in the developments of
efficient parallel and vector equation solvers on both shared and distributed memory
computers which exploit the skyline and/or variable bandwidth of the coefficient matrix.
On asingle node computer processor with vectorized capability, however, it is generally
safe to say that equation solvers which are based on sparse technologies are more
efficient than ones which are based on skyline and/or variable bandwidth storage
schemes [10.20-10.23]. Basic equation solution algorithms based on sparse technologies
have been well documented in the literatures [10.20-10.23]. Few, limited research
efforts have also been directed to the development of parallel sparse equation solvers
[10.24-10.25]. In this chapter, however, emphasis will be placed on the development
of efficient, fully vectorized sparse equation solver for single processor computers with
vectorized capability (such as the Cray-YMP, Cray-C90, Intel Paragon, IBM-SP2, IBM-
R6000/590 workstations, etc...).

Basic Choleski and LDLT algorithms are briefly reviewed in Section 10.2.
Different storage schemes for the coefficient matrix are presented in Section 10.3.
Popular reordering algorithms are mentioned in Section 10.4. Sparse symbolic
factorization is discussed in Section 10.5. Sparse numerical factorization and
forward/backward solution phases are explained in Sections 10.6 and 10.7, respectively.
Loop unrolling strategies to optimize the vector speed are introduced in Section 10.8.
Numerical evaluations of the developed software are demonstrated in Section 10.9
through practical finite element models, such as 23155 degree-of-freedom (dof) Exxon
Offshored Structure, 16146 dof High Speed Civil Transport (HSCT) aircraft, 55000 dof

247
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Solid Rocket Booster (SRB) of the space shuttle and 256000 dof of an automobile.
FORTRAN calls to sparse equation solver is explained in Section 10.10. Finally,
conclusions are drawn in Section 10.11.

10.2 Basic Equation Solution Algorithms

The key to reduce the computation time for structural analysis is to reduce the time to
solve the resulting linear system of equations. Using matrix notations, the linear system
of equations can be conveniently expressed as

(K] {z} = {n} (10.1)

For many engineering applications, the coefficient (stiffness) matrix [K] often has nice
properties, such as symmetry, positive definite and sparse. In Eq. (10.1), the vectors {z}
and {f} represent the unknown nodal displacement, and the known nodal load vectors,
respectively.

10.2.1. Choleski algorithm

On sequential computers, direct methods based on Choleski algorithm are both accurate
and fast in solving a wide range of structural analysis problems. These methods are sued
in most commercial finite element codes. Choleski-based methods have also been found
to be accurate and fast in solving structural analysis problems on parallel computers.
The unknown vector {z} can be found in three distinct steps:

First Step: Factorization Phase
In this step, the coefficient matrix [K] can be factorized as

(k] = [U])"[U] (10.2)
where [U] is an upper triangular matrix

Second Step: Forward Solution Phase
One can substitute Eq. (10.2 into Eq. (10.1) to obtain

(U] {»} = {£) (10.3)

where the intermediate unknown vector {y} can be readily identified as

Third Step: Backward Solution Phase
[Ul{z} = {»} (10.4)

Having obtained the solution for the unknown vector {y} from Eq. (10.3), the
original unknown vector {z} can be obtained by solving Eq. (10.4). For a single right-
hand-side vector {f}, 95% (or more) of the total equation solution time will be spent in
the first step. Thus, in this work, more emphasis will be placed on the development of
efficient factorization schemes, which can fully exploit the vector capability of modern
high-performance computers and workstations.

For a simple 3x3 symmetrical and positive definite stiffness matrix [K], Eq.
(10.1) can be represented as
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K, K, K; Uy 0 0 \luy uy,  ug
Ky Ky Ky|=|uy, uy 0110 uy uy (10.5)
31 n Ky Uy Uy Uy || 0 0 U3;

The unknown, factorized matrix [U] in Eq. (10.5) can be easily obtained by expressing
the equalities between the upper triangular matrix (on the left-hand-side) and its
corresponding terms on the right-hand-side of Eq. (10.5). For a general stiffness matrix
with dimensions nxn, the factorized matrix [U] can be obtained from [10.15, 10.26-
10.27]

U” =

i

for i>1 (1 0.6)

and
i-1

Ky - ; Ui Uy

*

Jor i,j>1 (10.7)

1
7 Uii
Using the above Egs. (10.6-10.7), and assuming the coefficient stiffness matrix is full
(to simplify the discussions), the information required to factorize a general i row can
be readily identified in Figure 10.1 (see the rectangular, cross-region right above the i
row of Figure 10.1).

[~ Information required to
factorize the i ® row

[A] = e

SYM. <

Figure 10.1 Information required to factorize the i row

10.2.2 LDLT algorithm

The Choleski (or UTU) factorization is efficient, however, its application is limited to
the case where the coefficient stiffness matrix [K] is symmetrical and positive definite.
With negligible additional computational efforts, the LDLT algorithm can be used for
broader applications (where the coefficient matrix can be either positive, or negative
definite). In this algorithm, the given matrix [K] in Eq. (10.1) can be factorized as

[K]=[L][D][L]" (10.8)
where [L] and [D] are lower triangular matrix (with unit values on the diagonal), and

diagonal matrix, respectively. For a simple 3x3 symmetrical stiffness matrix, Eq. (10.8)
can be explicitly expressed as
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Kll KIZ KIJ 1 0 0 Dl 0 0 1 Ll LJI
Ki Ko Kyl-|L 1 0o b, oflo f 1I,] @09
K:n Kzz 33 L31 L32 1 0 0 D3 0 0 1

The unknown L;; and D; can be easily obtained by expressing the equalities between the
upper triangular matrix (on the left-hand-side) and its corresponding terms on the right-
hand-side of Eq. (10.9). Since the LDLT algorithm will be used later on to develop
efficient, vectorized sparse algorithm, a pseudo-FORTRAN skeleton code is given in
Table 10.1 (assuming the original given matrix [K] is symmetrical and full).

Table 10.1 Skeleton FORTRAN code for LDLT
(assuming the matrix U is completely full)

1. c Assuming row 1 has been factorized earlier
2. DO1l1lI= 2,N
3. DO22K = 1,1-1
4. c Compute the multiplier (Note: U represents LT)
5. XMULT= U(K,I)
U(K,K)
6. DO33J= LN
7. U@LN=UJ)-XMULT*U(,]J)
8. 33 CONTINUE
9. U (K, ) =XMULT
10. 22 CONTINUE
11. 11 CONTINUE

As an example, implementation of the LDLT algorithm, shown in Table 10.1, for a
given, simple 3x3 stiffness matrix

[K] =

2 -1 0
-1 2 -1 (10.10)
0 -1 1

will lead to the following factorized matrix

=

[U] = (10.11)

Nlt.uM

w|.—-w|ti) (=}

From Eq. (10.11), one can obtain
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2 0 0
o 3 o
[D] = [ Diagonal of U] = 2 (10.12)
1
0o 0 =
3
and
I —% 0
r _ | Upper Triangular _
[L]" = Portion of U | ~ 1 _32 (10.13)
1

For a simple 3x3 example shown in Eq. (10.10), the LDL" algorithm presented
in Table 10.1 can also be explained as
(a) Row #2,.,, = Row #2, i,y - (xmult = u, ,/u, ;) * Row #1,,,
) Row #3,,, = Row #3 ... - (xmult] = u, ;/u, ;) * Row #1,,,
- (xmult2 = u,,/u,,) * Row #2__,

new

new

Using the data shown in Eq. (10.10), and following the LDL" algorithm given
in Table 10.1, one obtains:

2. For =2
3. K=1
5. xmult =u,/u,, =-1/2
6. J=2

SN
~

[

—_

N

1
| w

-1
Uy, = Uy, - (xmult) (“12) =2 - ( >
7. =3

1
Uyy = Uyy = (xmult)(u13> =-1- ( —5) (0) = -1
9. u,, = xmult =1/2
2. For =3
3 K=
5 xmult = B3 .0 0
uy, 2
6 J =
: Uyy = Uyy - (xmult =0) * (u]‘3 =0) =1
9. u;=0
3. K=2
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xmult:_gi =—_1 =__2
5 Uy, 3 3
2
6 J=3
7 Uyy = Uy, (xmult=——) (u23- 1) —%
9 Uy =xmult=_T2

Hence, upon exiting from Table 10.1, Eq. (10.11) will be obtained, and Eqs. (10.12-
10.13) can be readily identified, accordingly.

10.3 Storage Schemes for the Coefficient Stiffness Matrix

Successful implementation of a sparse equation solution algorithm depends rather
heavily on the reordering method used. While the Reversed Cuthill-Mckee (RCM), or
Gipspoole-Stockmyer (GS)... reordering algorithms can be used efficiently in
conjunction with skyline or variable bandwidth equation solution algorithms [10.22,
10.28-10.29], these reordering algorithms are not suitable for sparse equation solution
algorithms. Designing efficient sparse-reordering algorithms is a big task itself, and is
outside the scope of this chapter. For complete treatments on this subject, the readers
are strongly recommended to popular textbooks and articles in the literatures [10.22,
10.30-10.36]. In this section, it is assumed that the best available sparse-reordering
algorithm, such as Modified Minimum Degree (MMD), or Nested Dissection (ND)
[10.22], has already been applied to the original coefficient matrix [K]. To facilitate the
discussions in this section, assuming the resulted matrix [K] (after using MMD, or ND
algorithm) takes the following form

11. 0 0 1. 0 2.
4. 0 0 3. 0
_ 66 0 4. 0
(K] = 88, 5 0 (10.14)
SYM 110. 7.
112.

For the data shown in Eq. (10.14), it can be easily shown (by referring to Egs.
10.6-10.7, for example) that the factorized matrix [U] will have the following form:

x 0 0 x 0 «x
x 0 0 x 0
(U] = > 0 D (10.15)
X X
X

In Eq. (10.15), the symbols “x” and “F” represent the nonzero values after factorization.
However, the symbol “F” also refers to “Fills-in” effect, since the original value of [K]
at location F has zero entry.
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For the same data shown in Eq. (10.14), if “skyline” equation solution is
adopted, then the “fills-in” effect will take the following form:

x 0 0 «x 0 x

x 0 F x F

e x F x F
{Ks] - X X F
x X

x

On the other hand, if “variable-bandwidth” equation solution is adopted, then the “fills-
in” effect (on the data shown in Eq. 10.14) will have the following form:

x F F x F x

X F F x F

=1 _ x F x F
[Kf'] - x x F
x x

x

Thus, for the data shown in Eq. (10.14), the “sparse” equation solution is the
best (in the sense of minimizing the number of arithmetic operations, and the required
storage spaces in a sequential computer environment) and the “variable-bandwidth”
equation solution is the worst one!

For practical computer implementation, the original stiffness matrix data, such
as the one shown in Eq. (10.14), can be represented by the “sparse formats” as follows:

1 1
2 3
3 4
ISTARTROW = 4 =45 (10.16)
5 6
6 7
7=N+1 7
1 4
2 6
ICOLNUM = 3 - g (10.17)
5 5
6 = NCOEF 6
1 11.
2 44,
| 3 _ ] 66.
DIAG =| = 1 e (10.18)
5 110.
6 =N 112.
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1 1.
2 2.
3 3.
AK = 3 =1 (10.19)
5 5.
6 = NCOEF 7.

The following definitions are used in Eqgs. (10.16-10.19):

N = Size of the original stiffness matrix [K]

NCOEF = The number of non-zero, off-diagonal terms of the original
stiffness matrix [K]. Only the upper triangular portion of
[K] needs be considered.

ISTARTROW() = Starting location of the first nonzero, off-diagonal term for
the i row of [K]. The dimension for this integer array is
N+1

ICOLNUM() = Column numbers associated with each nonzero, off-
diagonal terms of [K] (in a row-by-row fashion). The
dimension for this integer array is NCOEF

DIAG(i) = Numerical values of the diagonal term of [K]. The
dimension for this real array is N

AK() = Numerical values of the nonzero, off-diagonal terms of [K]

(in arow-by-row fashion). The dimension for this real array
is NCOEF

10.4 Reordering Algorithms

The reordering algorithm(s) used in any equation solver should be compatible to (or
consistent with) the storage scheme and solution strategies used in the factorized,
forward and backward solution phases. For example, if skyline, or variable bandwidth
strategies are used, then either RCM, or GS reordering algorithms should be employed,
since these reordering algorithms will try to minimize the bandwidths and/or the column
heights of the factorized matrix [U]. These bandwidths and/or column heights
minimization will help to reduce both memory requirement and also the number of
arithmetic operations during the factorization phase. However, in sparse algorithms (for
factorization), the concerned issues are not in the column heights (or bandwidths).
Instead, efficient sparse factorization algorithms will require the number of “fills-in”
to be minimized, in order to reduce both memory requirements and the number of
arithmetic operations. Thus, it is quite likely to see that the “best” sparse reordering
algorithm will lead to the “worse” performance, if it is used in conjunction with either
skyline, or variable bandwidth strategies!

In this work, since fully vectorized sparse algorithms will be developed, either
MMD or ND reordering algorithms [10.22] can be appropriately used.
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10.5 Sparse Symbolic Factorization

The purpose of symbolic factorization is to find the locations of all nonzero (including
“fills-in” terms), off-diagonal terms of the factorized matrix [U] (which has NOT been
done yet!). Thus, one of the major goals in this phase is to predict the required computer
memory for subsequent numerical factorization. The outputs from this symbolic
factorization phase will be stored in the following 2 integer arrays (assuming the
stiffness matrix data shown in Eq. 10.14 is used):

1 1
2 3
3 4
JSTARTROW 4 = 45 (10.20)
5 7
6 8
T=N+1 8
1 4
2 6
3 5
JCOLNUM 4 = {5 (10.21)
5 5
6 6
7=NCOEF2 6

The following “new” deﬁnltlons are used in Eqgs. (10.20-10.21):

NCOEF2 = Thenumber of nonzero, off-diagonal terms of the factorized
matrix [U]

JSTARTROW(i) = Starting location of the first nonzero, off-diagonal term for
the i row of the factorized matrix [U]. The dimension for
this integer array is N+1

JCOLNUM() = Column numbers associated with each nonzero, off-

diagonal terms of [U] (in a row-by-row fashion). The
dimension for this integer array is NCOEF2. Due to “fills-
in” effects, NCOEF2 > > NCOEF.
As a rule of thumb for most engineering problems, the ratio of NCOEF2/NCOEF will
be likely in the range between 7 and 20.
The key steps involved during the symbolic phase will be described in the
following paragraphs:
Step 1: Consider each i" row (of the original stiffness matrix [K])
Step 2: Record the locations (such as column numbers) of the original non-zero,
off-diagonal terms
Step 3: Record the locations of the “fills-in” terms due to the contributions of some
(not all) appropriated, previous rows j (where 1 < j< i-1). Also, consider
if current i™ row will have any immediate contribution to a “future” row
Step 4: Return to Step 1 for next row
A simple, but highly inefficient way to accomplish Step 3 ( of the symbolic
phase) will be identifying the nonzero terms associated with the i* column. For
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example, there will be no “fills-in” terms on row 3 (using the data shown in Eq. 10.14)
due to “no contributions” of the previous rows 1 and 2. This fact can be easily realized
by observing that the associated 3™ column of [K] (shown in Eq. 10.14) has no nonzero
terms (and also by symbolically referring to Egs. 10.6-10.7!)
On the other hand, if one considers row 4 in the symbolic phase, then the
associated 4™ column will have 1 nonzero term (on row 1). Thus, only row 1 (but not
rows 2 and 3) may have “fills-in” contribution to row 4. Furthermore, since K, ¢ is
nonzero (=2.), it immediately implies that there will be a “fills-in” terms at location U, 4
of row 4.
A much more efficient way to accomplish step 3 of the symbolic phase is by
creating 2 additional integer arrays, as defined in the following paragraphs
ICHAINL() = Chained list for the i row. This array will be efficiently
created to identify which previous rows will have
contributions to current i row. The dimension for this
integer, temporary array is N

LOCUPDATEC() = Updated starting location of the i row.

Using the data shown in Eq. (10.14), uses of the above 2 arrays in the symbolic
phase can be described by the following step-by-step procedure:

Step 0: Initialize arrays ICHAINL (1, 2, ..N)= {0} and LOCUPDATE (1, 2, .., N)
= {0}

Step1: Consider rowi=1

Step2:  Realize that the original nonzero terms occur in columns 4 and 6

Step 3:  Since the chained list ICHAINL(i=1) = 0, no other previous rows will have
any contributions to row 1

ICHAINL (4) = 1 (10.22)
ICHAINL (1) = 1 (10.23)
LOCUPDATE (i=1) = 1 (10.24)

Egs. (10.22-10.23) indicate that “future” row i=4 will have to refer to row 1, and row
1 will refer to itself. Eq. (10.24) states that the updated starting location for row 1 is 1.
Step 1: Consider row i =2

Step 2: Realizing the original nonzero term(s) only occurs in column 5

Step 3: Since ICHAINL(i=2) = 0, no other rows will have any contributions to

row 2
ICHAINL (5) = 2 (10.25)
ICHAINL (2) =2 (10.26)
LOCUPDATE (i=2) =3 (10.27)

Eqs. (10.25-10.26) indicate that “future” row i = 5 will have to refer to row 2, and row
2 will refer to itself. Eq. (10.27) states that the updated starting location for row 2 is 3.
Step 1: Consider row i=3

Step 2: The original nonzero term(s) occurs in column 5
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Step 3: Since ICHAINL (i=3) = 0, no previous rows will have any contributions
to row 3.

The chained list for “future” row i = 5 will have to be updated in order to include row

3 into its list.

ICHAINL(3) = 2 (10.28)
ICHAINL(2) = 3 (10.29)
LOCUPDATE (i=3) = 4 (10.30)

Thus, Egs. (10.25, 10.29, 10.28) state that “future” row i = 5 will have to refer to rows

2, row 2 will refer to row 3, and row 3 will refer to row 2. Eq. (10.30) indicates that the

updated starting location for row 3 is 4.

Step 1: Consider rowi=4

Step 2:  The original nonzero term(s) occurs in column 5

Step 3:  Since ICHAINL (i = 4) = 1, and ICHAINL (1) = 1 (please refer to Eq.
10.22), it implies row 4 will have contributions from row 1 only. The
updated starting location of row 1 now will be increased by one, thus

LOCUPDATE (1) = LOCUPDATE (1) + 1 (10.31)

Hence,
LOCUPDATE (1) = 1+ 1=2 (please refer to Eq. 10.24)  (10.32)

Since the updated location of nonzero term in row 1 is now at location 2 (see
Eq. 10.32), the column number associated with this nonzero term is column #6 (please
refer to Eq. 10.17). Thus, it is obvious to see that there must be a “fills-in” term in
column #6 of (current) row #4. Also, since K, ; =2 (or nonzero), it implies “future” row
i=6 will have to refer to row 1.

Furthermore, since the first nonzero term of row 4 occurs in column 35, it
implies that “future” row 5 will also have to refer to row 4 (in addition to refer to rows
2 and 3). The chained list for “future” row 5, therefore, has to be slightly updated (so
that row 4 will be included on the list) as follows:

ICHAINL(4) = 3 (10.33)
ICHAINL (2) = 4 (10.34)
LOCUPDATE(i=4) = 5 (10.35)

Notice that Eq. (10.34) will override Eq. (10.29). Thus, Egs. (10.25, 10.34, 10.33)
clearly show that symbolically factorizing “future” row i = 5 will have to refer to rows
2, then 4 and then 3, respectively.
Step 1: Considerrowi=35
Step 2: The original nonzero term(s) occurs in column 6
Step 3:  Since

ICHAINL (i=5) =2 (10.25, repeated)
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ICHAINL (2) = 4 (10.34, repeated)

ICHAINL (4) = 3 (10.33, repeated)

It implies rows #2 , then 4 and then 3 “may” have contributions (or “fills-in”
effects) onrow 5. However, since K , is originally a nonzero term, therefore,
rows 2, 4, and 3 will NOT have any “fills-in” effects on row 5

Step 1: There is no need to consider the last row i = N = 6, since there will be no
“fills-in” effects on the last row! It is extremely important to emphasize that
upon completion of the symbolic phase, the output array JCOLNUM(-) has
to be re-arranged to make sure that the column numbers in each row should
be in the increasing orders!

In this particular example (see data shown in Eq. 10.14), there is one fill-in
taken place in row 4. However, there is no need to perform the “ordering” operations
in this case, because the column numbers are already in the ascending order. This
observation can be verified easily by referring to Eq. 10.15 . The original non-zero term
of row 4 occurs in column 5 and the non-zero term (due to “fills-in”) of row 4 occurs
in column 6.

Thus, these column numbers are already in the ascending order!

In a general situation, however, “ordering” operations may be required as can
be shown in Eq. (10.36).

SRR
column 99 é,\“‘fasfe““a:@‘\
o
X - - XX - -X - - - - Xrow 31
- - - FX-XX---- XHrow 32
FX-F--Xx
¥ (10.36)

[K]=

X F X ~<<— Ith row = 98th row

During the sym4bolic factorization phase, assuming that only rows 31, 32 and
40 have their contributions to the current 98" row (as shown in Eq. 10.36 ). In this case,
the original non-zero terms of row #98 occurs in columns 99, 120 and 127. However,
the 2 “fills-in” terms occur in columns 122 and then 121 (assuming current row #98 will
get the contributions from rows #32, 40, 31, respectively). Thus, the “ordering”
operations are required in this case as shown in Eq., 10.36 (since column numbers 99,
120, 127, 122 and 121 are NOT in the ascending order yet!)



Duc T. Nguyen 259

In subsequent paragraphs, more detailed discussions (including computer
codings) about symbolic factorization will be presented. To facilitate the discussions,
a specific stiffness matrix data is shown in Eq. (10.37)

x X x x
x x
x x
K = x x F F (10.37)
X X F
x F
x

For this simple example, the “fills-in” effects (refer to symbols F) can be easily
identified as shown in Eq. (10.37).

The symbolic codes (refer to Table 10.2) together with its explanations are
described in the following paragraphs.

Table 10.2 FORTRAN listing of symbolic codes

integer isr(9),icn(9),jsr(9),jcn(66),ichain(9) 001
read(5,*) n,ncoef ! 002
ncoef2=10*ncoef ! 003
read(5,*) (isr(i),i=1,n+1) ! 004
read(5,*) (icn(i),i=1,ncoef) ! 005
write(6,*) 'n,ncoef=",n,ncoef ! 006
write(6,*) 'isr(-)=",(isr(i),i=1,n+1) 007
write(6,*) 'icn(-)=",(icn(i),i=1,ncoef) ! 008

call symfact(n,isr,icn,jsr,jcn,ichain,ncoef,ncoef2) ! 009
stop ! 010

end ! 011
C********************************************************* ’ 012
subroutine symfact(n,isr,icn,jsr,jcn,ichain,ncoef,ncoef2) ! 013
integer isr(1),icn(1),jsr(1),jen(1),ichain(1) ! 014
C......Purposes: Symbolic factorization ! 015
C  input:isr, icn structure of given matrix A in RR(U)U .! 016
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n order of matrix A and of matrix U. !
output:  jsr,jen structure of resulting matrix U in RR(U)U. !
working space: ichain of dimension N. Chained lists of rows !
associated with each column. !
The array jsr is also used as the multiple !
switch array. !

oEoNoNoNoNeNe]

C...This subroutine & all other subroutines in this file, EXCEPT numfa8, !
C....has been verified by Duc T. Nguyen on March 9'96. Using !

C..... the following .3 simultaneous equations: !

C.... 2-10 x1 1!

C...-1 2-1 x2 0!

C.... 0-t1 x3 0!

nmi=N-1 !
npl=N+1 !
DO 18 I=I,N !
jsr(D=0 !

18 ichain(I)=0 !
iount=1 !
DO 21 I=l,nml !
write(6,*)'I=",i !
isrtem=icount !
write(6,*) 'isrtem=",isrtem !
jexceed=N+icount-I !
write(6,*) jexceed=",jexceed !
MIN=npl !
write(6,*) MIN="min !
isra=isr(I) !
write(6,*) 'isra=",isra !
isrb=isr(I+1)-1 !
write(6,*) 'isrb=",isrb !
IF(isrb.LT.isra)GO TO 30 !
DO 25 J=isra,isrb !
write(6,*) 'J=",j !
jeoln=icn(J) !
write(6,*) 'jcoln=",jcoln !
jen(icount)=jcoin !
write(6,*) 'jen(,icount,")="jen(icount) !
icount=icount+1 !
write(6,*) 'icount=",icount !

IF(jcoln.LT.MIN) then !
min=jcoln !

write(6,*) 'MIN="min !
endif !

017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054
055
056
057
058
059
060
061
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Jsr(jcoln)=1!
write(6,*) 'jsr(‘jjcoln,’)= 'jsr(jcoln) !

25 continue !

30 LAST=ichain(I) !
write(6,*) 'LAST=",last !
IF(LAST.EQ.0)GO TO 66 !
L=LAST !
write(6,*) 'L=",1 !

79 L=ichain(L) !
write(6,*) 'L=",1 !
LH=L+1 !
write(6,*) 'LH=",lh !
iau=jsr(L) !
write(6,*) 'iau=",iau !
ibu=jsr(LH)-1 !
write(6,*) 'ibu=",ibu !
IF(LH.EQ.I) then !
ibu=isrtem-1 !
write(6,*) 'ibu=",ibu !
endif !
jsr(D=I !
write(6,*) 'jsr(', i, )=", jsr(i) !
DO 84 J=iau,ibu !
write(6,*) 'J="j !
jeoln=jcn(J) !
write(6,*) 'jcoln=",jcoln !
IF(jsr(jcoln).EQ.I)GO TO 84 !
jen(icount)=jcoln !
write(6,*) ‘jen(’, icount ,'")=",jcn(icount) !
icount=icount+1 !
write(6,*) ‘icount=",icount !
jsr(jcoln)=I !
write(6,*) 'jsr(’, jeoln ,")="jsr(jcoln) !
IF(jcoln.LT.MIN) then !
min=jcoln !
write(6,*) '"MIN="min !
endif !

84 continue !
IF(icount.EQ.jexceed) GO TO 723 !
IF(L.NE.LAST)GO TO 79 !

66 IF(MIN.EQ.np1)GO TO 322 !

723 L=ichain(MIN) !
write(6,*) 'L=",1!
IF(L.EQ.0) GO TO 875 !
ichain(I)=ichain(L) !

062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
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Write(6*) ‘ichain(‘ichain(‘, i,”)=’,ichain(i)! 107
ichain(L)=I ! 108
write(6,*) 'ichain(', 1,")=",ichain(l) ! 109

GO TO322 ! 110

875 ichain(MIN)=I ! 111
write(6,*) ‘ichain(’, min ,")=",ichain(min) ! 112
ichain(I)=I ! 113
write(6,*) 'ichain(’, i ,")=",ichain(i) ! 114

322 jsr(I)=isrtem ! 115
write(6,*) ‘jsr(’, i,")=",jsr(i) ! 116

21 continue ! 117
jsr(N)=icount ! 118
write(6,*) ‘jsr(', n ,")="jsr(n) ! 119
jsr(npl)=icount ! 120
write(6,*) 'jsr(’, npl ,")=",jsr(npl) ! 121
return ! 122

end ! 123

Lines 1-12: Main program: input data are read, such as the size (N) of the
coefficient matrix, the number of nonzeros (NCOEF) of the original
coefficient matrix (see line 2), starting nonzero locations of each row
(see line 4, array isr), column numbers associated with nonzero terms
in each row (see line 5, array icn). The entire input data file for the
stiffness matrix data (shown in Eq. 10.37) is given in Table 10.3

Lines 12-30:  These lines are essentially self-explained, since most of them are
comment statements. The following arrays need to be defined:
jsr(-), and jen(-): Same definitions as arrays isr(-), and icn(-),
respectively. However, arrays jsr(-) and icn(-) are associated with the
factorized stiffness matrix, whereas arrays isr(-) and icn(-) are
associated with the original stiffness matrix.
ichain(-): Chained lists associated with each row. This array has been
explained as shown in Eqgs. (10.22-10.23, 10.25-10.26).

NCOEF2: Total number of nonzeros of the factorized stiffness matrix
(including “fills-in” terms)

Lines 31-36:  Arrays jsr(-) and ichain(-) are initialized to zero. The counter “icount”
is initialized to one. This integer variable will be increased by 1
whenever a nonzero term (either from the original stiffness matrix, or
from the “fills-in”) is detected. Thus, upon exiting from the symbolic
factorization (or subroutine symfact, on line 13), the value of “icount”
will be “NCOEF2".

Line 37: First major do-loop for symbolic factorization. The index I represents
the current I'" row

Line 39: The temporary starting location for current I row is stored in variable

isrtem
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Line41:

Line 43:

Lines 45-47:
Line 50:
Line 52:

Line 54:
Line 56:

Lines 58-61:

Lines 62-64:

Lines 43-64:

Line 65:
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Since “icount” represents the cumulative number of nonzero terms (up

to and including the current I row), hence (N-I) represents the
maximum possible number of columns in row I (see Figure 10.2)

N-1
>

isrtem = icount = starting (nonzero)
location of i * row

I

I row

Figure 10.2 Interpretation of the variable “jexceed”

The MINimum column number (=MIN) in all previous rows (and
including the original nonzero terms of current row i) which have
contributions to the current i row. The value of MIN is initialized to
a large column number (such as NP1, or N + 1). For example,
assuming I = 20, and MIN = 43, then the algorithm will prepare the
chained list ichain(-) for future row #MIN.

Starting and ending locations of nonzero terms in the current I'" row
In this do-loop, all nonzero terms of the I'" row will be considered
Column number (of I" row) of the original (before factorization)
stiffness matrix is recalled.

Column number of the (soon will be) factorized matrix is recorded.
The counter “icount” is updated whenever a nonzero term and/or fills
in term has been found

For structural engineering applications, the original stiffness matrix is
always in order (for example, the column numbers, corresponding to
nonzero terms in each row, is already in the increasing order), thus this
if statement is not really required. However, for general applications,
the original, coefficient (stiffness) matrix may not be in order yet, and
therefore, the value of MIN may have to be updated (as shown in line
59)

Column # jcoln has already contributed to row #l. Later on, we do
NOT want to include column # jcoln again for row I!

In summary, the main purpose for this segment of the code is to load
the I" row of the original coefficient (stiffness) matrix into the I row
of the (soon to be) factorized matrix [U]

The chained list array ichain(-) is used to find “which” previous rows
will have contributions to the current I row. The row # of the last
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previous row (which has contributions to current I'" row) is stored in
the variable “LAST”

Line 67: If LAST = 0, it implies that the current I'" row will NOT receive any
» Ilh

contributions from its previous rows (However, the “current” I row
may have contributions to “future” J* row, where J > I)

Line 68: The value of LAST is copied into a variable L

Line 70: Among all previous rows which have contributions to the current I*
row, L is the “current” previous row number to be considered

Line 74: Starting location for the L™ row (of the soon to be factorized matrix

[UY) is stored in the variable “IAU”

Lines 72,76:  Ending location for the L™ row is stored in the variable “IBU”. Since
LH =L + 1, therefore, JSR(LH) will give the starting location of the
(L+1)"row. Hence, JSR(LH) - 1 (= IBU) will give the ending location
of the L* row!

Lines 78-81:  These statements can be better explained by referring to Figure 10.3

X X X
X X
X X < current previous L* = 3™ row
X | X | F «—curentP=4%row
X|X
X

Figure 10.3 Special case for obtaining the ending location of the L™ row

Assuming the current I row to be the 4" row, and assuming the “previous
current” L™ row to be the 3™ row, thus the starting location of the L™ row can be
obtained from line 74 as:

IAU = JSR (3™ row) (10.38)
However, if we try to obtain the ending location of the L* row from line 76, then:

IBU = JSR (4" row) - 1 (10.39)

Since we are currently considering row I = 4, the variable JSR (3" row) has
already been properly defined. However, the variable JSR (4" row) has not been
properly defined yet. This variable JSR (4" row) will have its properly defined value
only when the current row [ (=4) has been completely processed! Thus, special formula
(shown on line 79) need be used to properly define the value of IBU whenever row #L
is right above current row #1. Since ISRTEM represents the “proper” starting location
of row #I = 4, hence ISRTEM-1 will give a proper ending location of row #L = 3.
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Line 84:

Line 86:

Lines 82, 88:

Lines 89,91, 93:

Lines 95-98:

Line 100:

Line 101:

Lines 65-101:

Line 102:

Lines 103-123:

Line 103:

Line 111:
Line 113:
Line 115:
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All nonzero terms of the “current previous” row #L are considered
in this do-loop (with index J). Here, the index J represents the
locations associated with nonzero terms (of row #L).
Column number, associated with a nonzero location, is defined in
variable JCOLN
Referring to Figure 10.3, these two statements (together with the
statement shown on line 62) will guarantee that such a nonzero term
of previous row #L, which has contributions to the diagonal term of
current row #I, will NOT be included in the JSR(-) and JCN(-) arrays
Furthermore, these two statements will also guarantee that
the contributions of the factorized, fills-in term U, on the term U,
(assuming current row #I = 5) will also NOT be included in arrays
JSR(-)and JCN(-), since the “original” (before factorization) nonzero
term K, has already been existed!
These three statements play similar roles as earlier statements, which
have already been explained on lines 54, 56 and 62, respectively.
These statements play similar roles as earlier statements, which have
already been explained on lines 58-61. In here, however, ordering the
column numbers (to make sure they are in increasing order) is usually
required, regardless structural, or general applications (recalled the
earlier descriptions related to Eq. 10.36)
This statement, if satisfied, implies that current row #I is already full
(please refer to the variable JEXCEED, defined earlier on line 41)
This statement, if satisfied, implies that the next previous row (which
has contributions to current I* row) has to be considered
In summary, the main purpose of this segment of the code is to
consider the possibilities for fills-in effects of previous rows on the
current I'" row
Only two places where the value for variable MIN is redefined: lines
#59 and #96. This statement, is satisfied, will imply:
(a) Current row #] does NOT have any off-diagonal terms, and/or
(b) There are no previous rows which have contributions to row #1
In this segment of the code, the contribution of current row #I on
“future” row #MIN is considered. Figure 10.4 (a, b, c, d) needs to be
referred to for better understanding the logic behind this code
segment. The original stiffness matrix (with fills-in terms denoted by
the symbol “F”) is shown in Figure 10.4 (a). Assuming the current
row is row #I=5, and MIN = 7.
Assuming L = ICHAIN(7) = 0, then the “if statement” (on line 105)
will direct the code to line #111
ICHAIN(7) =5
ICHAIN(5) =5
Starting location for the I"™ row of the (soon to be) factorized matrix
is recorded in array (JSR(-), before considering the next I row (see
lines 117 & 37)
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Lines 103, 111 & 113:
In summary, if L = 0, it implies that up until now, “current” row #I =5 is the
ONLY row which will have contributions to “future” row #MIN. Hence, the
chained list for “future” row #MIN can now be established, accordingly (see
Figure 10.4b).

Line 103: On the other hand, if one assumes L = ICHAIN(7) # 0, say L = 3,
then the “if statement” (on line 105) will direct the code to line 106
Line 106: ICHAIN(5) = ICHAIN(3)
Assuming ICHAIN (3) = 2, then ICHAIN(S) =2
Line 108: ICHAIN(3) = 5, and then

Lines 110, 115:  Starting location for the I'" row of the (soon to be) factorized matrix
is recorded in array JSR(-), before considering the next I row (see
lines 117 & 37)
Lines 103, 106,
108 & 110:
In summary, if L # 0, it implies that the “current” row #1 = 5 will be added to
the chained lists for “future” row #MIN. The data shown in Figure 10.4a has
clearly indicated that “previous” rows #2 & #3 had already been included on
the chained lists for “future” row #7 (see Figure 10.4c). After including the
“current” row #MIN, the chained list for “future” row #MIN is updated as
shown in Figure 10.4d
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{a) Coefficient stiffness metrix

1]x
2 X X X X
3 X X X X
4 X
5 @] [ F| |F| [X]| |« "vmourrow | =5 {ad MiN=7)
L] X
7 ) F F - "Fuiwd row | = 7 (= BIN)
s X
L ] X F
10 X
n X
12 X
1234567 8 %01112
th) Currentrow I = 51is {c) Before considering {d} After considering
the only row which has row 5 row 5
contribution to "future™
row ¥ MIN v X2 7,

X 7( < x 3= lost
“fo '<x3=losl' .KSD.

X3 - x7

x7¥

Figure 10.4 Contributions of “current” row # I on “future” row # MIN

The data file associated with Eq. 10.37 (also refer to lines #2,4, and 5 of Table 10.2) is
given in Table 10.3

Table 10.3 Example data for symbolic factorization

How to Obtain the Symbolic Factorized Matrix with Proper Orderings?? It has
been explained in Eq. (10.36) that upon exiting from the symbolic factorization phase,
the coefficient (stiffness) matrix (including new nonzero terms, due to fills-in effects)
need to be ordered to make sure the column numbers (associated with nonzero terms)
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in each row are in ascending order. This type of ordering operation is necessary before
performing the numerical factorization.

To facilitate the discussions, let’s consider an unordered, rectangular matrix
(shown in Figure 10.5) which can be described by Eqs. (10.40-10.42)

1 2 3 4 5 6 = No. Columns (= NC)
A(Srd) B(]st) C(an) 1
D(Slh) E(4th) 2
F(Bth) G(7th) 3
H{oth) Ot JC&th) 4
K(® LO3® | MU0 | 5 = No. Rows (= NR)

Figure 10.5 An unordered, rectangular matrix
(numbers in parenthesis represent location numbers)

The starting location for each row in Figure 10.5 is given as

1 i
2 4

ISTARTROW ; -4 (10.40)
5 1
6 =NR + 1 14

The (unordered) column numbers associated with each row is given as

ICOLNUM » (10.41)

PV IAUNAWN—
1
VAN WRAPLAW—=AWLWAW

13 = ISTARTROW (6) - 1

The “numerical” values (for the matrix shown in Figure 10.5) can be given as
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AK

ORI NEWN -

n
ERAT~NNQTMUmRO®
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(10.42)

The “unordered” matrix, shown in Figure 10.5, can be made into an “ordered” matrix
by the following 2-step procedure:

Step 1: Transposing The Given Unordered Matrix Once: If the matrix shown in Figure
10.5 is transposed, then one will obtain the following matrix (shown in Figure 10.6)

Col. No.1 | Col.No.2 | Col.No.3 | Col.No.4 | Col. No. 5
Row #1 DU Hd
Row #2 K6
Row #3 AGH FOh) )
Row #4 Eth Gt Jeoth)
Row #5 pom ')
Row #6 cazh M3

Figure 10.6 Transposing a given unordered matrix once

The starting locations and the associated column numbers for the matrix shown

in Figure 10.6 are given as:

ISTROW TRANSPOSE 1

NA VA WN -

N VRN

10
14

(10.43)
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ICOLN TRANSPOSE1

PO SV UNARWN—

N—nN—=RBAWNRERW~—ULBN

(10.44)

It is important to realize from Figure 10.6 (and also from Eq. 10.44) that the matrix
shown in Figure 10.6 is already properly ordered. For each row of the matrix shown in
Figure 10.6, increasing the location numbers also associates with increasing the column

numbers.

Step 2: Transposing the Given Unordered Matrix Twice: If the matrix shown in Figure
10.6 is transposed again (or the original matrix shown in Figure 10.5 is transposed
twice), then one will obtain the matrix as shown in Figure 10.7

1 2 3 4 S 6
A(Isl) B(an) C(}rd)
D(dth) E(Sth)
F(6th) G(7th)
H(sth) I(9th) J( 10th)
K(l 1th) L(thh) M(Uth)

W s W N -

Figure 10.7 Transposing a given unordered matrix twice

The starting locations and the associated column numbers (for the matrix
shown in Figure 10.7) are given as:

ISTROWTRANSPOSE?2

ZUnhA W —

n

(10.45)

e o
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ICOLNTRANSPOSE? (10.46)

1}
AN PWVW—=RWRA—=OAWNW

PV IAUN AL —

Thus, one concludes that an “ordered” matrix can be obtained from the
original, “unordered” matrix simply by transposing the “unordered” matrix twice!

10.6 Sparse Numerical Factorization

It is generally safe to say that sparse numerical factorization is more complicated for
computer coding implementation than its skyline, or variable bandwidth cases. Main
difficulties are due to complex “book-keeping” (or index referring) process. The “key”
ideas in this numerical phase are still basically involved the creation and usage of the

2 integer arrays ICHAINL(-) and LOCUPDATE(-), which have been discussed with

great details in Section 10.5. There are two (2) important modifications that need to be

done on the symbolic factorization, in order to do the sparse numerical factorization (to

facilitate the discussion, please refer to the data shown in Eq. 10.14):

(a) For symbolic factorization purpose, there is no need to have any floating
arithmetic calculation. Thus, upon completing the symbolic process for row 4,
there are practically no needs to consider row 2 and/or row 3 for possible
contributions to row 5. Only row 4 needs to be considered for possible
contributions (or “fills-in” effects) to row 5 (since row 4, with its “fills-in,” is
already full).

For numerical factorization purpose, however, all rows 2, then 4 and
then 3 will have to be included in the numerical factorization of row 5.

(b) For sparse numerical factorization, the basic skeleton FORTRAN code for
LDLT, shown in Table 10.1 of Section 10.2.2, can be used in conjunction with
the chained list strategies (using arrays ICHAINL and LOCUPDATE) which
have been discussed earlier in Section 10.5.

The skeleton FORTRAN code for sparse LDL' is shown in Table 10.4.

Comparing Table 10.1 and Table 10.4, one immediately sees the “major differences”

only occur in the 2 do-loop indexes K and J, on lines 3 and 6, respectively.

Table 10.4 Pseudo FORTRAN skeleton code for sparse LDL" factorization

1. c| .. | Assumingrow 1 has been factorized earlier

2. DO111=2,N
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3. DO 22 K = Only those previous rows which have contributions to
current row |

4.1 |c Compute the multiplier (Note: U represents LT)

5.1 XMULT=UK, /U, K)

6. DO 33 J = appropriated column numbers of row #K

7.1 U, J))=U(,J) - XMULT * UK, J)

8. 33 | CONTINUE

9.1 U (K, I)=XMULT

10. 22 | CONTINUE

11. 11 | CONTINUE

A more detailed FORTRAN code for numerical factorization is shown in Table
10.5. The following are definitions of various input, output and temporary arrays used
in Table 10.5

Input Arrays:

ISR(N+1), TUNN+1)

ICN(Ncoff), JICN(Ncof2)

AN(Ncoff)
AD(N)

Output Arrays:

UN(Ncof2)

DI(N)

Temporary Arrays:

Starting location number of the first nonzero term in
each row of the “original” matrix, and the factorized
matrix, respectively

Column numbers (associated only with nonzero terms)
of the original matrix, and the factorized matrix,
respectively.

Off-diagonal terms of the original (stiffness) matrix
Diagonal terms of the original (stiffness) matrix

Factorized, off-diagonal terms of the (stiffness) matrix
Inverse of the factorized diagonal terms of the matrix
(this array is also used as the expanded accumulator)

Ichain(N) Chained list of rows associated with a column
KUPP (N) “Starting” location of a row
Table 10.5 Detailed numerical sparse factorization
DO 10J=I,N ! 001
10 ichain(J)=0 ! 002

C......Begin of of 1-st (nested) loop: outer-most loop, for each i-th row !

DO 130 I=1,N ! 003
| IH=I+1 ! 004
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ICUU=IU(I) !

IBUU=IU(IH)-1 !
IF(IBUU.LT.ICUU)GO TO 40 !
DO 20 J=ICUU,IBUU !

20 DI(en(1))=0. !
ica=isr(I) !
iba=isr(IH)-1 !
IF(iba.LT.ica)GO TO 40 !
DO 30 J=ica,iba !

30 DI(icn(J))=AN(J) !

40 DII)=ADQ) !
LAST=ichain(I) !
IF(LAST.EQ.0)GO TO 90 !
LN=ichain(LAST) !

begin of 2-nd (nested) loop: considering all APPROPRIATED previous
rows (any appropriated rows 1--->i-1)

50 L=LN !
LN=ichain(L) !
iucl=kupp(L) !
iudl=IU(L+1)-1 !

UM=UN(ucl)*DI(L) !
C......begin of 3-rd (nested) inner-most loop: considering all APPROPRIATED
C..... columns (any columns i--->n)
DO 60 J=iucl,iudl !
JJ=jen(d) !
60 DI(JJ)=DI(J])-UN(J)*UM !
UN(iucl)=UM !

kupp(L)=iucl+1 !
IF(iucl. EQ.iudl)GO TO 80 !
J=jen(iucl+1) !
JJ=ichain(J) !
IF(JJ.EQ.0)GO TO 70 !
ichain(L)=ichain(JJ) !
ichain(JJ)=L !
GO TO 80 !

70 ichain(J)=L !
ichain(L)=L !

C..

the following go to statement is equivalent to 2-nd nested loop
for factorization

005
006
007
008
009
010
011
012
013
014
015
016
017
018

019
020
021
022
023

024
025
026
027
028
029
030
031
032
033
034
035
036
037
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80 IF(L.NE.LAST)GO TO 50 ! 038
90 DI(I)=1./DI(I) ! 039
IF(IBUU.LT.ICUU)GO TO 120 ! 040
DO 100 J=ICUU,IBUU ! 041
100 UN@J)=DI(jcn(J)) ! 042
J=jen(ICUU) ! 043
JJ=ichain(J) ! 044
IF(JJ.EQ.0)GO TO 110 ! 045
ichain(I)=ichain(JJ) ! 046
ichain(JJ)=I ! 047
GO TO 120 ! 048
110 ichain(J)=I ! 049
ichain(I)=I ! 050
120 kupp(I)=ICUU ! 051
| 130 continue ! 052
Explanations for various statements in Table 10.5 are given in the following
paragraphs
Lines 1-2: Initialize the array Ichain(-)
Line 3: The first DO-LOOP of the numerical factorization. The index I
represents the I'"" row which is currently being factorized
Lines 4-6: Find the starting (=ICUU) and ending (=IBUU) locations of the I'"
row of the factorized matrix
Line 7: Check and see if the I'" row (of the factorized matrix) has no off-
diagonal terms
Lines 8-9: The array DI(-) is initialized. For better efficiency, however, only
those nonzero locations of the I"™ row are included here
Lines 10-11: Find the starting (=ICA) and ending (=IBA) locations of the I'" row
of the “original” (or unfactorized) matrix
Line 12: Check and see if the I"™ row (of the original matrix) has no off-
diagonal terms
Lines 13-14: Copy Row #I (of the original matrix) into a temporary array DI(-)
Line 15: Copy the I'" diagonal term (of the original matrix) into a temporary
array DI(-)
Line 16: The “last” previously factorized row which has contributions to the

currently factorized 1™ row. Strictly speaking, this should be
considered as the “first” previously factorized row! As an example,
suppose the currently factorized row #6 will require [according to
array Ichain(-)] the information from the previously factorized rows
#5, 4, 1, respectively, then LAST = 1. Based upon skyline and/or
variable bandwidth factorization, the currently factorized row #6
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Line 17:

Lines 18-19:

Line 20:
Lines 21-22:
Line 23:

Lines 24-26:

Line 27:

Line 28:

275

should receive the contributions from the previously factorized row
#1 first, then row #4 and row #5, respectively!
If LAST = 0, then it implies that there are NO previously factorized
rows which have contributions to the current I" row. Referring to the
data shown in Eq. (10.14), as an example, for I' row = 3™ row, there
are NO previous rows (such as rows 1 & 2) which have contribution
to row 3, hence LAST = 0. On the other hand, for the current I row
= 4" row (see Eq. 10.14), it will receive the contribution from the
previously factorized row #1, hence LAST = 1
The “first” previously factorized row #L is defined as

L =LN, or L = Ichain (LAST)
Thus, L can be considered as the “current previous” row # which has
contributions to the currently factorized row #I. Note that line #19 (L
= LN) is the beginning of the 2™ loop of the numerical factorization
(which has contributions to the currently factorized row #I)
The “next” previously factorized row #LN is defined
Starting and ending (nonzero) location of row #L, respectively
Compute the multiplier factor (also see Table 10.1 in Section 10.2.2
for the expression xmult = u /uy ). Note here DI(-) contains the
inverse (or reciprocal) value of diagonal term (see line 39)
The 3" do loop of numerical factorization is used to partially update
the current row #I (due to the contributions from the previously
factorized row #L). The partially updated current row #I is stored
temporarily under the array DI(-)
This statement plays the same role as the statement u(K, I) = xmult
in Table 10.1
The “next” (non-zero) starting location for row #L is computed (See
Figure 10.8)
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KUPP(L) = IUCL+ 1 = the "next" first nonzero locetion of Lth row
IUDL = the "last" nonzero loction of Lth row

“wrrently” foctorized Ith row

- *_ " S —— X-¥-X--- Lthrow, which has contribution to the Ith row

"future" Jth row, to be foctorized

Figure 10.8 The “current” first nonzero location of the L" row, which

has contribution to the currently factorized 1" row

If IUCL = IUDL, then (accordingly to Figure 10.8) it implies row #L
has no more nonzero terms, and therefore row #L has absolutely no
more use in the subsequent rows (such as rows #1+1, I+2, ..., N).

Find the column number (=J) which corresponds to the “next” (or

276
IUCL = the "fir st nonzero location of Lth row
J IUCL = KUPP{L) the "currem" first nonzero locetion of Lth row
%
Jth eobmnT
Line 29:
Line 30:
“new”) first (nonzero) location of row #L
Line 31:

Get the information (=]J) about column J, see if any nonzero rows in
this column

Lines 32, 36-37: If JJ = 0, it implies that row #L will be the only row (so far) which

Lines 33, 34:

will have the contributions into the “future” (to be factorized) row #J.
Thus, the “future” factorized row #J will have to refer to the
“previously factorized” row L (see statement on line #36)

If JJ # 0, then it implies that row #L will be added to the “chained
list” of those (previously factorized) rows which will have
contributions to “future” row #I (see Figure 10.9)
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J* column KUPP(L) = IUCL + | = the “next” first
nonzero location of L* row

row #JJ

L* row = the “current previous” row which has
contributions to the current I* row

currently factorized I* row
*future” J* row

Figure 10.9 Previously factorized L' row is being added to the list of rows
which will have contributions to the future J* row

Rows #JJ and #L will have the contributions to the “future” row #J, hence row #L (or,
the “current previous” row which will have contributions to “future” row #J) will be
added on the chained list array Ichain(-). In other words, before row #L entering into
the picture, row #JJ is assumed to be the only row who will contribute to “future” row
#J. Thus, the chained list array will be:

IPJ)=1]

PN =1
Now, since row #L also has contributions to future row #J, hence the chained list array
will be updated as

IPU)=1J
PO =L
IP(L) = JJ

The evolution of the chained list array IP(-) to include those (previously
factorized) rows (such as row #JJ, and then subsequently row #L) which will have the
contributions to “future” row #J is shown in Figure 10.10

xd Previous row JJ x -~ Previous row JJ

x PreviousrowL Cx) Previous row L
x Curent row
X

x Current row |

x Future row J Future row J

Figure 10.10 Evolution of previous rows #JJ and #L to future row #J
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Line 38:

Line 39:

Line 40:

Lines 41-42:

Lines 43-50:

Line 51:

Line 52:

row L = nonzero terms at 1st, —
2nd (or 1st, 4th terms of row 1} of row 1)
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column J = JCN (ICUU)

x ® @ @ |=<— rowJ)=nonzeroterms = 1st,
x x x 2nd, 3rd (or 2nd, 3rd, 5th terms

@ ©x@|[—rowl

Figure 10.11 Contributions from the previously factorized

rows #JJ and #L to current I row

If L # LAST, it implies the previously factorized row #L is not yet
the last row which have contributions to the current I'"" row (in other
words, there are more previously factorized row(s) which have
contributions to the current I row). In this case, the algorithm will
go back to line #19 to consider the contributions of the “new”
previously factorized row (="new” row L) on the current I'" row
The inverse (or reciprocal) of diagonal term [= 1/DI(I) or 1/u(K,K)
as shown in Table 10.1]. This information will be used in calculating
the multiplier constant as shown on line 23

IfIBUU <ICUU, then it implies there are NO MORE nonzero terms
in row #I of the factorized matrix

The “temporary” array DI(-), which has been used to store the
updated (or factorized) I™ row (see line 26) is now copied into a
“permanent” array UN(-).

This approach is more convenient than introducing the
“permanent” array UN(-) directly on line 26, because row #JJ will
have the contributions on the 2™, 3 and 5" off-diagonal terms of the
current I " row, whereas row #L will have the contributions on the 1*
and 4™ off-diagonal terms of the current I row (see Figure 10.11)
Essentially followed the same logic as already explained in lines 30-
37.1In lines 30-37, the chained list Ichain(-) array was updated so that
“earlier” rows which contribute to the “current” row I and “future”
row(s) J were recorded. However, in lines 43-50, the Ichain(-) array
is updated so that the “current” row I which has contributions to
“future” row(s) J is recorded.

The “current” first (nonzero) location of row #1 is recorded in array
KUPP(I)
Go back to line #3 to consider the next row

10.7 Forward and Backward Solutions

For a single right-hand-side vector {f}, the combined forward and backward solution
time is very small as compared to the numerical factorization time. However, for
multiple right-hand-side vector {f}, or for cases where the vector {f} needs to be
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modified repeatedly (such as in eigenvalue analysis, structural dynamics, nonlinear
finite element analysis, electro-magnetic engineering applications, etc....), the forward
and backward solution time has to be considered more seriously.

10.7.1 Forward substitution phase
In the forward substitution phase, the intermediate vector {y} can be solved from Eq.
(10.3)

(U] {»} = {f}

For the Choleski method, [U]" = [L] where [L] is a lower triangular matrix. Thus, Eq.
(10.3) can be rewritten as

(10.3, repeated)

(2] {»} = {n} (10.47)
For the data shown in Eq. (10.15), Eq. (10.47) has the following form
L, 0 0 0 0 b2 4

0

o L, O 0 0 0 Y, 5

0 0 L, O 0 0 Vs 5
S b= . 10.48
L, o 0 L, o ol lnl-1f (10.48)

0 Ly, Lyg Ly Ly 0 Ys s

| Ley 0 0 Ly L LesJ Ye ¥

The first unknown y, can be found easily as

V= 11— 10.49
V=7 (10.49)

11

As soon as y, has been solved, the right-hand-side vector {f} can be updated
by taking the first column of [L] (or for the actual implementation, the first row of [U])
to operate on the variable y,. This type of operation is NOT time consuming since row
1 is quite sparse (only three nonzero terms appeared in the first column of matrix [L]).
Thus, only three terms (the first, the fourth and the sixth terms) of the vector {f} need
to be updated. Then, the next unknown, y,, can be solved and this process can be
repeated until all unknowns of the vector {y} are solved.

It should be emphasized here that in actual computer implementation, the
intermediate array {y} is not needed and the forward solution phase will be overwritten
on the original vector {f}.

10.7.2 Backward substitution phase
For the data shown in Eq. (10.15), Eq. (10.4) will take the following form

Uy, 0 0 Uy, 0 U Zy Y
0 U,, 0 0 U, 0 z, Y,
0 0 U, 0 Ug ozl Iyl

= 10.50
0 0 0 Uy Us Uy 24 Vs ( )
0 0 0 0 U, Ugl |z Vs
0 0 0 0 0 Uge z Ve
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The last unknown z, can be found easily as
_ s

z =
“ " T (10.51)

Once zg has been solved, one may attempt to (follow the same logic mentioned in
Section 10.7.1) update the right-hand-side vector {y} by taking the sixth column of
matrix [U] to operate on the variable z, . This kind of operation although is valid,
however, is NOT preferred in practical computer implementation. This conclusion can
be drawn because in practice, the upper triangular matrix [U] is stored in a 1-D array
{A} according to a row-by-row fashion. Thus, it is neither convenient, nor efficient to
locate nonzero terms of column 6 and multiply with variable z, in order to update the
vector {y}.

In general, assuming z,, z, ,,..., Z ,,, have been solved, then the next unknown
z, can be obtained by simply operating a few non-zero terms of the i*" row (of the [U]
matrix) on the unknown variables z,,, Z.,,...., Z, 1> Z,.

As an example, for the data shown in Eq. (10.15) and assuming that variables
Zg, Zs, and z, have been solved, then the unknown variable z, can be found as

V3~ Uy * zg
U33
10.8 Sparse Solver with Improved Strategies

zy = (10.52)

In this section, several strategies which can be used to improve the performance of the
developed sparse solver will be discussed.

10.8.1 Finding master (or super) degree-of-freedoms (dof)
To simplify the discussion, assuming that upon completion of the symbolic phase, the
stiffness matrix [K] will have the following form

1 2 3 4 5 6 7 8 9 10 11 12 13 14
x x x x x x x x x 1
x X x x x x x x 2
x X X x x x x 3
x X x X x 4
x x X x 5
x x x F F F x F 6
[K] = SYM. x x X x F x x 7 (10.53)
X x x F x x 8
x x F x x 9
x F x x 10
x x x x 11
x x x 12
x x 13
X 14

In Eq. (10.53) the stiffness matrix [K] has 14 dof. The symbols “x” and “F” refer to the
original nonzero terms, and the nonzero terms due to “Fills-in,” respectively. It can be
seen that rows 1-3 have the same nonzero patterns (by referring to the enclosed
“rectangular” region, and ignoring the fully populated “triangular” region of rows 1-3).
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Similarly, rows 4-5 have the same nonzero patterns. Rows 7-10 have the same nonzero
patterns. Finally, rows 11-14 also have the same nonzero patterns. Thus, for the data
shown in Eq. (10.53), the “Master” (or “Super”) dof can be generated as

MASTER g (10.54)

POV IAUN D WN—
I
CoOOohrROCOOCOA—ONOOW

14 =N

According to Eq. (10.54), then the “master” (or “super”) dof are dof #1 (which is
followed by 2 “slave” dof), dof #4 (which is followed by 1 slave dof), dof #6 (which
has no slave dof?!), dof #7 (which is followed by 3 slave dof), and dof #11 (which is
followed by 3 slave dof).

10.8.2 Sparse matrix (with unrolling strategies) times vector

In our developed sparse equation solver, upon obtaining the solutions, the user has the
option to compute the relative error norm (see R.E.N. in Section 10.9). For the error
norm computation, one needs to have efficient sparse matrix (with unrolling strategies)
vector multiplication.

To facilitate the discussions, let us consider the coefficient (stiffness) matrix
as shown in Figure 10.12. This 14 dof matrix is symmetrical, and it has same nonzero
patterns as the one considered earlier in Eq. (10.53). The master/slave dof for this
matrix has been discussed and given in Eq. (10.54). The input data file associated with
Figure 10.12 follows exactly the same sparse numerical factorization procedures
discussed earlier in arrays ISR(-), ICN(-), AN(-) and AD(-).

The sparse matrix-vector [A] * {x} multiplication (with unrolling strategies)
can be described by the following step-by-step procedures (please also refer to Figure
10.12)

Step 0.1:Multiplications between the given diagonal terms of [A] and vector {x}

Step 0.2:Consider the first “master” dof. According to Figure 10.12 (and Eq. 10.54),
the first master dof is at row #1, and this master dof has 2 associated slave dof.
In other words, the first 3 rows of Figure 10.12 have the same off-diagonal,
nonzero patterns

Step 1: The first three rows (within a rectangular box) of the given matrix [A] (shown
in Figure 10.12) operate on the given vector {x}

Step 2: The first 3 columns (within a rectangular box) of the given matrix [A] (shown
in Figure 10.12) operate on the given vector {x}
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Step 3: The upper and lower triangular portions (right next to the first 3 diagonal terms
of the given matrix [A]) operate on the given vector {x}, according to the
orders a, then b, and finally c (as shown in Figure 10.12)

Step 4: The row number corresponds to the next “master” dof can be easily computed
(using the master/slave dof information, provided by Eq. 10.54).

If the next “master” dof number exceeds N (where N = total number

of dof of the given matrix [A]), then stop, or else return to step 0.2 (where the
“first” master dof will be replaced by the “second” master dof, etc ....)

Third Step
The upper and lower triangular regions (next to diagonal terms) will finally be processed
(according to the order 9 then 9, 1 and 2, then 1 and 2)

1 2 3 4 5 6 7 8 9 10 11 12 13 14

10111 | 2 3 4 |56 7 8 _“‘*}I:'ilr:;es ;efows in this
1[102] 9 10 11 |12 13 14 |15 ;‘;‘;‘:;’i‘;ﬁ’?‘}’;"pxigf;f
2|9 |103 16 17 (18 |19 20 |21 ———»-operations)
104 22 23| 24 25
22 105 26| 27 28
3|10 16 106 29 | 30 31
23| 2629 |107|32 | 33|34 35|36
24| 27|30 | 32 |108] 37|38 39 |40
41|17 33/37 | 109] 41 42| 43
12|18 34|38 | 41110 44 45
613 )19 11146 |47 | 48
46 [112 /49 | 50
7 | 14|20 |25 | 28| 31|35 |39 | 42| 44| 47| 49/ 113 51
b4

13 21
These 3 columns in this rectangular box will be processed (saxpy operations)

Figure 10.12 Space matrix - vector multiplications with unrolling strategies

The above step-by-step procedures (for sparse matrix-vector multiplication with
master/slave dof and unrolling strategies) have been implemented into the FORTRAN
computer code, shown in Table 10.6.

Explanations for major block of FORTRAN statements (in Table 10.6) will be
given in the following paragraphs (see subroutine multspa)

Lines 8-9: Step 0.1 is implemented
Line 11: The first master dof (or supernode) is considered
Line 15: Unrolling level 4 strategies are assumed
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Line 16:

Line 17:

Lines 72-76:

Line 77:

Lines 78-80:
Lines 86-89:
Lines 90-93:
Lines 99-100:
Line 103:
Lines 105-106:
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The total number of master and slave rows (corresponding to the
current master row) is identified in variable “jj”. For the example
data shown in Figure 10.12, we have:

JJ = isupern (1) =3

However, for the sake of discussion, let us assume JJ =11
Since level 4 unrolling strategies are used (see line 15), here we want
to find how many blocks (each block contains 4 rows) to be
associated with the above 11 rows (which correspond to the current
master row). Thus:

KK=(11/4)*4=(2)*4=8

For our actual data (shown in Figure 10.12), then: KK = (3/4) *
4=0)*4=0
Thus, the first 8 rows (out of the total 11 rows) will be considered
first (see lines 19-68). The number of remaining rows, in general, can
be either 1, or 2, or 3, and is calculated in line 69.
Thus:
LEFTOV (= LEFT OVER) = 11 - 8 = 3 (see line 69)
Depending on the number of remaining rows (1, 2, or 3), the code
will branch to line 133, 108, or 72, accordingly. For the actual data
shown in Figure 10.12, since JJ = 3 (see line 16), hence lines 19-68
will be skipped. Furthermore, the remaining rows can be calculated
(according to line 69) as:
LEFTOV=3-0=3

Thus, the code will branch to line 72
The row number corresponds to the last row (of the remaining rows
for the current master/slave rows) is calculated in line 74. The row
numbers of the preceeding 2 rows are calculated in lines 75-76.
The total number of nonzero terms (corresponding to the last row) is
calculated.
The starting locations for each of the remaining rows are calculated
Step 1 is implemented (please also refer to Figure 10.12)
Step 2 is implemented (refer to Figure 10.12)
Step 3a is implemented (refer to Figure 10.12)
Step 3b is implemented (refer to Figure 10.12)
Step 3c is implemented (refer to Figure 10.12)

The FORTRAN statements used in lines 19-68, or lines 108-132, or lines 133-
147 follow the “same logic” as explained in lines 86-106.

Lines 150-151:

Step 4 is implemented.

Table 10.6 Master dof and sparse matrix times vector

subroutine multspa(n,istartr,kindx,coefs,diag,rhs,answer,isupern) ! 001
implicit real*8(a-h,0-z) ! 002
common/junk1/lastrmi(8) ! 003

C...purpose: <sparse, and symmetric> matrix times vector ! 004
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C.. with UNROLLING capability !
dimension diag(1),kindx(1),coefs(1),rhs(1),istartr(1) !
$,answer(1),isupern(1) !
C...dimension kptrs(1)
C...starting with diagonal multiplications
do3i=I,n !
3 answer(i)=diag(i)*rhs(i) !
C write(6,*) 'MVSPARU: diag*rhs=",(answer(i),i=1,n)
C.....first supernode !
i=1 !
C... subsequent supernodes !
1000 continue !
C.....number of rows (equations) in the i-th supernode !
nunrol=4 !
jj=isupern(i) !
kk=(jj/munrol)*nunrol !

lastrow=i-1 !
C....write(6,*) 'MVSPARU jj,kk,lastrow="}jj,kk,lastrow
do 31 j=1,kk,nunrol !

C....find the last row # in a block (each block = "nunroi" rows) !
lastrow=lastrow-+nunrol !
lastrm1=lastrow-1 !
lastrm2=lastrow-2 !
lastrm3=lastrow-3 !
C...

lastrmi(1)=lastrm3 !
lastrmi(2)=lastrm2 !
lastrmi(3)=lastrm1 !
C....ii=kptrs(lastrow)
ii=istartr(lastrow+1)-istartr(lastrow) !
C.....if(ii.eq.0) go to ?7?
icount=istartr(lastrow)-1 !
icauml=istartr(lastrm1) !
icaum2=istartr(lastrm2)+1 !
icaum3=istartr(lastrm3)+2 !
do 32 k=1,ii !
icount=icount+1 !
icauml=icauml+1 !

005
006
007

008
009

010
011
012
013
014
01s
016
017

018

019
020
021
022
023
024

025
026
027

028

029
030
031
032
033
034
035
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icaum2=icaum2+1 !
icaum3=icaum3+1 !
jeoln=kindx(icount) !

upper portions (vector unrolling) !

answer(lastrow)=answer(lastrow)+coefs(icount)*rhs(jcoln) !
answer(lastrm1)=answer(lastrm1)+coefs(icaum1)*rhs(jcoln) !
answer(lastrm2)=answer(lastrm2)+coefs(icaum2)*rhs(jcoln) !
answer(lastrm3)=answer(lastrm3)+coefs(icaum3)*rhs(jcoln) !

... write(6,*) 'MVSPARU:icount,icaum1,icaum?2,icaum3,jcoln,lastrow=
... write(6,*) icount,icaum1,icaum?2,icaum3,jcoln,lastrow

... write(6,*) 'MVSPARU: answer(lastrow),answer(lastrm3)="

... write(6,*) answer(lastrow),answer(lastrm3)

lower portions (loop unrolling) !

answer(jcoln)=answer(jcoln)+coefs(icount)*rhs(lastrow) !

$
$
$

+coefs(icaum1)*rhs(lastrml1) !
+coefs(icaum2)*rhs(lastrm?2) !
+coefs(icaum3)*rhs(lastrm3) !

C....write(6,*) 'MVSPARU: answer(jcoln)=",answer(jcoln)
32 continue !

C....now,take care of 2 little "FULL" (upper & lower) triangular portions !
C....the following FORTRAN statements can be applied in several places,
C....thus these statements can be placed in a form of a subroutine !
C....call fulltri(nunrol,istartr,kindx,answer,coefs,rhs) !

C....subroutine fulltri(nunrol,istartr,kindx,answer,coefs,rhs) !
C.....implicit real*8(a-h,o0-z)

C.....common/junk1/lastrmi(8)

C.....dimension istartr(1),kindx(1),answer(1),coefs(1),rhs(1)

C* 3k ok ok o %k %k %k k

do 33 I=1,nunrol-1 !
nterms=nunrol-1 !
ithrow=lastrmi(l) !
icount=istartr(ithrow)-1 !
do 34 m=1,nterms !

icount=icount+1 !

j

coln=kindx(icount) !

C....upper row !
answer(ithrow)=answer(ithrow)+coefs(icount)*rhs(jcoln) !

C..

write(6,*) 'MVSPARU: ithrow,answer(-)=",ithrow,answer(ithrow)
lower column (=symmetry with upper row) !

036
037
038
039
040
041
042
043

044
045
046
047
048

049
050
051
052
053
054

055
056
057
058
059
060
061
062
063

064
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answer(jcoln)=answer(jcoln)+coefs(icount)*rhs(ithrow) ! 065
C.... write(6,*) 'MVSPARU: jcoln,answer(-)=,jcoln,answer(jcoln)
34 continue ! 066
33 continue ! 067
31 continue ! 068
C*********
C
leftov=ijj-kk ! 069
C.... write(6,*) 'MVSPARU: leftov=",leftov
if(leftov.eq.0) go to 789 ! 070
g0 t0(10,20,30),leftov ! 071
30 continue ! 072
C....vectorize by unrolling (level 3) for left over rows (of a supernode) ! 073
lastrow=i+jj-1 ! 074
lastrm1=lastrow-1 ! 075
lastrm2=lastrow-2 ! 076
C....ii=kptrs(lastrow)
ii=istartr(lastrow+1)-istartr(lastrow) ! 077
C.....if(ii.eq.0) go to ??7?
icount=istartr(lastrow)-1 ! 078
icaum1=istartr(lastrm1) ! 079
icaum2=istartr(lastrm2)+1 ! 080
do 2 k=1,ii ! 081
icount=icount+1 ! 082
icauml=icauml+1 ! 083
icaum2=icaum2+1 ! 084
jeoln=kindx(icount) ! 085
C....upper portion (vector unrolling) ! 086
answer(lastrow)=answer(lastrow)+coefs(icount)*rhs(jcoln) ! 087
answer(lastrm1)=answer(lastrm1)+coefs(icaum1)*rhs(jcoln) ! 088
answer(lastrm2)=answer(lastrm2)+coefs(icaum2)*rhs(jcoln) ! 089

C.... write(6,*) 'MVSPARU: check point # 1'

C.... write(6,*) 'MVSPARU: answer(lastrow),answer(lastrm2)'
C.... write(6,*) answer(lastrow),answer(lastrm2)

C

.... lower portion (loop unrolling) ! 090

answer(jcoln)=answer(jcoln)+coefs(icount)*rhs(lastrow) ! 091
$ +coefs(icaum!)*rhs(lastrm1) ! 092
$ +coefs(icaum2)*rhs(lastrm2) ! 093

@]

... write(6,*) 'MVSPARU: jcoln,answer(jcoln)=",jcoln,answer(jcoln)
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2 continue ! 094
C.....now,take care of 2 little "FULL" (upper & lower) triangular portions ! 095
C.....call fulltri(nunrol,istartr,kindx,answer,coefs,rhs) ! 096
icauml=istartr(lastrm1) ! 097
jeoln=kindx(icaum1) ! 098
answer(lastrm1)=answer(lastrm1)+coefs(icaum1)*rhs(jcoln) ! 099
answer(jcoln)=answer(jcoln)+coefs(icaum1)*rhs(lastrm1) ! 100
icaum2=istartr(lastrm2) ! 101
jeoln=kindx(icaum2) ! 102
answer(lastrm2)=answer(lastrm2)+coefs(icaum2)*rhs(jcoln) ! 103
$ +coefs(icaum2-+1)*rhs(jcoln+1) ! 104
answer(jcoln)=answer(jcoln)+coefs(icaum2)*rhs(lastrm2) ! 105
answer(jcoln+1)=answer(jcoln+1)+coefs(icaum2+1)*rhs(lastrm2) ! 106
C....write(6,*) 'MVSPARU: check point # 11'
go to 789 ! 107
20 continue ! 108
C.....vectorize by unrolling (level 2) for left over rows (of a supernode) ! 109
lastrow=i+jj-1 ! 110
lastrm1=lastrow-1 ! 111
C... ii=kptrs(lastrow)
ii=istartr(lastrow+1)-istartr(lastrow) ! 112
C.....if(ii.eq.0) go to ???
icount=istartr(lastrow)-1 ! 113
icaum I =istartr(lastrm1) ! 114
do 12 k=1,ii ! 115
icount=icount+1 ! 116
icauml=icauml+1 ! 117
jeoln=kindx(icount) ! 118
C....upper portions ! 119
answer(lastrow)=answer(lastrow)+coefs(icount)*rhs(jcoln) ! 120
answer(lastrm1)=answer(lastrm1)+coefs(icaum1)*rhs(jcoln) ! 121
C.....lower portions ! 122
answer(jcoln)=answer(jcoln)+coefs(icount)*rhs(lastrow) ! 123
$ +coefs(icaum1)*rhs(lastrml) ! 124
12 continue ! 125
C.... write(6,*) 'MVSPARU: check point # 21"
C.....now,take care of 2 little "FULL" (upper & lower) triangular portions ! 126
C.....call fulltri(nunrol,istartr kindx,answer,coefs,rhs) ! 127
icauml=istartr(lastrm1) ! 128
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jeoln=kindx(icaum1) ! 129
answer(lastrm1)=answer(lastrm1)+coefs(icaum1)*rhs(jcoln) ! 130
answer(jcoln)=answer(jcoln)+coefs(icaum1)*rhs(lastrm1) ! 131
go to 789 ! 132
10 continue ! 133
C....NO vectorize by unrolling (level 1) for left over rows (of a supernode) 134
C....write(6,*) 'MVSPARU: check point # 31'
lastrow=i+jj-1 ! 135
C.... ii=kptrs(lastrow)
ii=istartr(lastrow+1)-istartr(lastrow) ! 136
C....if(ii.eq.0) go to ???
icount=istartr(lastrow)-1 ! 137
do 13 k=1,ii ! 138
icount=icount+1 ! 139
jeoln=kindx(icount) ! 140
C....upper portion ! 141
answer(lastrow)=answer(lastrow)+coefs(icount)*rhs(jcoln) ! 142
C.....lower portion ! 143
answer(jcoln)=answer(jcoln)+coefs(icount)*rhs(lastrow) ! 144
13 continue ! 145
C.... write(6,*) 'MVSPARU: check point # 41'
C.....for this case (left over 1 row from unrolling),there is NO 2 FULL ! 146
C....little triangular portions ! 147
goto 789 ! 148
C...
C.....find the row (equation) number of the next supernode ! 149
789 i=i+jj ! 150

C.... write(6,*) 'MVSPARU: check point # 41"

C.... write(6,*) ' MVSPARU: i=",i
if(i.lt.n) go to 1000 ! 151
return

end

10.8.3 Modifications for the chained list array ICHAINL(-)

The chained list strategies discussed earlier in Section 10.5 need to be modified in order
to include the additional information provided by the MASTER dof (refer to, for
example, Eq. 10.54). The major modification that needs to be done can be accomplished
by simply making sure that the chained list array ICHAINL(-) will be pointing only
toward the Master dof (and not toward the slave dof?)
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10.8.4 Sparse numerical factorization with unrolling strategies

The vector unrolling, and loop unrolling strategies that have been successfully
introduced earlier in Refs [10.1-10.2] for skyline and variable bandwidth equation
solvers, can also be effectively incorporated into the developed sparse solver (in
conjunction with the Master dof strategies).

Referring to the stiffness matrix data shown in Eq. (10.53), for example, and
assuming the first 10 rows of [U] have already been completely factorized, thus our
objective now is to factorize the current i (= 11") row.

By simply observing Eq. (10.53), one will immediately see that factorizing row
#11 will require the information from the previously factorized row numbers 1, 2, 3, 6,
7, 8,9, and 10 (not necessarily to be in the stated increasing row numbers!) in the
“conventional” sparse algorithm. Using “loop-unrolling” sparse algorithm, however, the
chained list array ICHAINL(-) will point only to the “master” dof #6, #7 and #1.

The skeleton FORTRAN code LDL" (with full matrix) shown in Table 10.1
(refer to Section 10.2.2) should be modified as shown by the pseudo, skeleton
FORTRAN code in Table 10.7.

Table 10.7 Pseudo FORTRAN skeleton code for sparse LDLT factorization
with unrolling strategies

1 c ... Assuming row 1 has been factorized earlier

2 DO111=2,N

w

DO 22 K = Only those previous “master” rows which have
contributions to current row |

c ... Compute the multiplier(s) (Note: U represents L")
NSLAVEDOF = MASTER(]) - 1
XMULT=U(K, )/ U (K, K)
XMUL,=UK+m,I)/U K +m,K +m)

c ... m=1,2, ... NSLAVEDOF
DO 33 J = appropriated column numbers of “master” row #K
ud, )=ud,J)- XMULT * U(K, })

-XMUL_, * UK +m,J)
33 CONTINUE
UK, I) =XMULT
U(K+m, I) = XMUL,,
22 CONTINUE
11 CONTINUE

O O 0 99 N s

[ —
—_
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More detailed computer codings for sparse LDLT factorization with “loop-unrolling”
(level 8) strategies are given in subroutine numfa8, shown in Table 10.8.

Table 10.8 Detailed computer codings for numerical sparse factorization
with unrolling strategies

subroutine numfa8(n,isr,icn,ad,an,iu,jcn,di,un,ichain,kupp,isupd,iopf, ! 001

$ ME,maxnp) ! 002
C......purpose: numerical factorization ! 003
C.....this portion of numerical factorization has unrolling level 8 ! 004
implicit real*8(a-h,0-z) ! 005
dimension isr(*),icn(*),ad(*),an(*),iu(*),jen(*),di(*),un(*) ! 006
dimension ichain(*),kupp(*),isupd(*) ! 007
C....DEFINITIONS ! 008
C....input:  isrjicn,an,ad given matrix A in RR(U)U. ! 009
C.. iu,jen structure of resulting matrix U in ! 010
C... RR(U)O. ! 011
C.... n order of matrices A and U. ! 012
C....output: un numerical values of the nonzeros of ! 013
C.. matrix U in RR(U)O. ! 014
C.... di inverse of the diagonal matrix D. ! 015
C..... working space: ichain of dimension N. Chained lists of rows ! 016
C... associated with each column. is differnt ! 017
C.. from the one in symbolic ! 018
C.. kupp of dimension N. Auxiliary pointers to ! 019
C.. portions of rows. ! 020
C... di is used as the expanded accumulator. ! 021
DO 10J=IN ! 022

10 ichain(J)=0 ! 023
DO 130I=1,N ! 024
write(6,*) ***> = <k | 025
IH=I+1 ! 026
icuu=IU(I) ! 027
ibuu=IU(IH)-1 ! 028
write(6,*) 'TH, icuu, ibuu=",ih,icuu,ibuu ! 029
IF(ibuu.LT.icuu)GO TO 40 ! 030
DO 20 J=icuu,ibuu ! 031

20 DI(jen(J))=0. ! 032
TIAA=isr(I) ! 033
IAB=isr(IH)-1 ! 034
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write(6,*) 'TAA,IAB=',iaa,iab !
IFIAB.LT.JAA)GO TO 40 !
DO 30 J=IAA,IAB !
30 DI(icn(J))=AN(QJ) !
40 DI(D=AD() !
LAST=ichain(I) !
write(6,*) 'LAST=",last !
IF(LAST.EQ.0)GO TO 90 !
LN=ichain(LAST) !
write(6,*) 'LN=",In !
loop=8 !
50 L=LN !
write(6,*) 'L=",1 !
LN=ichain(L) !
m= min(i-l,isupd(l)) !
iend=(m/loop)*loop !
isbegin=I !
isend=I+iend-1 !
write(6,*) 'LN,m,iend,isbegin,isend=',In,m,iend,isbegin,isend !
IUCL=kupp(isbegin) !
icul=iucl !
IUDL=IU(isbegin+1)-1 !
write(6,*) 'TUCL,icul, JUDL= ',iucl,icul,iudl !
kupp(l)=iucl + 1 !
length=IUDL-IUCL+1 !
write(6,*) 'kupp(,L,")="kupp(l) !
write(6,*) 'length=",length !
do is= isbegin,isend,8 !
IUC2=IU(is+2)-length !
IUC3=IU(is+3)-length !
[UC4=IU(is+4)-length !
IUC5=IU(is+5)-length !
IUC6=IU(is+6)-length !
TUC7=IU(is+7)-length !
iuc8=IU(is+8)-length !
write(6,*) 'is,JUCL,IUC2,...,JUC8=",is,IUCL,IUC2,IUC3,IUC4 !
$ ,JUC5,IUC6,IUC7,IUCS8
UMI1=UN(IUCL)*DI(is) !
UM2=UN(IUC2)*DI(is+1) !

035
036
037
038
039
040
041
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UM3=UN(UC3)*DlI(is+2) !
UM4=UN(IUC4)*DI(is+3) !
UMS=UN(IUCS5)*DI(is+4) !
UM6=UN(IUC6)*DI(is+5) !
UM7=UN(IUC7)*DI(is+6) !
UMS8=UN(IUC8)*DI(is+7) !
DO 68 J=IUCL,IUDL !
JJ=jen(J) !
68 DI(JJ)=DI(JJ)-UN(J)*UM 1-un(iuc2-iucl+j)*um?2 !
+  -un(iuc3-iucl+j)*um3-un(iucd-iucl+j)*um4 !
+  -un(iuc5-iucl+j)*umS-un(iuc6-iucl+j)*umé !
+  -un(iuc7-iuclHj)*um7-un(iuc8-iucl+j)*ums !
UN(IUCL)=UM1 !
un(iuc2)=um?2 !
un(iuc3)=um3 !
un(iuc4)=um4 !
un(iuc5)=um5 !
un(iuc6)=umé6 !
un(iuc7)=um7 !
un(iuc8)=umg !
iucl=iu(is+9)-length !
iudl=iucl+length-1 !
write(6,*) TUCL,IUDL=",iucl,iudl !
enddo !
C.....lIoop of level 7,6,5,4,3,2,1
iloop=m-iend !
write(6,*) 'iloop = m-iend = ',iloop !
if (iloop.eq.0) go to 77 !
go to(1,2,3,4,5,6,7)iloop !
goto 77 !
CRRAAERARAAAAAAAEA

‘ 1 is=isend+1 !

i
|
|
|

UMI1=UN(IUCL)*DI(is) !
DO 61 J=IUCL,IUDL !
JJ=jen(d) !

61 DIJNH=DIJJ)-UNJ)*UM1 !
UN(IUCL)=UM1 !
write(6,*) 'is,IUCL=",is,IUCL !
goto 77 !
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2 is=isend+1 !
IUC2=IU(is+2)-length !
UMI1=UN(IUCL)*DI(is) !
UM2=UN(IUC2)*DI(is+1) !
DO 62 J=IUCL,IUDL !
JJ=jen(J) !
62 DI(JJ)=DI(JJ)-UN(J)*UM l-un(iuc2-iucL+j)*um2 !
UN(IUCL)=UM1 !
un(IUC2)=um2 !
write(6,*) 'is,IUCL,IUC2=",is,JUCL,IUC2 !
goto 77 !
CRRRRAAAAAA
3 is=isend+1 !
[UC2=IU(is+2)-length !
IUC3=IU(is+3)-length !
UMI1=UN(IUCL)*DI(is) !
UM2=UN(IUC2)*DI(is+1) !
UM3=UN(IUC3)*DI(is+2) !
DO 63 J=IUCL,IUDL !
JJ=jen(d) !
63 DI(1J)=DI(JJ)-UN(J)*UMI1-un(iuc2-iuci+j)*um2 !
+  -un(iuc3-iuckj)*um3 !
UN(IUCL)=UM]1 !
un(iuc2)=um?2 !
un(iuc3)=um3 !
write(6,*) 'is,[IUCL,IUC2,...,IUC3=",is,IUCL,IUC2,IUC3 !
goto77 !
CRREAEMEEAEREA®@
4 is=isend+1 !
TUC2=IU(is+2)-length !
IUC3=IU(is+3)-length !
IUC4=IU(is+4)-length !
UMI1=UN(IUCL)*DI(is) !
UM2=UN(IUC2)*DI(is+1) !
UM3=UN(UC3)*DI(is+2) !
UM4=UN(IUC4)*DI(is+3) !
DO 64 J=IUCL,IUDL !
JJ=jen(J) !
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C

64 DI(JJ)=DI(JJ)-UN(@3)*UM1-un(iuc2-iucl+j)*um?2 !

+  -un(iuc3-iucl+j)*um3-un(iucd-iucl+j)*um4 !
UN(IUCL)=UM1 !

un(iuc2)=um?2 !

un(iuc3)=um3 !

un(iuc4d)=um4 !
write(6,*) 'is,JUCL,IUC2,...,JUC4=',is,JUCL,IUC2,IUC3,IUC4 !
goto 77 !

@RAEEEEACAREAECEW

5 is=isend+1 !

IUC2=IU(is+2)-length !

TUC3=IU(is+3)-length !

IUC4=IU(is+4)-length !

TUCS5=IU(is+5)-length !
UM1=UN(IUCL)*DI(is) !
UM2=UN(IUC2)*DI(is+1) !
UM3=UN(IUC3)*DI(is+2) !
UM4=UN(IUC4)*DlI(is+3) !
UMS5=UNUCS)*DI(is+4) !

DO 65 J=IUCL,IUDL !

JJ=jen(J) !
65 DI(JJ)=DI(JJ)-UN(J)*UMI-un(iuc2-iucl+j)*um?2 !
+  -un(iuc3-iucl+j)*um3-un(iuc4-iucl+j)*um4 !
+  -un(iuc5-iucl+j)*ums !

UN(UCL)=UM1 !

un(iuc2)=um?2 !

un(iuc3)=um3 !

un(iuc4)=um4 !

un(iucS)=um5 !

goto77 !

CRRAREREAREEEE

6

is=isend+1 !
IUC2=IU(is+2)-length !
IUC3=IU(is+3)-length !
IUC4=IU(is+4)-length !
IUC5=IU(is+5)-length !
IUC6=IU(is+6)-length !
UMI1=UN(IUCL)*DI(is) !
UM2=UN(IUC2)*DI(is+1) !

146
147
148
149
150
151
152
153

154
155
156
157
158
wﬂ
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174

175
176
177
178
179|
180

181,
182
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UM3=UN(UC3)*DI(is+2) !
UM4=UNUC4)*DI(is+3) !
UMS=UN(IUCS5)*DI(is+4) !
UM6=UN(IUC6)*DI(is+5) !

DO 66 J=IUCL,IUDL !

JJ=jen(d) !
66 DI(JI)=DI(J])-UN(J)*UM 1-un(iuc2-iucl+j)*um?2 !
+  -un(iuc3-iucl+j)*um3-un(iuc4-iucl+j)*um4 !
+  -un(jucS-iucl+j)*umS-un(iuc6-iucl+j)*umé !
UN(IUCL)=UM1 !

un(iuc2)=um?2 !

un(iuc3)=um3 !

un(iuc4)=um4 !

un(iucS)=ums !

un(iuc6)=umé6 !

goto 77 !

CRRROREEREE

7

is=isend+1 !

[UC2=IU(is+2)-length !

IUC3=IU(is+3)-length !

IUC4=1U(is+4)-length !

IUC5=IU(is+5)-length !

[UC6=IU(is+6)-length !

IUC7=IU(is+7)-length !
UMI1=UN(IUCL)*DI(is) !
UM2=UN(IUC2)*DI(is+1) !
UM3=UN(IUC3)*DI(is+2) !
UM4=UN(IUC4)*DI(is+3) !
UMS=UNUCS)*DI(is+4) !
UM6=UN(IUC6)*DI(is+5) !
UM7=UN(IUC7)*DI(is+6) !

DO 67 J=IUCL,IUDL !

JJ=jen(J) !
67 DI(JJ)=DI(J1)-UN(J)*UM]1-un(iuc2-iucl+j)*um2 !
+  -un(iuc3-iucl+j)*um3-un(iuc4-iucl+j)*um4 !
+  -un(iucS-iucHj)*umS-un(iucé-iucl+j)*umé !
+  -un(iuc7-iucl+j)*um?7 !

UN(IUCL)=UM1 !

un(iuc2)=um?2 !

183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198

199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
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un(iuc3)=um3 !
un(iucd)=um4 !
un(iuc5)=ums !
un(iuc6)=umé !
un(iuc7)=um?7 !
goto 77 !
CRREEQEAEAAEAWEEAAEA®

77 continue !
if(icul.eq.iudl) go to 80 !
j=jen(icul+1) !
JJ=ichain(J) !
write(6,*) 'j=jen(icul+1)="j !
write(6,*) 'JJ=ichain(J)="jj !
IF(JJ.EQ.0) GO TO 70 !
ichain(L)=ichain(JJ) !
write(6,*) 'ichain(, L , ")=", ichain(L) !
ichain(JJ)=L !
write(6,*) 'ichain(’, JJ , ')=", ichain(JJ) !
GO TO 80 !

70 ichain(J)=L !
write(6,*) 'ichain(’, J , ")=", ichain(J) !
ichain(L)=L !
write(6,*) 'ichain(, L , ")=", ichain(L) !

80 IF(L.NE.LAST)GO TO 50 !

90 DI(I)=1.d0o/DI(}) !
IF(ibuu.LT.icuu)GO TO 120 !
DO 100 J=icuu,ibuu !

100 UN(J)=DI(jen(J)) !
write(6,*) 'isupd(i)=", isupd(i) !
if(isupd(i).eq.0) go to 130 !
J=jen(icuu) !
write(6,*) 'J=jen(icuu)=",j !
JJ=ichain(J) !
write(6,*) 'JJ=ichain(j)=",j !
IFJJ.EQ.0)GO TO 110 !
ichain(I)=ichain(JJ) !
write(6,*) 'ichain(', i, ')=", ichain(i) !
ichain(J))=I !

227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242

243!
244
245
246
247
248
249
250
251
252
253,
254|
255!
256
257
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write(6,*) 'ichain(, jj , )=", ichain(jj) ! 258
GO TO 120 ! 259
110 ichain(J)=I ! 260
write(6,*) 'ichain(, j , )=, ichain(j) ! 261
ichain(I)=I ! 262
write(6,*) 'ichain(, i, ')=", ichain(i) ! 263
120 continue ! 264
kupp(I)=icuu ! 265
write(6,*) 'kupp(, i, ")=", kupp(i) ! 266
130 continue ! 267
C......Store output results [arrays un(-) and di(-)] on fort*.files
999 return ! 268
end ! 269

Since the "key ideas" in sparse numerical factorization with unrolling strategies
has already been explained (please refer to Table 10.7), only "major differences"
between the detailed codes shown in Table 10.5 and Table 10.8 will be explained in the
following paragraphs (please refer also to subroutine numfa8, in Table 10.8).

Line 24: The current I'" row is being factorized
Line 45: Loop-unrolling level 8 is assumed
Lines 51-52: The beginning (isbegin) and ending (isend) row numbers of a group

of rows which have the same paterns (or same column numbers) of
nonzero terms are identified.

Lines 54-57: The starting location for the beginning row number (isbegin) is stored
in variable ICU1 (see Figure 10.13). The ending location for the
beginning row number (isbegin) is stored in variable IUDL (see
Figure 10.13).

length

1 1UDL
Icu2

Level 8 unrolling | These 10 rows
have the same
1cus nonzero patterns

Icus

Ll

j Remoining rows

Current Ith row is being factorized

Figure 10.13 Level 8 unrolling with some remaining rows

Line 59: Knowing the starting and ending locations for the beginning row
number (isbegin), the length can be computed (see Figure 10.13).
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Lines 62-69:
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In Figure 10.13, the current row #I is assumed to require the
information from the previously factorized row numbers 1 through
10. Furthermore, it is assumed that the first 10 rows will all have the
same nonzero patterns. Since loop-unrolling level 8 is used, the first
8 rows will be treated first, and then, the remaining 2 rows will be
treated separately.

The starting locations for rows 2 through 8 are computed in
lines 63 through 69 (please also refer to Figure 10.13). The 8
multiplier factors UM1 through UMS8 are computed in lines 71
through 78.

The inner-most do-loop 68 (see line 79) is expanded to make
sure that the contributions from the first 8 rows are all included in
factorizing the current row #I (see lines 81-84). Finally, the
factorized terms U(1, I), U(2, I), ..., U(8, I) are updated in lines 85
through 92.

It is important to realize that, although the computer codes shown in Table 10.8
look much more complicated than the earlier version (without using unrolling
strategies), it still looks very similar to the basic, skeleton code shown earlier in Table
10.7. In fact, lines 71 through 78 in Table 10.8 are completely equivalent to lines 5.1-
5.2 in Table 10.7. Lines 81-84 in Table 10.8 are completely equivalent to lines 7.1-7.2
in Table 10.7, and lines 85-92 in Table 10.8 are completely equivalent to lines 9.1-9.2

in Table 10.7.

The starting and ending locations for the first remaining rows (such as row #9,
shown in Figure 10.13) are calculated in lines 93 and 94, respectively.

Line 97:

Lines 99-100:

Lines 111-118:

Lines 229-242:

Line 249:

The number of remaining rows (such as rows 9-10, shown in Figure
10.13) of the same (nonzero patterns) group is calculated and stored
in variable "iloop".

Since loop-unrolling level 8 is assumed in the codes, the remaining
rows (of the same nonzero patterns group) can only be 0, or 1, 2, ...
, 7. Thus, the code will branch to lines 227, or 102, or 110, or 121, or
136, or 154, or 175, or 199, respectively.

For the example shown in Figure 10.13, since the number of

remaining rows iloop = 2, hence the code will branch to line 110.
These statements play the "same roles" as those which have already
been explained earlier, in lines 63-92.
The starting location for the previously factorized row #L is updated
to the next location (see ICUl + 1, on line 229), and the
corresponding column number is identified by the variable J (see line
229). The chained lists for "future" row #J (which will require the
previously factorized row #L) is prepared in lines 234-242.

This segment of the codes (lines 229-242) play the same
roles as described earlier in Table 10.5 (lines 33-37) for LDL” sparse
numerical factorization without using "loop-unrolling" strategies.
Check to see if the current row #I is a master, or slave row (or dof).
If row #I is a slave dof, then the code will branch to line 267 (to
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consider the next row I). However, if row #I is a master dof, then the
column number (corresponds to the first nonzero term of current row
#1) is identified in the variable J (see line 250). The chained lists for
"future" row #J (which will require the currently factorized row #I)
is prepared in lines 251-262.
This segment of the codes (lines 250-262) play the same
roles as described without using "loop-unrolling" strategies
Line 265: The currentearlier in Table 10.5 (lines 43-50) for LDLT sparse
numerical factorization first nonzero term of row #I is recorded in

array kupp(-)

10.8.5 Out-of-core sparse equation solver with unrolling strategies

For extremely large-scale applications, the available incore memory of even a
supercomputer may not be large enough to store the entire coefficient (stiffness) matrix.
Thus, one needs to assemble the coefficient matrix in a block-by-block fashion, where
a block may contain several rows (refer to Figure 10.14)

: T
— row
Block 1 RS T e
= <— row #81
Block 2
BIKk. 3 ¢4 x} <— row #312
e * <— row #324
[K] = <— row #401
Block 4
SYMMETRY

Block 5

Figure 10.14 Sparse coefficient (stiffness) matrix is stored in
blocks (of rows) in auxiliary storages.

The number of rows in each block will be determined by the available incore
memory and the sparsity of the matrix [K]. The available incore memory will be
partitioned into 2 blocks (A and B) as shown in Figure 10.15(a).



300 Parallel-Vector Equation Solvers for Finite Element Engineering Applications

Incore Memory Available for [K] Incore Memory Available for [K]
Block A Block B Block A Block B Block C
To store a
block of To store a block of “Currently” | ., . . .
« » “ . » . Previously” factorized
currently previously factorized row(s)
factorized factorized rows row(s)
row(s)
(a) 2-block partitioning scheme (b) 3-block partitioning scheme

Figure 10.15 Partitioning schemes for the available incore memory

Obviously, the size of block A (or block B) should be large enough to hold the
largest block shown in Figure 10.14. Block A is used to store “currently” factorized
row(s), while block B is used to store some (or all) “previously” and completely
factorized rows, which have contributions to currently factorized row(s). As an
example, considering the factorization of the first row of block #4 (or, say row #401 as
shown in Figure 10.14), and assuming the sequence of previously factorized rows
(which have contributions to the current row #401) to be in the following orders (using
the chained list array ICHAINL(-) discussed in Section 10.5): rows #324, 312, 81, 70,
60 and 53.

Thus, both previous blocks #3 and #1 will have to be brought (one at a time)
to the core memory (see block B of Figure 10.15a). In order to reduce the 1/O time,
whenever a block of rows (say, block #3 of Figure 10.14) is read into a core memory
(and resided in block B, see Figure 10.15a), this block of rows’ information should also
be used to “partially” factorize other “future” rows (if possible), in addition to factorize
the “current” i (=401*") row.

On some high-performance computers, where Buffer-In/Buffer-Out
capabilities (to do I/O and computation at the same time) are available (such as the
Cray-YMP, Cray C90, and Intel Paragon), alternative strategies (such as the one shown
in Figure 10.15b) should be considered. Using the 3-block partitioning scheme (as
shown in Figure 10.15b), factorizing row #401 can be done in the following fashions:

Step 1:  Buffer-In block #3 from the auxiliary storage into block B of the incore
memory
Step2:  Using block #3 to partially factorize the current row (say, row #401). While
these arithmetic computation is taking place, one can also buffer-in block #1
from the auxiliary storage into block C of the incore memory.
Step3:  When block #3 has been completely utilized to partially factorize the current
row, then
(a) Use block #1 to factorize current row #i;
(b) buffer-out block #3 to the auxiliary storage
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The above 3-step procedure can be repeated, until the current row #i is
completely factorized. Thus, the 3 incore memory blocks A, B & C should always be
occupied: block A is used to stored “currently” factorized row(s), blocks B & C are
used to store the “immediately needed,” previously factorized rows, and the “soon
needed,” previously factorized rows. These out-of-core strategies can be conveniently
represented in Figure 10.16

Incore Memory Blocks
Block A Block B Block C
Time = t “Currently” factorized “Immediately” neec?:;?ows
! rows needed rows
(Buffer-In)
« » . “Soon” « . "
Time =t, > t, Currentzwt;actonzed needed rows i?gj:gl?é?z
(Buffer-In)
« 2 . « . » “Soon”
Time =t, >, Currentzwgactonzed ::::;:gl?;:}; needed rows
(Buffer-In)
[13 b3 : “Soon” (43 b 3
Time=t,>1t, Currentzwf;actorlzed needed rows Illr:;:glf;iz
(Buffer-In)

Figure 10.16 Out-of-core sparse factorization using three in-core-memory blocks

10.9 Numerical Performance of the Developed Sparse Equation Solver

Based upon the discussions in previous sections, several practical finite element models
(such as Exxon Off-Shore Structure, High Speed Civil Transport Aircraft, Space Shuttle
Solid Rocket Booster, and Automobile Structure) are used to evaluate the performance
of the developed sparse solver. Since the codes have been written in standard
FORTRAN language (and without using any library subroutines), it can be ported to
different computer platforms (such as SUN-Sparc, IBM-R6000/590, Intel Paragon,
Cray-C90 etc ... .) with no (or minimum) changes to the codes. The accuracy of the
developed codes for solving system of linear equations can be measured by the Relative
Error-Norm (=R.E.N.) which can be computed as

_ 1K+ Z - fI
11

REN. (10.55)

Example 1: Exxon Off-Shore Structure
The finite element model for the Exxon model (refer to Figure 10.17) has been used
extensively in earlier research works [10.37-10.39]. The resulted system of linear
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equations from the Exxon model has 23,155 dof. The number of nonzero terms of the
original stiffness matrix is 809,427. Using the Nested-Dissection (ND) algorithm, the
number of nonzero terms (including “fills-in” terms) is 10,826,014. The relative error
norm (or R.E.N., defined in Eq. 10.55) and the wall-clock time is presented and
explained in Table 10.9.

It should be noted here that on the IBM-R6000/590 workstation, vector
capability is available. Thus, the time improvements by using “master” dof, and “loop
unrolling” strategies should be visible. Even though no efforts have been spent to utilize
the optimized compiler, “loop unrolling” strategies do help to reduce the wall clock time
by nearly a factor of 2 (wall clock time is dropped from 302.50 sec to 179.10 sec).

Table 10.9 Numerical performance of 4 practical finite element models

Total Total No. Nonzeros of
No. [K] Before (and after) Time
Example No. dof Factorization R.E.N. (in seconds)
657.50 (a)
1. Exxon 23155 809,427 (10,826,014) | 497 * 10" | 179.10 (b)
302.50 (c)
2. HSCT 16152 373,980 (2,746,286) 2.01*10° | 2.25 (d)
3. SRB 1,308,185 «ino | 12.5 (d)
54870 (11.987.067) 2.28*10
4. Car 6,267,099 «1no | 4478  (e)
263096 (36,744.123) 5.83*10
Notes:

(a) Sun-Sparc 20: time includes 1/0, symbolic factorization, numerical
“unrolling” factorization, forward/backward solution, R.E.N. computation

(b) IBM-R6000/590: (Peak Performance = 266 MFLOPS per node) same
discriptions as in (a)

(c) IBM-R6000/590: same descriptions as in (b), but NOT using “unroll”
strategies

(d) Single Cray-C90 processor: same description as in (a)

(e) Single Cray-C90 processor: (Peak performance = 980 MFLOPS per node)
Symbolic factorization = 2.09 seconds
Time to find “master” dof = 0.42 seconds
Numerical factorization = 41.33 seconds
Forward & backward solution = 0.94 seconds

() Peak performance (per node) on the Paragon and Cray-YMP are 75
MFLOPS, and 333 MFLOPS, respectively
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Example 2: High Speed Civil Transport (HSCT) Aircraft
The finite element model for the HSCT aircraft (refer to Figure 10.18) has been used
extensively in earlier research works [10.1-10.2, 10.7]. The resulted system of linear
equations from the HSCT model has 16,152 dof. The number of nonzero terms of the
original stiffness matrix is 373,980. Using the Modified Minimum Degree (MMD)
algorithm, the number of nonzero terms (including “fills-in” terms) is 2,746,286. The
relative error norm (or R.E.N., defined in Eq. 10.55) and the wall clock time is
presented and explained in Table 10.9.

The maximum value of the unknown vector (or maximum displacement) is
0.1134 and is occurred at the 27" DOF. The timing for error-norm check, reading input
files, symbolic factorization, ordering, numerical factorization and forward/backward
solutions are presented in Table 10.10. The flop-rates are also shown in Table 10.10.

500m ,
C 255 7 T

};

>

g
_l;_x_ 50

B / B
\ A BN
r
8

r=273 2 102
r,=35 6, =305 |
hy=30  op=6002°
hy=30  o.=31.66°

0p = 50.08°

Figure 10.17 TLP flexjoint geometry parameters

Figure 10.18 High speed civil transport (HSCT) aircraft

Example 3: Solid Rocket Booster (SRB) of Space Shuttle

The finite element model for the SRB (refer to Figure 10.19) has been used extensively
in earlier research works [10.1-10.2, 10.7]. The resulted system of linear equations from
the SRB model has 54,870 dof. The number of nonzero terms of the original stiffness
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matrix is 1,308,185. Using the Modified Minimum Degree (MMD) algorithm, the
number of nonzero terms (including “fills-in” terms) is 11,987,067. the relative error
norm (or R.E.N., defined in Eq. 10.55) and the wall clock time is presented and
explained in Table 10.9.

The maximum value of the unknown vector (or maximum displacement) is -
2.0619 and is occurred at the 47041 DOF. The timing for error-norm check, reading
input files, symbolic factorization, ordering, numerical factorization and
forward/backward solutions are presented in Table 10.11. The flop-rates are also shown
in Table 10.11.

I

Figure 10.19 Solid rocket booster (SRB) of space shuttle

Table 10.10 Sparse (incore) solver for the HSCT aircraft model

neq =16152
before fill-in, ncoff = 373980
after fill-in, ncof2 =2746286
Maximum displacement =0.1133645326777 at the 27-th dof
The summation of the displacements =90.66547130756
Absolute error norm ||Ax-bl| =4.029842721613E-4
Relative error norm | Ax-b || /]| b || =2.0149213608065E-6
Time for error norm check =2.6892126197993E-2
Time for reading files =7.579180090071
Time for symbolic factorization =0.147645148167
Time for reordering =0.123889385358
Time for numerical factorization =1.890624158667

' Time for forward/backward solution =6.0497589419981E-2
Total time =2.252237772942
Total operations in factorization =781071623
Total operations for forward/backward =11017444

‘MFLOPS for factorization =406.7645686811
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| MFLOPS for forward/backward = 182.1137685919 B

Table 10.11 Sparse (incore) solver for the space shuttle SRB model

neq = 54870

before fill-in, ncoff =1308185

after fill-in, ncof2 = 11987067

Maximum displacement =-2.061863838374 at the
47041-th dof

The summation of the displacements =13569.65122618

Absolute error norm ||Ax-b]| =1.729938340402E-2

Relative error norm || Ax-b || /|| b || =2.2804218761662E-9

Time for error norm check =9.1727875142851E-2

Time for reading files =37.15652628432

Time for symbolic factorization =0.588571548624

Time for reordering =0.528286334526

Time for numerical factorization =11.02692366666

Time for forward/backward solution =0.2415057814171

Total time =12.501004192

Total operations in factorization =5416379330

Total operations for forward/backward = 48058004

MFLOPS for factorization =491.1958671645

MFLOPS for forward/backward =198.9931823495

Example 4: Large-Scale Car Model

The finite element model for an automobile (see Figure 10.20) is used in this work
[10.40] to evaluate the performance of the developed sparse algorithm on large-scale
problems. The resulted system of linear equations from this car model has 263,096
dof. The number of nonzero terms of the original stiffness matrix is 6,267,099.
Using the Modified Minimum Degree (MMD) algorithm, the number of nonzero
terms (including “fills-in terms) is 36,744,123. The relative error norm (R.E.N.,
defined in Eq. 10.55) and the wall-clock time are presented and explained in Table
10.9. Other detailed results are presented in Table 10.12.

It is interesting to notice that for the example shown in Eq. 10.53, the
integer array “master” (shown in Eq. 10.54) has 9 zero values.

Since more zero values in array “Master” indicate that more “slave” dof
exists in the finite element model (and thus, better vector speed can be expected
from unrolling techniques). For this automobile finite element model, there are
227,975 zero values. The numbers of 1, 2, 3, 4, 5, 6, 7, 8, and larger than 8 are 3493,
2095, 2085, 275, 1398, 20816, 193, 86, and 4679, respectively.
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Figure 10.20 Finite element analysis of an automobile

Table 10.12 Sparse (incore) solver for the automobile model

neq =263096

before fill-in, ncoff = 6267099

after fill-in, ncof2 =36744123

Maximum displacement = 7.8424204546417E-6 at the
78977-th dof

The summation of the displacements =1.5413413603372E-4

Absolute error norm ||Ax-b| = 5.8339128095829E-7

Relative error norm || Ax-b {| /| b || =5.8339128095829E-9

Time for error norm check =0.439017051888

Time for reading files =4.0042494810001E-3

Time for symbolic factorization =2.099430224316

Time for reordering =1.802684694906

Time for numerical factorization =41.33246903718

Time for forward/backward solution =0.9438044399822

Total time =46.60164401246

Total operations in factorization =20750449948

Total operations for forward/backward = 147239584

MFLOPS for factorization =502.0375126715

MFLOPS for forward/backward =156.0064540518

10.10 FORTRAN Call Statements to SPARSE Equation Solver

Based upon the discussions in the earlier sections, FORTRAN computer codes for
the developed sparse equation solver has been written and presented in Table 10.13.
The required input data, and a sequence of FORTRAN call statements have been
presented in the main program, shown in Table 10.13 Explanations of the main
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program are given in the comment statements (inserted inside Table 10.13), and in
the following paragraphs:

Lines 1-5:
Line 8:
N
NCOEF

Lines 9-13:
.Line 14:
Lines 16-17:
Line 19:

Line 22:

Dimensions for various arrays are declared

Input variables N, NCOEF

= Size of the coefficient (stiffness) matrix (= number of rows)
Number of nonzero, off-diagonal (upper triangular) terms of
the “original” (stiffness) matrix

Input arrays (see explanations above)

To perform the symbolic factorization (see Section 10.5)

To perform the orderings for the matrix (see Section 10.5, Eqgs.
10.40-10.46)

To perform the sparse numerical factorization (with unrolling
strategies)

To perform the Forward and Backward solution phases

Table 10.13 Calling sequences for sparse equation solver with unrolling level 8

1 Cmain Program to Test NUMFASg8*
2 implicit real *8 (a-h, 0-z)
3 real *8 ad(100), an(10000), di(100), un(10000), b(100), x(100)
4 integer isr(100), icn(10000), iu(100), jcn(10000), ichain(100).
5 $ isupd(100), kupp(100), jsrt(100), jent(10000)
C
6 me=1
7 maxnp=1
8 read(5,*) n,ncoef 'number of rows, # nonzero off-diagonal terms
9 read(5,*) (isr(i), i=1, n+1) ! Starting locations of the first nonzero of
each row
10 read (5,*) (icn(i), i=1, ncoef) ! Column numbers (for each row)
11 read (5, *) (ad(i), i=1,n) ! Diagonal values
12 read(5,*) (an(i), i=1, ncoef) !off-diagonal values
13 read (5,*) (b(i),i=1,n)! Values of RHS vector
c
14 call symfact (n, isr, icn, iu, jen, ichain, ncoef2, ME, isupd, maxnp)
15 write (6,*) ‘passed symbolic factorization !”
16 call transa (n, n, iu, jcn, jsrt, jcnt)
17 call transa (n, n, jsrt, jent, iu, jcn)
18 write (6,*) ‘passed transa twice’
19 call numfa8 (n, isr, icn,ad, an, iu, jcn, di, un, ichain, kupp, isupd, iopf,
20 $ ME,maxnp)
21 write (6,*) ‘passed numerical factorization!’
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22 call fbe (n, iu, jen, di, un, b, x, iopb, isupd)
23 write(6,*) ‘passed forward/backward !’
‘24 stop

25 end

10.11 Summary

Detailed discussions for the proposed sparse equation solver have been presented in
this chapter. Both incore and out-of-core strategies have been explained. While the
very basic, key ideas for sparse equation solution is rather straight forward, effective
sparse solution can only by achieved by careful implementation of various
components in a sparse solution process. Successful sparse codes will require the
combinations of best available reordering algorithm(s), efficient usages of the
“chained list” and optimum utilization of the vector speed (saxpy and/or dot
operations) offered by modern high-performance computers. It has been
demonstrated that loop-unrolling techniques can be used effectively in conjunction
with sparse algorithms to fully exploit the vector capability of high-performance
computers. Numerical results presented in this chapter (on medium to large-scale
practical finite element models) have clearly indicated that the developed sparse
algorithms and software are accurate and highly efficient.

10.12 Exercises

10.1 For the given (stiffness matrix) data shown in Figure 5.27 of Chapter 5, and
using the sparse storage schemes described in Section 10.3
(a)  Define the integer array ISTARTROW(-), as explained earlier in Eq.
(10.16)
(b)  Define the integer array ICOLNUMC(-), as explained earlier in Eq.
(10.17)
(¢)  Define the real array DIAG(-), as explained earlier in Eq. (10.18)
(d)  Define the real array AK(-), as explained earlier in Eq. (10.19)
10.2 Using same data as in problem 10.1:
(a)  Without any actual computations, identify all possible fills-in
factorized terms from Figure 5.27
(b)  Define the integer array JSTARTROW(-), as explained earlier in Eq.
(10.20)
(c)  Define the integer array JCOLNUMC(-), as explained earlier in Eq.
(10.21)
(d)  After symbolic factorization phase, do we need to perform
“ordering” phase for row #15 (as explained in Eqs. 10.40-10.46)?
Explain your reason(s)?
10.3 For the data shown in Figure 5.27, assuming loop-unrolling level 9 is used.
Find the integer array MASTERC(-), as explained earlier in Eq. (10.54)?
10.4 Re-do problem 10.3, if loop-unrolling level 4 is used?
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10.5

10.6

For the data shown in Figure 5.27, without using loop-unrolling strategies
(thus, loop-unrolling level 1 is assumed!), following the steps 0-3 (shown in
Egs. 10.22-10.35) to define arrays ICHAINL(-), LOCUPDATE(-), only for
the first S rows of figure 5.27?

Re-do problem 10.5, if loop-unrolling level 4 is used?
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1 1 Algorithms for

Sparse-Symmetrical-Indefinite and
Sparse-Unsymmetrical
System of Equations

11.1 Introduction

For certain important classes of engineering and science applications [11.1-11.5], the
coefficient matrix of the system of linear equations is no longer “positive definite.”
Instead, it can be symmetric (or unsymmetric) and/or “indefinite” matrix. For these
problems, pivoting strategies [11.6-11.10] are often required in order to avoid numerical
difficulties. For symmetric, positive definite matrix [11.11-11.19], since pivoting
strategies are not required, thus it is relatively easy to accurately “predict” the amounts
of fill-in terms during the factorization process. In fact, upon completion the symbolic
factorization (as discussed in Section 10.5), the exact dimensions for the (soon to be)
factorized matrix can be determined, hence exact memory allocations can be assigned
to the factorized matrix.

However, when pivoting strategies are required, one has to switch row(s) and
column(s) of the matrix. These actions will change the fill-in patterns of the coefficient
matrix. Furthermore, since pivoting strategies may be required at any stages during the
factorization process, it is quite difficult to have a precise prediction on the total
numbers of fill-in terms “before” entering the numerical factorization phase! For these
reasons, it is proposed in this work that symbolic and numerical factorization will be
executed simultaneously in a row-by-row fashion.

11.2 Basic Formulation for Indefinite System of Linear Equations

Without losing any generality, it is assumed that the original coefficient (stiffness)
matrix has a zero value (at the first diagonal location) as shown in Eq. (11.1).

311
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olxlolxlolx X
x|ololx]o X X
x|{olx|o X
x|x|o X | x|[x
X | X X
X X
olx|olx]olx
[K] = s |y |m x|lolo|x]|o (11.1)
xlolx|o[x
x|xlo
X | x X
X | x
X
X
X

In Eq. (11.1), the symbol “x” represents a nonzero value, and row #1 is referred to as
“sick” row (please notice a zero value on the diagonal term of row #1). Equation (11.1)
can be symbolically represented as

Ay Ay
[K]=| A, Ay (11.2)

Where, using the data shown in Eq. (11.1), one can identify:

[4,] = 2 §}=a 2x2 symmetrical, square submatrix = Z:; Z; (11.3)
[4,,] = a 2x13 rectangular submatrix = [A,]" (11.4)
[4,,] = a 13x13 symmetrical, square submatrix (11.5)

Case 1: Two-by-Two (2x2) Block Pivoting, With Remaining Block Factorization
Assuming the submatrix [A,,] is non-singular, Eq. (11.2) can be factorized (in the
partitioned form) as:

In Eq. (11.5a), the following sub-matrices are defined:

A Ay - Ly, 0] D, ©
Ay Ayl Lo Ly|| 0 Dy

T T
Lll LZl

g 11.5a
0 L, ( )

[L,,]is a2 x 2 identity matrix

[L,,] is a J x J identity matrix (where J=13, according to the assumed
dimensions shown in Eqgs.11.2-11.5).

[L, ] is aJ x 2 rectangular matrix
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[D,,] is a 2 x 2 non-diagonal matrix

[D,,] is a J x J non-diagonal matrix
In this case, the unknowns are [L,,], [D,,] and [D,,}. Expanding the right-hand-side of
Eq. (11.5a), and realizing that [L,,] and [L,,] are identity matrices, one has:

T
Ay Ay, - Dy, D, Ly
a Ay

T 11.5b
LoDy Ly Dyy Ly +Dy ( )
Comparing both sides of Eq. (11.5b), one obtains:
D, =4, (11.5¢)
Ly = D' 4, (11.5d)
T
Dy, = Ay ~ Ly Dy Ly, (11.5¢)
Substituting Eq. (11.5d) into Eq. (11.5€), one obtains:
-1 T
Dy, = A4y, =45 Dy 4y, (11.59)

Thus, either Eq. (11.5¢), or Eq. (11.5f) can be used to compute the unknown sub-matrix
D,,.

Rotation Matrix [R]:
The sub-matrix [D,,], defined in Eq. (11.5¢c), can be made a diagonal
matrix [D,,] by the following transformation:

D, 0| |rRo|ID, O
O D,| [0 I

0 D,,
In the above equation, [R] = [®] = [Eigen matrix of D,,], such that R'R =1 =
RRT (or RT = R"). Substituting Eq. (11.5g) into Eq. (11.5a), one has:

T
[‘% (1’] (11.5g)

A Ap| _ILyR 0 } D, 0 |R Ly R7Ly (11.5h)
Ay Ap| LR Ly | 0 Dyl 0 L,
Since L,, and L,, are identity matrices, hence Eq. (11.5h) becomes:
All AlZ — RDI'IR ' RDI*IR TLZT .
L o4 l* R e T (11.5i)
2 42| |L,RD\R" L, RDR'Ly+D,,
Comparing both sides of Eq. (11.5i), one has:
Dy = R74,R (11.5j)

L) = RID;1"' R4, (11.5Kk)
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or

L, = A,R[D;\I"'RT (11.5)

« T
D,, = A,,-L, RD,, R TL21 (11.5m)

Example 11.1:
The system of equations [A] {x} = {b} is given, where:

0 -1 0 0
-2
] -1 2 -1 0 4 ¢b) 0
0 -1 2 -1 <1)
0 0 -1 1

Our objectives here are simply to find the LDLT (without using the rotations matrix [R])
factorization of the given matrix [A]. From Eq. (11.5 c), one has:

21
0 - -2 -1 )
[D,)=[4,,] = ® Thus, Dl"ll 110 _ (11.5n)
12 n -1 0

From Eq. (11.5d), one obtains
Ly = D))" 4] = H “01} [_01 8] - Ll) 8} (11.5p)
From Eq. (11.5f), one has

[Dy] = [Ap]-14,] [Dn]_l [A21]T

wa-[3 3 dl[z L g [ )b g

2 -1
Dy, 2[—1 1

The LDLT factorization of A, in the partitioned form, can be expressed as shown in Eq.
(11.5a):

11 A12
AZI A22

(11.5q)

T

T
Lll 0 Lll LZl

L21 LZZ

D, 0
0 D,

0 Ly

In the above matrix equations, submatrices [L,,] and [L,,] are identity matrices.



Duc T. Nguyen 315

Furthermore, the above matrix equations are satisfied when all submatrices (in left-hand-
side and right-hand-side) of the above equations are replaced by their numerical values.

Example 11.2:

Using the same data as shown in Example 11.1, and using the rotation matrix [R] to
factorize the given matrix [A] according to Eq. (11.5h), one has:

[T] = Eigen matrix of [D,,], such that T'T = [I] = TT"

-4 -1
Hence from Eq. (11.5n), one obtains: det'o =0=-21 + A*-1 The 2 roots (or

-1 2-A

eigen values) can be computed as :

A =1-y2

A:gfi‘/g:%_i_‘/_i = 1% /2. Therefore, A,=1 +/2

®For A=A,=1-y2
From the eigen-equations [D,,] {¢} =A{d}, one has
2-1 -1 |
V2 d)l‘ = {8} (11.5r)
-1 1+/2 ¢,

Letting d): =1, Eq. (11.5r) can be solved and normalized as

= 1 * ;
o0 - {ﬁ —1} ( 1.0824)

1

1.0824
) -
or ¢ 0.4142

1.0824

®For A=A,=1+/2
Similar to Eq. (11.5r), one obtains

-1-/2 -1 dﬁ 0
- { } (11.5s)
-1 l—ﬁJ 2 0

Letting d)le , Eq. (11.55) can be solved and normalized as
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o - {-11—J§ }(__)

1

¢ 2.6131

or $@ = =
o’ -2.4142
2.6131

The rotation matrix [R} which consists of the eigen-vectors of [D,,] can be given as

1 1

&) - o 10820 Zeial | _[09239 03827
04142 -24142| ~ |93827 -0.9239

1.0824 2.6131 |

Since:
&'® =1=00" =TT = TT7
Therefore, from Eqgs. (11.5j) and (11.5n), one has:

oty 209239 0382710 -1][0.9239 0.3827
Dy = R AnR“[O.3827 —0.9239” H

-1 2]]0.3827 -0.9239
. -04142 0 , . .
no= . Thus, the inverse of D,; can be obtained as:
0 2.4143
ey 7241430
Dyl =
0 0.4142

From Eq. (11.5k), one obtains:

B 0 0.4142] |0.3827 -0.9239j (-1 0

LT 0.9239 0.3827 | |-2.4143 0 0.9239 03827 (|0 O
2t 7 10.3827 -0.9239

r_ {10 0.9239 0.3827 | |1 0| _10.9239 0

.
L, = [O 0] . Therefore, one computes: R'L,, = [0.3827 _0‘9239} [O O] = [0.3827 O]

From Eq. (11.5 m), one obtains

D.. - 2 -1] |1 0]{0.9239 0.3827 ||-0.4142 0 0.9239 0.3827 (|1 0
2 -1 1 0 0f[0.3827 -0.9239 0 2.4143(0.3827 -0.9239| |0 O

X
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Thus, from Eq. (11.5h), one does verify that the following equation is correct:

0 -1 0 0} (05239 03827 0 0{|-04142 0 0 0/]0.9239 0.3827 0.9239 0
-1 2 -1 0}_{03827 -0.9239 0 0 0 24143 0 003827 -0.9239 0.3827 0
0 -1 2 -1/109239 03827 1 0 0 0 2 -1 0 0 1 0
0 0 -1 1 0 0 01 0 0 -1 0 0 0 1

Case 2: Two-by-Two (2x2) Block Pivoting, with Remaining Row-by-Row Factorization
Assuming the submatrix [A,,] is non-singular, then Eq. (11.2) can be factorized as
indicated in Eq. (10.9), or as shown in the following partitioned form (see Figure 11.1):

An A 1 1 O UL

O
= XX
Agg \xK\zQ O 2 O 2 x
X X

Ay L2y

Figure 11.1 LDLT with 2x2 block pivoting

In Fig. 11.1, the submatrix [L,,] is a 2x2 identity matrix, the 2x2 submatrix
[D,,]is “NOT” a diagonal matrix, the JxJ submatrix [D,,] is a diagonal matrix (where
J=n-2, and n is the total number of degree-of-freedoms of the matrix [K], in Eq. 11.2),
the JxJ submatrix [L,,] is a lower triangular matrix with unit values on its diagonal, and
the Jx2 submatrix {L,,] is a rectangular matrix. Thus, in this case, the unknown sub-
matrices are sz, D,,, D,; and L,,.

Expanding the right-hand-side of Figure 11.1, one obtains:

’
A, Ay | Dy Dy Ly, (11.6)
Ay Ap| Ly, Dy Loy +L,,D, Lo ’

20 “nf Ly Dy Ly Dy Ly +LypDoyly

Equating both sides of Eq. (11.6), one has

D, =Ay 11.7)

Ly =Dy )4, (11.8)

Ly, Dy Ly, = A (11.9)

where ;

Ay = Ay Ly Dy, Ly, (11.10)

The basic procedures for a 2x2 pivoting strategies for sparse factorization can
be summarized in the following step-by-step algorithms:

Step 1: Eq. (11.7) is used to compute [D,]
Step 2: Eq. (11.8) is used to compute [ L,, ]
Step 3: Eq. (11.10) is used to compute [ 4, ]
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Step 4: Knowing [A4,,], its triple product L22D22L2§ can be computed in an usual
fashion as explained earlier in Section 10.6.

11.3 Rotation Matrix [R] Strategies

Since the 2 x 2 submatrix [D,,], shown in Figure 11.1, is a “non-diagonal” matrix,
factorizing the subsequent rows (after the “sick” row) are not convenient. These
inconveniences are mainly due to the facts that the previous rows which have the
contributions to the currently factorized i row can be processed 1 row at a time, with
the exception of the “sick” 2x2 block (which contains the sick row and the next row)!
Thus, it is desirable to uncouple the “sick” 2x2 block. In other words, one would like to
transform the non-diagonal matrix [D,,] into a diagonal matrix [D];], through the
following transformation.

D, 0=R0
0 D,| [0 [

In Eq. (11.11), [R] is the 2x2 rotation matrix whose columns are the normalized
eigenvectors of the 2x2 matrix [D,,]. The rotation matrix [R] is also normalized so that

[R][R]" = [1] = [R]" [R] (11.12)

From a geometry view point, the rotation matrix [R] can also be expressed as

D, 0

o' b, (11.11)

RT 0
0 17

_{cos@ -sinO
[R]_[sine cose]

In the above form, only 1 parameter (say, angle 8) needs be defined for recovering the
matrix [R]. Expanding the right-hand-side of Eq. (11.11), one obtains

Thus: D, 0 RDRT 0
= (11.13)
0 Dy 0 Dy
D, =R D,|R" (11.14)
or D/, =R"D,R (11.15)

Now, substituting Eq. (11.11) into the right-hand-side of the equation shown
in Figure 11.1, one obtains

. . T T
An 4| _[En 0 IR 0] Dy 0 [RI 0] Lo Ly (11.16)
AZI A22 LZI L22 0/ 0 D22 0 1 0 LZIZ
Expanding the right-hand-side of Eq. (11.16), one has
. T v, T
A Ap| _ LR 0 |ID) 0 RIL, Rll.',z' (11.17)
2 Ap|  [LyR Ly || 0 D, 0 Ly

where:
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[L11] = (e

[R] = Eigen-matrix of [D,,]

[D,,]1and [D,,] are defined in Eqgs. (11.14) and (11.15)
[L,,] and [D,,] are defined in Eq. (11.9)

[L,,]is defined in Eq. (11.8)

Example 11.3: Resolve the same example 11.1, using the formulation in case 2 with
Rotation matrix [R]. From Eq. (11.7),

[D,,1=14,,]1= 0 - ® Thus, [®=eigen-vectors ofD“]=[0.9239 0.3827 =
-1 0.3827 -0.9238
From Eq. (11.5j), one has [D,|]=[®]" {D”] [®]= “04laz 0
0 2.4143

-2 -1
From Eq. (11.8), one has [L,1]=[D,,]"" 4,, , where [D,]]"" = [ 1 0}

r|-2 -1[]0 Of (1 O T 0.9239 0.3827||1 O
2= = ®Therefore, R'L,, =
-1 0[(-1 0j]0 O 0.3827 -0.9238| (0 0
;o |09239 0
2 103828 0

From Eq. (11.10), one has 4,,=A4,,-L,,D,,L,;

- ]-b gl e g

.2
Azz:[—l 1}

1 0
00

From Eq. (11.9), 4,, can be factorized (in a row-by-row fashion, in actual computer
implementation) as:

Az; =L22D22L2§
2 -1f{_| 1 0|2 0fl -05
-1 1| °]-05 1[0 0.5/|0 1

From Eq. (11.17), one has:

or

0o -1 0 O 09239 03827 0 0][-04142 0 O 0 []0.9239 03827 09239 O
-1 2 -1 0] _ (03827 -09239 0 O 0 24143 0 0 ||0.3827 -0.9239 0.3828 O
0 -1 2 -1| 09239 03828 1 0 0 0 20 0 0 ! -0.5
0 0 -1 1 0 0 -05 1 0 0 005 0 0 0 1

In actual computer coding, the rotation matrix R need not be stored in the upper-left
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portion of [L], or [L]". Instead, only the row (or column) location of the “sick” row, and
one rotation angle 6 need to be stored, since these information will be used later during
the Forward and Backward solution phases.

Recalled: [R] = [®@ = Eigen Matrix] = [8%%%2 _0039822379]

(cos 22.5° =0.9239

Thus, we only need to store rotation angle 0 =22.5 sin 22.5° =0.3827) to recover

the rotation matrix [R].

Example 11.4:
The system of equations [A] {x} = {b} is given, where:

2 10 0 7 19
=100 8
7 4 89 8

It is noted that [A] is an indefinite matrix, since the eigenvalues of [A] have both

positive and negative eigen-values (according to MATLAB solutions!)

(a) Question 1: Find the LDLT factorization of A, by using the algorithm shown in
Table 10.1

(b) Question 2: Find the LDLT factorization of A, by using the algorithm shown in
Table 10.1, and by “pretending” row #2 is sick.

Solution for question 1 of this example is described in the following paragraphs (also

refer to Table 10.1):

Step 1: Factorize row #1 (temporarily assume row #1 is not changed!)
Step 2: Factorize row #2 (thus, [ =2)
K=1

XMULT = ﬂ%:l_ozs
u, 2 2 10 0 7
: -50 1 -31
J=2,0,® 1 8
1, ,=0-(5)*(u, ,=10)=-50 9

u2,3=1 -(5) *(u,_3=0) =1
u,,=4 -(5) *(“1,4=7) =-3]
ul‘2=5

Step 3: Factorize row #3 (thus, I = 3)
K=0,® "
XMULT= 13-
U

XMULT = %23__1
U, -50

>

J=0,®
Uy ,=1-(0)x(x)=1
1, ,=8-(0)*(x)=8

U390
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2 10 0 7

+1 51
woo=1+ — b *(. . =1)=22=1.02 -50 -0.02 -31
33 50 (45 )50 1.02 738
_e | *1 9
Uy, =8~ % *(uy = +31)=7.38
1, 3=~0.02
Step 4: Factorize row # 4 (thus, I = 4) ,
K=0,0,3
2 5 0 3.5
u - — -
XMULT=£=%=35 T 13
"1 -15.5 ,
J=@
Uy =9-(3.5)(u; ,=7)=-15.5
”1,4:3-5
Uu -
XMULT= 24-31 g6 - ;
uy, 50 2 5 0 35
-50 -0.02 0.62
J-4 1.02 7.38
Uy 4=-15.5+(0.62)(u, ,=+31)=3.72 3.72
1, ,=0.62
XMULT = %34 738 -,
Uy 1.02 2 5 0 3.5
J=® -50 -0.02 0.62
U, 4=3.72-(7.24)(uy ,=7.38)=-49.71 Lo2 704
u, ,=7.24 ' '
: -49.71
Hence:
21007 [1 o o o]f2 0 o o |15 o 35
100 14_|5 1 0 0f|lo-50 o0 0 ([0 1 -0.02 0.62
0 1 18 ]0 -002 1 ofl0 0 102 0 (00 1 724
7 4 89| [35 062 724 1|l0 0 0 -4979|[o 0 0 1

Solution for question 2 of this example is described in the following paragraphs (also
refer to Table 10.1)

Step 1: Factorize row #1 (temporarily assume row #1 is not chinged !)
Step 2: Factorize row #2 (thus, 1= 2)
K=1



322 Parallel-Vector Equation Solvers for Finite Element Engineering Applications

XMULT - u(1,2) _10_

u(l,1) 2 2 10 0 7
J=0,0,®
1y ,=0-(5)*u, ,=-50 -50 1 -31
uy,=1-(5)*u, ;=1 1 8
u2’4=4~(5)*(u1’4=7)=—31 9
“1,225

Step 3: At this stage, we “pretend” row #2 is the sick row!

Step 4: Factorize row #3 (thus, 1=3), by considering contribution from row #1 only!
K =1 (note: K =2 = “sick” row is not considered)

XMULT = 23 - l
” 2 10 0 7
1,1
-50 1 -31
J=0,®
1y 3=1-(0)%(x)=1 1 8
Uy ,=8-(0)*(x)=8 9
u1‘3=0 |

Step 5: Since the determinant of a 2x2 block is i_f 0 {‘#0, hence the 2x2 block is non-
singular (and no switching rows/columns required)

Step 6: Perform the 2x2 pivoting with rotation strategies

-50 1
. Therefore, [R}=[®]=

0.9998 0.0196

Since D,,=4,, =
-0.0196 0.9998

=[Eigen matrix of D,|]

From Eq. (11.15), one has
D = D, ® - [—50.(;)196 0 }
D—l:[-0.0196 0.0196] 4 ={_31}
1170.0196 0.9804) > “127| 8
From Eq. (11.8), one has LJ:DI“I1 x A, = {0'7647}
72353

31.1508}

Furthermore, R TAZT = R"4,= B
7.3910

Thus, currently we have

2 10 0 7
-50.0196 0 -31.1508
1.0196 7.3910
9

Step 7: Factorize row #4 (using contributions from previous rows) according to the
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normal procedure.
Using previous rows K =®, @, ®

_ u]»d 7 T .
MULT= 12 = = =35 |
u, 2 L2010 0 3.5
-50.0196 0  -31.1508
J=® 1.0196  7.3910
u, ,=9-(3.5)u, ,=7)=-15.5
, ; -15.5
U ,=3.5
%4 _31.1508 : S
MULT = 2£=2""7"2-0.6228
u,, 50.0196 2 10 0 35
7 -® -50.0196 0  0.6228 |
{uM =~15.5+(0.6228)(u, ,=+31.1508)=3.90 10196 7.3910
u,, = 0.6228 ' '
’ 3.9
U4 _7.3910
MULT = 24="27"2-72489
v.. 1019 2 10 0 3.5
o ‘ -50.0196 0 0.6228
{u“=3.9—(7.2489)(u3,4=7.3910)=—49.6768 1.0196  7.2489 |
u, ,=7.2489 -49.6768 |
Hence:
2 1007 1 0 0 0f]2 0 0 0 1 5 0 35
10 014 |5 09998 0.0196 0|i0 -50.0196 0 0 0.9998 -0.0196 0.6728
0 1 18 {0 -0019 09998 0|0 0 1.01096 0 0 0.0196 09998 7.2489
7 4 8 9 (35 06728 7.2489 1||0 0 0 -49.6768 | |0 0 0 1

11.4  “Natural” 2x2 Pivoting

The submatrix [A,,], shown in Eq. (11.3) and in Figure 11.1, has been assumed to be
non-singular. In practical computer implementation, the following procedure can be used
for determining whether or not submatrix [A,,] can pass the “non-singular” test.

To assure that submatrix [A,,] is “invertible,” in general, we would like to see
the determinant of [A,,] to be relatively large. In other words, since the diagonal term
(of submatrix [A,;]) on the “sick” row is very small (nearly zero), we prefer to have
(please refer to Eq. 11.3):

la,,| <max|a,|,r=2,3..N (11.18)

The inequality shown in Eq. (11.18) is necessary, since if required, we can
move max|a, | into the location of a,, (to achieve a large determinant of submatrix [4,,]).
To be even safer, the inequality Eq. (11.18) can be modified to
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la,,] <a *max]a,] (11.19)

The factor « has been suggested in Refs. [11.1, 11.3] as
a=(1+/17)/8 (11.20)

Thus, the diagonal term on the “sick” row of submatrix [A,,] will be much smaller than
its off-diagonal term.

To make the discussion more general, the “sick” row may occur at any row
(such as the k' row) instead of assuming to occur in row 1. Thus, Eq. (11.19) can be
generalized to:

la,| < a * max] a,], (11.21)
Equation (11.21), however, can only be applied for a “single” row. In order to make it
applicable also to a “2x2 block” row, the “concept” can be generalized to:

I[A,]] <@ *max {g,f', } (11.22)
The left-hand-side of Eq. (11.22) “looks” like a 2x2 matrix, but the right-hand-side
“looks” like a vector. Thus, for dimensional “compatibility,” Eq. (11.22) should be
modified as

x]1 * Y
[TAN] ¥4y <o * max a, (11.23)
+1,r
or {}}ﬂx +| 14,07 + {1} (11.24)
where vy = max|a,]
n= max fay,, | (11.25)
From Eq. (11.3), one has
I (11.26)
Ay Gy
Hence:
a2 1 lay|  |-ay,l
|[A”] | (D)* |-a,l la; | (11.27)
The scalar D, shown in Eq. (11.27), is the determinant of submatrix [A,,].
Eq. (11.27) can be symbolically represented as
byl 16y,
4.1 ] = |0l P )
|[ 11] | Iblzl !bzzl (11.28)
where
16, M (11.29)
&
by, = lon] (11.30)
D
b = 7%l 11.31
12 D (11.31)
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Substituting Eq. (11.28) into Eq. (11.24), one obtains

1 . 1,1 16),] , y}

{1}<“ 16y, Ibnl} {u (11.32)
1. [lbulv+ byl

{1}<0£ [|b12|Y+ by, 1 (11.33)

or 1<a(|by,ly+ 16),l1) (11.34)

re il balk) (11.35)

11.5 Switching Row(s) and Column(s) During Factorization

Up to this point, it has been assumed that one only has a single “sick” row. In other
words, the 2x2 block rows (which consists of a sick row, and its neighboring row) is
non-singular. If this is not the case, then row(s) and column(s) switching are necessary
for maintaining the numerical stabilities. In this work, the criteria used to determine
whether a row (or a block 2x2 rows) is sick are similar (but not exactly the same) to the
ones used in Ref. [10.27], and are illustrated in Figure 11.2 and Fig. 11.3.

Remarks:

1. Point F (on the “sick” row) is assumed to have the maximum value.

2. Point G (on the column which passes through point F) is assumed to have the
maximum value on column FLT, or (due to symmetry) on column FLJ

3. The good region #1, bounded by ABCDEFQO (except the “sick” row) is

assumed to have been factorized in a “normal” row-by-row fashion (no
switching rows and columns are required in this region). It is also assumed that
the factorized region BCDE is zero. Thus, triangular region HIN will “not” be
effected by those factorized rows in the good region #1.

4, Since the row(s) switching only occurs between the “sick” row, and the ' row,
the arrays [A(-) and JA(-) correspond to the triangular region LIN will not be
effected. It is noted here that arrays IA and JA have the same -definitions as
arrays ISTARTROW and ICOLNUM in Eqgs. 10.16, and 10.17, respectively.

5. After switching row(s) and column(s), the array 1A(-) and JA(-) need to be
constructed, which correspond to the “new” sub-matrix ODNU (thus, the
“sick” row will always appear as the 1* row of the “new” coefficient matrix!).
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A B C
X (
B N B B B R zero | wth row
' i region
| good region #1 E 9
; e e 2 E’i"’-‘ ------- "sick"™ row
' }
E 5! R 2 "si + 1" row
: | = L
A K §
— L ph row
| |
: ; N I rth row
: . . J
: ! : 1 vih
i : B EANEROR Rl
) ! 1 ! AR
: : L N
: : Lo {2 &1 — mtouched region
) i | i S
SR P N
U T

Figure 11.2 Switching row(s) and column(s) during factorization
(row #r is inside the partially factorized region OQDIH) .
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Figure 11.3 Switching row(s) and column(s) during factorization
(row # r is outside the partially factorized region OQDIH)
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Case 1: Only need to switch 1 row and 1 column

This is the case where point Q (on the “sick” row) has a (small) nonzero value
(see Figure 11.2). Switching row (and column) may not be required if point Q already
has a relatively large value. When a row (and a column) switching is required, row (and
column) number (sick +1) will be switched with row (and column) number (r). As a
consequence, the maximum value of the “sick” row (such as point F) will be moved to
the desirable location (such as point Q).

Case 2: Need to switch 2 rows and columns

This is the case where point Q (on the “sick” row) has a near zero value. This
option is needed if case 1 has failed (for example, the maximum value on the “sick” row,
point F in Fig. 11.2 or in Fig. 11.3, is too small). In this case, one will switch a row (and
column) number (sick) with row (and column) number (p). Then, row (and column)
number (sick +1) will be switched with row (and column) number (r). The objective here
is to move the maximum value (see point G) of column FGLT (or column FGLJ, due to
symmetry) to the location Q (on the sick row). It is also preferred to have small, or near
zero values for the diagonal of row # (sick) and row # (sick +1). Thus, compromised
strategies can be enforced to ensure the 2x2 block (= row # “sick,” and row # “sick+1",
after rows/columns switching occur) will have the following form (for numerical
stability purpose), as shown in Figure 11.4.

b |a | <= “sick” row

a | b | =>“sick+1"row

a= prefer to be a large number
b=prefer to be a near zero (small) number

Figure 11.4 A preferable 2x2 block matrix after rows and columns switching

The eigenvalues of the 2x2 block matrix, shown in Figure 11.4, can be computed as

(b-A)*-a?=0 (11.36)

If b is a small (say, near zero) number, then the above equation can be approximated as
Al=a? (11.37)

or A =+aand A, =-a (11.38)

The 2 eigenvalues of the 2x2 block matrix (see Fig. 11.4), therefore , are
preferred to have nearly same magnitude, with opposite signs, for numerical stability
purpose. It is also noticed that the determinant of the 2x2 block is not zero (or not nearly
Zero).

It should also be mentioned here that compromised strategies (trade off
between computational time, and solution accuracy) can be used by specifying the
constraint that the switched rows are preferable to be close to each other.

Case 3: Switching 1 or 2 rows/columns (#sick, and/or # sick +1) with 1 or 2
rows/columns (# j, and/or # k) which are “closest” to row numbers “sick” and
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“sick +1"
A 2 2 “sick” row = L" row

l b b’

B “sick +1” row = (L+1)" row
c c’
c d &

D j®row

[ e’
E o

¥ k" row, where L+2 <k <N

G (k +1)* row

N

Figure 11.5 Switching rows / columns which are closest to each other

Considering the k™ row, shown in Figure 11.5, a vertical line is then drawn
from point F. An “If” check is used to see if the 2x2 block matrix FaA is “invertible,”
if not, then the 2x2 block matrix FbB, or block matrix FcC, FdD, FeE etc... are checked.

Assuming the 2x2 block matrix FdD is invertible, then rows # j and k will be
switched with rows # L and # L+1, respectively.

On the other hand, assuming the 2x2 block FaA is invertible, then in this case,
one only needs to switch row/column # k with row/column # (L+1). However, if the 2x2
block FbB is invertible, then in this case, one only needs to switch row/column # k with
row/column # L.

If all 2x2 submatrices FaA, FbB,..., FeE (associated with k™ row) are NOT
invertible, then we’ll have to consider the next row (i.e., # row k+1), and the same
process is repeated (i.e., to check and see if there is any 2x2 block Ga’A, or Gb’B, or
...GFPF is invertible...)

Since the distance between rows # j and/or # k are closest possible to rows #
L and/or # L+1,
one may expect minimum fill-in term will be created due to these row(s)/column(s)
switching.

Another strategy has also been considered in our work, which is essentially
based upon the super node (or master node) idea, presented earlier in Section 10.8.1.
The “sick” row/column (and/or its next row/column) will be switched with the r™
row/column (and/or the p™ row/column), where we prefer to see the swapped
rows/columns to have similar non-zero patterns.

Assuming the “sick” row/column will be switched with the r* row/column, and
these 2 rows/columns have similar (say 90% or more) non-zero patterns. If this is the
case, then we can expect the extra “fills” created during the rows/columns switching will
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be minimized.
11.6 Simultaneously Performing Symbolic and Numerical Factorization

For symmetrical and positive definite system of equations, it is relatively simple to
predict the exact fill-in terms, before actually performing the numerical factorization. In
this case, one will perform the symbolic factorization phase for the entire matrix, and
then perform the numerical factorization phase for the whole matrix. For indefinite
system of equations, however, it is more feasible to adopt the strategy of simultaneously
performing the symbolic and numerical factorization in a row-by-row fashion. The main
difficulties are due to the fact that row(s) and column(s) switching may be required at
any stages during the numerical factorization process for indefinite system of equations.
The direct consequence is that the fill-in patterns will be changed whenever row(s) and
column(s) switching occur.

11.7 Restart Memory Managements

The focus of this section is to discuss the memory management schemes, in conjunction
with the developed 2x2 pivoting strategies for sparse, indefinite system of equations.
Figures 11.6(a) and 11.6(b) show the memory management schemes, which correspond
to Figures 11.2 and 11.3, respectively
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a) The case corresponds to Figure 11.2
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b) The case corresponds to Figure 11.3
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Figure 11.6 Memory management movements

Some Remarks About Figures 11.6(a) and 11.6(b):

[1] We assume the total dimension (or total incore memory) available for equation
solution is known.
[2] The known, fixed dimensions for integer arrays IA, and IU are placed at the

beginning (see region AEFB) of the total vector (see region AefB). The
remaining memories (see region EFef) will be divided into 2 segments (see
segment EFWX, and segment WXef), where the first segment (=EFWX) is
twice as big as the second segment (=WXef). The reason is because arrays UN
(NCOEF2) and AN (NCOEF) in the first segment are “real” arrays, while
arrays JU (NCOEF2) and JA (NCOEF) in the second segment are “integer”
arrays.

[3] Arrays AN(NCOEF), and JA (NCOEF) are placed at the end of 1* segment
=segment EFWX), and at the end of 2" segment (=segment WXef),
respectively. The dimensions for these 2 arrays are known. In Figure 11.6 (a)
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(4]

[5]

(6]
[7]

(8]

[9]

11.8

€))

(b)

©

and Fig. 11.6(b), the beginning of arrays UN, AN, JU and JA are indicated by
the lines EF, MN, WX and YZ, respectively.

In Figure 11.6(b), which corresponds to Figure 11.3, the arrays UN (NCOEF2),
AN (NCOEF), JUNCOEF2) and JA(NCOEF) each consists of 3 regions:
Good region (see region EGHF of Fig. 11.6(b), or region ABCDFQO of Fig
11.3) consists of rows#1 through # (sick-1), which can be factorized in a
normal row-by-row fashion.

Partially factorized region (see region GIJH of Fig. 11.6(b), or region OQFDIH
of Fig. 11.3) consists of rows # (sick+1) through #(v). These rows have been
“partially” factorized by (appropriated) previous rows #1 through # (sick-1)
Untouched region (see region SWXT, or region IKLJ in Fig. 11.6(b), or region
HIN in Fig. 11.3) consists of rows #(v+1) through #(N). These rows will not
be influenced by the factorized rows in the good region (see Fig. 11.3). The
untouched region can be further partitioned into 2 sub-regions, such as shown
in sub-region STVU (see Fig. 11.6(b), or sub-region HIJL (see Fig. 11.3), and
subregion UVXW (see Fig. 11.6(b), or sub-region LIN (see Fig. 11.3)
Row(s) and column(s) switching may occur anywhere between row # (sick) and
row # (r). Due to these rows/columns switching, the region GIKLJH (see Fig.
11.6(b)) may be either enlarged, or shrinked (since the fill-in patterns can be
changed for better or worse!), and this region (=GHLK, see Fig. 11.6(b)) will
be moved backward to the region OPVU (see Fig. 11.6(b). The edge KL (of
region GHLK) should be coincided with the edge UV (of region OPVU)
The edge OP (of Fig. 11.6(b)) will be the starting location for the new, reduced
matrix ODNU (shown in Fig. 11.3)

The memory management schemes presented in Fig. 11.6(a) (which
corresponds to Fig. 11.2, where r" row is inside the partially factorized region
OQDIH) is quite similar (and more simpler) as compared to Fig. 11.6(b). The
key difference between Fig. 11.6(a) and Fig. 11.6(b) is from the fact that since
row(s)/column(s) switching only occur between row #(sick), and row # (),
therefore, the entire untouched region HIN (see Fig. 11.2) will not be divided
into 2 subregions, as mentioned earlier in remark #4(c).

As the sparse numerical factorization process continues to progress, the “good
region # 1” (see Fig. 11.6(a), or Fig. 11.6(b) will continue to grow, while the
region OWXP of array AN (see Fig. 11.6(a), or Fig. 11.6(b), or region ODNU
of Figs. 11.2 and 11.3 will continue to shrink.

As the region OWXP (which is part of array AN) continues to shrink (see Fig.
11.6(a), or Fig. 11.6(b)). The region MOPN (which is also part of array AN)
will continue to grow. Furthermore, this region (=MOPN) can be used for the
expanded array UN. Thus, the unused and growing region MOPN of array AN
can be re-used (by the expanded array UN) to save the computer memory.

Major Step-by-Step Procedures for Mixed Look Forward/Look
Backward, Sparse LDL' Factorization, Forward and Backward Solution
with 2x2 Pivoting Strategies

The row-by-row sparse LDL factorization can be accomplished based upon either look
forward, or look backward strategies. In using “Look Forward Factorization” strategies,
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upon completing the currently factorized row, such as the w* row (shown in Fig. 11.2),

the factorized w™ row will be used to partially update (or factorize) all appropriately

remaining rows. Then, the w* row (and all its previous rows) will never be used (or
referred to) again! In using “Look Backward Factorization” strategies, the currently
being factorized row, such as the w" row (shown in Fig. 11.2), will have to refer to its
previously factorized rows. Furthermore, subsequent factorized rows (after w* row) may
still have to refer to the w" row again.

Major step-by-step procedures can be summarized in the following paragraphs:

Step 1:  From row #1 until the “sick” row, row-by-row “look backward factorization”
strategies can be used. Assuming the “sick row” occurs at row I=10 (refer to
Table 10.1). Thus, upon completely factorized by its appropriately previous
rows, the sick row #10 has U,, ;,, = 0. Hence, factorizing the next row (say
row I=11, see Table 10.1) will have the problem of dividing by zero (or U,
10), unless appropriated pivoting strategies are used.

Step 2: Check to see if 2x2 blocks (consists of “sick” row and “sick+1" row) is non-
singular (and stable) or not. If necessary, check to see if 1x1, or 2x2 pivoting
strategies are required (see Sections 11.1-11.4)

Step 3:  Using the completely factorized rows [from row #1 until (sick-1)* row] and
the “look forward factorization” strategies to partially factorize all remaining
rows [such as from row #(sick+1) until the last row #N}

Step 4:  Performing the appropriated row(s) and column(s) switching operations, and
memory management operations (as shown in Figures 11.6(a) & 11.6(b))

Step 5:  “New” definitions for arrays /4, ,,, JA,,,, AN,,,, etc... are defined for the
“new” (& reduced) stiffness matrix ODNU (see Fig. 11.2, or Fig. 11.3). In
this “new” stiffness matrix, the “sick” row maybe placed at either the first
row, or at some intermediate row (if the sick row has been switched with
another row).

Step 6: Repeat the procedures (until all rows of the original stiffness matrix have been
completely factorize) by returning back to step 1.

Step 7:  Forward and backward substitution phases can be done in a similar fashion as
explained in Chapter 10, with 2 special attentions:

(a) When row/column switching occurs during factorization phase, the
corresponding row switching need be done also for the RHS (Right-Hand-
Side) vector

(b) Operations involved the rotation matrix [R] during factorization need also be
done for the RHS vector.

11.9 Numerical Evaluations

In order to evaluate the performance (in terms of computational time, solution accuracy
and memory requirements) of the proposed sparse solver with pivoting strategies for
symmetrical, indefinite system of equations, 5 examples (ranging from 51 to 15,367
unknown degree-of-freedoms) are used in this study.

The numerical results are presented in Tables 11.1 and 11.2. The improved
performance can be achieved by applying the MMD re-ordering algorithm (to minimize
the fill-in terms) and by moving all zero diagonal terms (of the original stiffness matrix)
toward the bottom right of the original stiffness matrix.
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In Table 11.1, both Cray-YMP (single processor) computer and the IBM-
R6000/590 workstation are used in this study, and are shown in column 1. The total
number of equation (NEQ, or the total number of degree-of-freedom), and the total
number of nonzero coefficients (NCOEF) before factorization are shown in column 2.

For all S structural examples considered in this section, the resulting linear
system of indefinite equations, shown in Eq. 10.1 can be expressed in the following

form:
{i} = {lg} (11.39)

In Eq. (11.39), the vector Xcan be referred to as the “displacement” vector,
where as the vector & (which corresponds to the zero diagonal terms of the coefficient
stiffness matrix) can be referred to as the “Lagrange multiplier” vector. The bottom right
submatrix of the coefficient stiffness matrix (shown in Eq. 11.39) is a “zero” submatrix.

The 3™ column of Table 11.1 represents the summation of the (absolute)
unknown displacement vector X¥. The maximum (absolute) displacement component is
printed in column #4. The relative “displacement and Lagrange multiplier” error norm
can be calculated as (refer to Eq. 10.55, or Eq. 11.39)

_ IkzA
7

and is shown in column #6 (of Table 11.1). The 3 controlled parameters o, 3 (or
factored parameter) and y (or tuning parameter) are presented in column #7. Finally,
memory storage requirements are given in column #8. Impacts of the input controlled
parameters «, B and y on the algorithm performance are shown in Table 11.2 (Ncoef2
represents total number of nonzero coefficients after factorization).

A B
BT 0

REN.

(11.40)
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Table 11.1 Comparison of different indefinite sparse solvers

NEQ SUM (DISPL) MAX DISPLACEMENT CPU TIME RELATIVE ERROR CONTROL
NCOEF (SECONDS) (DISP + 1) PARAMETER
- Factor -
Twin
BOEING 2.265 *107 |1.999 * 107 ]0.041 7.0 *10M
CRAY 51 2.26499 *107 |1.999 * 107 [0.0036 1.152  *10" [0.1-1-1
STRETCH (218 2.2649 *107 11.999 * 107 |0.0 1.8 *10" 0.1-1-1
BOEING 3.1596564 0.15253658 0.245 4034 *10'°
CRAY 247 3.1596564 0.15253658 0.021 1.06757 * 10° |0.1-1-1
STRETCH {2009 3.1596564 0.15253658 0.0099=0.01 |7.06289 * 10"* (0.1-1-1
BOEING 29.68462 0.20289318 2.351 3.26 *107°
CRAY 1440 29.68462 0.20289318 0.571 1.184  *10° |0.1-1-1
STRETCH (22137 29.68462 0.20289318 0.299 6.728  * 10" 10.1-1-1
BOEING 34.7033 931212 * 107 |7.736 9.97 * 10"
CRAY 2430 34.672262 9.3111810 * 102 |6.136 12695 *10" 10.1-1-1
STRETCH |75206 34.700716 9.312068 * 102 [8.389 44253 * 10"
BOEING 512.35 0.205696 35.77 4384 * 10"
CRAY 15367 N/A N/A 36.62 273 *10®  0.1-1-1
STRETCH [286044 512.35488 0.2056969 =76 ** 1.70566 * 107'* ]0.1-1-1

Table 11.2 Parameters study for an indefinite sparse solver

CONTROL NEQ SUM (DISPL) | MAX DISPL CPU RELATIVE NUMBER | NUMBER | Ncoef2
PARAMETERS | NCOEF SECONDS ERROR OF 2X2 OF DIAG
(DISP + 1) PIVOTING INTER-
CHANGE
0.1-1.-1. 51 22649 * 107 [1.999 * 107 0.0 18 * 10™
218
0.1-1.-1. 247 3.159564 0.1525 3658 0.0099 7.06289 *10°"*
2009
0.1-1-1 1440 29.68462 0.20289318 0.299 6.728 * 102
22157
0.1-.1-1 2430 34.700716 9.312068 * 107 }8.389 4.4253 * 107
0.01-.1-1 75206 34.698586 9312042 * 10 |7.1599 8.7521 * 10 32 134 540109
0.
0.01-1-1 15367 512.35488 0.2056969 76 sec 9.922983 *10™" 45 446 6221192
0.005-.075-.1 286044 512.35488 0.205696% 1.1545 * 10" 37 432 6194548
0.1-1-1 51235488 0.2056969 1.70566 * 10 143 623 6452162

11.10 Some Remarks on Unsymmetrical-Sparse System of Linear Equations

For several important engineering and science applications, such as thermal-structural
analysis, linear programming, computational fluid dynamics etc..., unsymmetrical-sparse
system of linear equations can arise very naturally. Parallel-vector algorithms for full,
banded and variable bandwidths (for unsymmetrical system of equations) have been
discussed with great details in Chapter 8. Also, algorithms for sparse, symmetrical
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system of equations (with and without pivoting strategies) have been discussed with
great details in Chapter 10, (without pivoting), and Sections 11.1 through 11.7 (with
pivoting strategies). The sparse technologies discussed in Chapter 10 can be directly
used in conjunction with unsymmetrical-banded algorithms discussed in Chapter 8 for
designing efficient unsymmetrical-sparse algorithms. The resulting unsymmetrical-sparse
algorithms will have the following key components:

(@

(b)

©

The sparse, upper triangular portion of a given unsymmetrical coefficient, matrix
will be factorized essentially in the same row-by-row fashions as described in
Chapter 10.

The sparse lower triangular portion of a given unsymmetrical coefficient matrix
will be factorized in a column-by-column fashion [as the image, with respect to
the main diagonal, of step (a) above]

It is assumed that the given coefficient matrix is unsymmetrical with respect to
the numerical values, but is still symmetrical with respect to the non-zero
locations (see Figures 11.7 - 11.8)

b

1
RS
00 /O
O X~ a0 O
S o oo

Q ~~.0 9°

Figure 11.7 Matrix [A] is symmetrical in locations,
but unsymmetrical in numerical values

ao®p o
ode o f
B=|cgij o
oo kIl o
oh oom

Figure 11.8 Matrix [B] is unsymmetrical in both locations and numerical values

(d

(e)

6

The restrictions stated in (c) can be easily removed by sacrificing some
additional computer memory. For example matrix [B] in Fig. 11.8 can still be
considered as symmetrical in locations, if we consider the term B, ; = ®,and B,
= 0 as a non-zero term with its numerical value to be equal to zero!!

The MMD reordering and the symbolic algorithms (discussed in Chapter 10) can
still be applied to the unsymmetrical (with respect to numerical values only!)
matrix [A] of the type as shown in Fig. 11.7. However, upon exiting the MMD
reordering algorithm, special attention need be focused on the movements
(utilizing the integer array PERM obtained upon exiting from the MMD
algorithm) of non-zero terms (of the original unsymmetrical matrix [A]) to
different locations.

In item (e), the integer array PERM represents the “mapping” between the “old”
numbering system (before applying MMD algorithm) and the “new” numbering
system (after exiting MMD algorithm). For example: PERM (i) = j means the
“old” i* row/column of [A] becomes the “new”j * row/column.

The performance of the unsymmetrical sparse solvers (based on the key ideas
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presented in this section) is shown in Table 11.3, for the aircraft HSCT finite element
model.

It should be emphasized here that the HSCT finite element model will result in
system of “symmetrical” simultaneous equations where both unsymmetrical (see Table
11.3) and symmetrical (see Table 11.4) sparse equation solvers are used.

As can be expected, the computer core memory and the numerical factorization
time required by the unsymmetrical sparse solver (refer to Table 11.3) are both higher
than the ones required by the symmetrical sparse solver (refer to Table 11.4).

Table 11.3 Performance of “unsymmetrical” sparse solver for HSCT aircraft model
on IBM- R6000/590 workstation

Problem Characteristics

Number of Equations => NEQ =16146
Non-Zero before fill in => NCOEF =999010
Non-Zero after fill in => NCOEF2 = 6034566
Loop Unrolling Level => LOOP =8
Memory

Total Integer memory =3613667

Total real memory =7114306

Total memory =10727973

Error Norm Check

MAX ABS DISPL AT DOF 522 =0.447440400042149411
SUMMATION OF ABS DISPLACEMENTS = 301.291343623234013
THE ABSOLUTE ERROR IS || Ax-b | | =0.192431628765362175E-06

THE RELATIVE ERROR IS | | AX-b ||/ | [b| = 0.136069709614759900E-08

Timing

-TIME READ fort. FILES = 0.000000000000000000E+00
-TIME SYMFACT =0.479999989271163940
-TIME TRANSA =2.03999995440244675
-TIME SUPNODE before N =0.179999995976686478
-TIME NUMFA =28.7299993578344584
-TIME FBE =0.319999992847442627
-TIME SUPNODE After N =0.169999996200203896
-TIME MULTSPA =0.599999986588954926E-01
-TIME ERROR NORM =0.000000000000000000E+00
-TIME MMD REORDERING =0.1281261444E-01
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Table 11.4 Performance of “symmetrical” sparse solver for HSCT aircraft model on
IBM-R6000/590 workstation

Problem Characteristics

Number of Equations =>NEQ = 16146

Non-Zero before fill in => NCOEF =499505

Non-Zero after fill in =>NCOEF2 =3017283

Loop Unrolling Level =>LOOP =8

MEMORY

Total Integer Memory =3613667

Total real memory =3581372

Total memory =7195039

ERROR NORM CHECK

ABS DISPL AT DOF 522 =0.447440400042149411
SUMMATION OF ABS DISPLACEMENTS  =301.291343623234013
THE ABSOLUTE ERROR IS | | Ax-b | | =0.1924316228765362175E-06
THE RELATIVE ERROR IS [|AX-b||/||b]|| =0.136069709614759900E-08
TIMING

-TIME READ fort. FILES = 0.000000000000000000E+00
-TIME SYMFACT =0.479999989271163940

-TIME TRANSA =2.06999995373189449

-TIME SUPNODE Before N =0.169999996200203896

-TIME NUMFA =16.8799996227025986

-TIME FBE =0.309999993070960045

-TIME SUPNODE After N =0.169999996200203896

-TIME MULTSPA =0.399999991059303284E-01
-TIME ERROR NORM =0.000000000000000000E+00
-TIME MMD REORDERING =0.2609395981E-01

For the complete listing of the FORTRAN source codes, instructions on how to
incorporate this equation solver package into any existing application software (on any
specific computer platform), and/or the complete consulting service in conjunction with
this equation solver etc..., the readers should contact:

Prof. Duc T. Nguyen

Director, Multidisciplinary Parallel-Vector Computation Center
Civil & Environmental Engineering Dept.

Old Dominion University
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Room 135, Kaufman Building
Norfolk, VA 23529 (USA)

Tel= (757) 683-3761, Fax = (757) 683-5354
Email= dnguyen@odu.edu

11.11 Summary

An alternative formulation and new computational strategies have been developed for
solving general system of sparse-symmetrical- indefinite, and sparse-unsymmetrical
equations. Rotational matrix has been used to uncouple the 2x2 block diagonal matrix,
and therefore, greatly enhance the FORTRAN computer coding implementation. Mixed
“look backward factorization” and “look forward factorization” strategies have also been
employed. The computational efficiency, and the solution accuracy have been validated
by solving 5 indefinite system of equations (ranging from 51 to 15,367 unknown degree-
of-freedom). Further numerical performance improvements have been realized by using
MMD reordering algorithm (to minimize the number of fill-in) and by pushing all zero
diagonal terms of the original stiffness matrix toward the bottom right of the coefficient
matrix.

11.12 Exercises

11.1  Given the following system of equations [A] {x} = {b}, where:

0 -1 0 0 .
-1 3 -1 0 i
4=y 33 and{b}—:%

0 0 -1 2

(a) Following the procedure explained in Example 11.1, find the LDLT
factorization of [A]
(b) Find the forward and backward solution phases
11.2  Resolve the previous problem, and by using the rotation matrix [R] (see
Example 11.2)
11.3  Resolve the problem 11.1, by using the rotation matrix [R] and following the
procedure explained in Example 11.3
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