
www.manaraa.com

www.manaraa.com

Parallel-Vector Equation
Solvers for Finite Element
Engineering Applications

www.manaraa.com

Parallel-Vector Equation
Solvers for Finite Element
Engineering Applications

Duc Thai Nguyen
Oid Dominion University

Noifoik, Virginia

Springer Science+Business Media, LLC

www.manaraa.com

Library of Congress Cataloging-in-Publication Data

Nguyen, Duc T.
Parallel-vector equation sol vers for finite element engineering applicationslDuc Thai Nguyen.

p. cm.
lncludes bibliographical references and index.
ISBN 978-1-4613-5504-5 ISBN 978-1-4615-1337-7 (eBook)
DOI 10.1007/978-1-4615-1337-7

1. Finite element method. 2. Parallel processing (Electronic computers) 3. Differential
equations-Numerical solutions. I. Title.

TA347.F5 N48 2001
620' .001' 51535-dc21

ISBN 978-1-4613-5504-5

© 2002 Springer Science+Business Media New York
Originally published by Kluwer Academic /Plenum Publishers, New York in 2002
Softcover reprint ofthe hardcover Ist edition 2002

10 9 8 7 6 5 432

A C.I.P. record for this book is available from the Library of Congress.

AII rights reserved

2001038333

No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form or by any
means, electronic, mechanical, photocopying, microfilming, recording, or otherwise, without written
permission from the Publisher

www.manaraa.com

To Dac K. Nguyen
Thinh T. Thai

Hang N. Nguyen
Eric N. D. Nguyen and Don N. Nguyen

www.manaraa.com

Preface

In spite ofthe fact that parallel-vector computational (equation solution) algorithms have
been receiving a lot of attentions for over 20 years, and a large number of research
articles have been published during this period, a limited number of texts and research
books have been written on the subject. Most (if not all) existing texts on this subject
have been written by computer scientists, and/or applied mathematicians. Majority of
existing texts have been over-emphasizing on theoretical developments of new, and/or
promising parallel (equation solution) algorithms (for varieties of applications in
Engineering and Science disciplines). Materials presented in most existing texts are
either too condense (without enough important detailed explanations), or too advance
for the typical senior undergraduate and/or graduate engineering students. It should be
emphasized here that while many important theoretical developments, which have
significant impacts on highly efficient existing parallel-vector (equation solution)
algorithms, have been carefully discussed and well-documented in current texts,
important detailed computer implementations of the developed algorithms, however,
have been usually omitted. Furthermore, it should be kept in minds that while few
existing texts in this subject (direct equation solution algorithms for parallel and/or
vector computers) have been written by computer scientists, and/or applied
mathematicians, truly large-scale models (which require parallel and vector capabilities
offered by modem high-performance computers) are often generated, solved, and
interpreted by the engineering communities.

This book is written to address the concerns mentioned above and is intended
to serve as a textbook for senior undergraduate, and graduate "engineering" students. A
number of state-of-the-art FORTRAN codes, however, have been developed and
discussed with great details in this textbook. Special efforts have been made by the
author to present the materials in such a way to minimize the mathematical background
requirements for typical senior undergraduate, and graduate engineering students. Thus,
compromises between rigorous mathematics and practical simplicities are sometimes
necessary.

This book has several unique features that distinguish it from other books:
I. Simplicity: The book has been written and explained in simple
fashion, so that senior undergraduate and first year graduate students (in Civil,
Mechanical, Aerospace, Electrical, Computer Science and Mathematic departments) can
understand the presented materials with minimum background requirements. A working
(undergraduate) knowledge in FORTRAN codings is helpful to understand the "detailed
codings" of the presented materials. Some (undergraduate) linear algebra background
should be useful, although it is NOT a requirement for reading and understanding the
materials in the book. Undergraduate background in Matrix Structural Analysis and/or
Finite Element Analysis should be useful, only for the materials presented in Chapter 3.
Graph theories have not been traditionally introduced in the undergraduate/graduate
engineering curriculums and therefore graph theories are not required to understand the
materials presented in this book.
2. Algorithms are discussed for different parallel and/or vector computer platforms:

Parallel and/or vectorized algorithms for various types of direct equation solvers are

vii

www.manaraa.com

viii Preface

presented and discussed for both "shared memory" (such as the Cray-2, Cray-YMP,
Cray-C90, Convex) and "distributed memory" (such as the Intel i860, Intel Paragon,
IBM-SP2, Meiko) computer platforms. The vectorized algorithms can also be
"efficiently" executed on IBM-R6000/590 workstations. The vectorized algorithms
and their associated FORTRAN codes can also be executed (with less efficiency)
on other workstations and/or personal computers (P.c.) without having vectorized
capabilities.

3. More emphasis on important detailed FORTRAN computer implementations:
Efforts have been made to explain to the readers on important detailed FORTRAN
computer implementations of various algorithms presented in the book. Thus, the
readers should be able to incorporate the presented computer codes, subroutines
into hislher application codes.

4. Several state-of-the-art FORTRAN equation solvers are discussed: While great
amounts of effort have been spent to explain the detailed algorithms in a "simple
fashion," many state-of-the-art equation solvers have been developed and presented
in the book. Many of the presented solvers have been used by universities, large
aerospace corporations and government research laboratories in the U.S., Europe
and Asia.

5. Large-scale practical engineering finite element models are used: For derivations
and explanations of various algorithms described in the book, small-scale examples
are used to simplify and to facilitate the discussions. However, several medium to
large-scale, practical engineering finite element models are used to demonstrate the
efficiency and accuracy of the presented algorithms.

6. Algorithms are available for different types of linear equations: Different types of
algorithms for the solutions of various types of system of simultaneous linear
equations are presented in the book. Symmetrical/unsymmetrical, positive
definite/negative definite/indefinite, incore/ out -of-core, skyl ine/variab Ie
bandwidth/sparse/tridiagonal system of equations have all been treated in great
detail by the author.

The book contains II chapters. Chapter I presents a brief review of some basic
descriptions of shared and distributed parallel-vector computers. Measurements for
algorithms' performance, and commonly "good practices" to achieve vector speed are
also discussed in this chapter. Different storage schemes for the coefficient (stiffness)
matrix (of system of linear equations) are discussed with great details in Chapter 2.
Efficient parallel algorithms for generation and assembly of finite element coefficient
(stiffness) matrices are explained in Chapter 3. Different parallel-vector "skyline"
algorithms for shared memory computers (such as Cray-YMP, Cray-C90 etc ...) are
developed and evaluated in Chapter 4. These algorithms have been developed in
conjunction with the skyline storage scheme, proposed earlier in Chapter 2. Parallel
vector "variable bandwidth" equation solution algorithms (for shared memory
computers) are presented and explained in Chapter 5. These algorithms have been
derived based upon the variable bandwidth storage scheme, proposed earlier in Chapter
2. Out-of-core equation solution algorithms on shared memory computers are considered
in Chapter 6. These algorithms are useful for cases where very large-scale models need
to be solved, and there are not enough core-memories to hold all arrays in the in-core

www.manaraa.com

Preface ix

memories. Parallel-vector equation solution strategies for "distributed-memory"
computers are discussed in Chapter 7. These equation solution strategies are based upon
the parallel generation and assembly of finite element (stiffness) matrices, suggested
earlier in Chapter 3. Unsymmetrical banded system of equations are treated in Chapter
8, where both parallel and vector strategies are described. Parallel algorithms for tri
diagonal system of equations on distributed computers are explained in Chapter 9.
Sparse equation solution algorithms are presented in Chapter 10. Unrolling techniques
to enhance the vector performance of sparse algorithms are also explained in this
chapter. Finally, system of sparse equations where the coefficient (stiffness) matrix is
symmetrical/ unsymmetrical and/or indefinite (where special pivoting strategies are
required) are considered with great details in Chapter II.

The book also contains a limited number of exercises to further supplement and
reinforce the concepts and ideas presented. The references are listed at the end of each
chapter.

The author would like to invite the readers to point out any errors that come to their
attention. The author also welcomes any comments and suggestions from the readers.

Duc Thai Nguyen

Norfolk, Virginia

www.manaraa.com

Acknowledgments

During preparation of this book, I have received (directly and indirectly) help from many
people. First, I would like to express my sincere gratitude to my colleagues at NASA
Langley Research Center: Dr. Olaf O. Storaasli, Dr. Jerrold M. Housner, Dr. James
Starnes, Dr. Jaroslaw S. Sobieski, Dr. Keith Belvin, Dr. Peigman M. Maghami, Dr. Tom
Zang, Dr. John Barthelemy, Dr. Carl Gray Jr., Dr. Steve Scotti, Dr. Kim Bey, Dr. Willie
R. Watson, and Dr. Andrea O. Salas for their encouragement and support on the subject
of this book during the past 13 years.

The close collaborative works with Dr. OlafO. Storaasli and Dr. Jiangning Qin, in
particular, have direct impacts on the writing of several chapters in this textbook.

I am very grateful to Dr. Lon Water (Maui, Hawaii), Professors Pu Chen (China),
S.D. Rajan (Arizona), B.D. Belegundu (Pennsylvania), J.S. Arora (Iowa), Dr. Brad
Maker (California), Dr. Gerald Goudreau (California), Dr. Esmond Ng (Lawrence
Berkeley Laboratory, California) and Mr. Maurice Sancer (California) for their
enthusiasm and supports of many topics discussed in this book.

My appreciation also goes to several of my former doctoral students, such as Dr.
T.K. Agarwal, Dr. John Zhang, Dr. Majdi Baddourah, Dr. AI-Nasra, and Dr. H.
Runesha who have worked with me for several years. Some of their research
contributions have been included in this book.

In addition, I would like to thank my colleagues at Old Dominion University (ODU)
and Hong Kong University of Science and Technology (HKUST) for their support,
collaborative works, and friendship. Among them, Professor A. Osman Akan, Professor
Isao Ishibashi, Professor Chuh Mei, and Professor Zia Razzaq at ODU, Professor T. Y.
Paul Chang, and Professor Pin Tong at HKUST. Substantial portions of this textbook
have been completed during my sabbatical leave period (January 1 - December 30,
1996) from O.D.U. to work at HKUST (during February 22 - August 22, 1996).

The successful publication and smooth production of this book are due to ODU
skillful office supported staff: Mrs. Sue Smith, Mrs. Mary Carmone, Mrs. Deborah L.
Miller, and efficient management and careful supervision ofMr. Tom Cohn, Ms. Ana
Bozicevic, and Mr. Felix Portnoy, Editors ofKluwer/Plenum Publishing Corporation.

Special thanks go to Ms. Catherine John, from Academic Press (AP) Ltd., London,
UK for allowing us to reproduce some materials from the AP textbook "Sparse Matrix
Technology," (by Sergio Pissanetzky) for discussions in Chapter 10 (Tables 10.2 and
10.5) of our book.

Last but not least, I would like to thank my parents (Mr. Dac K. Nguyen, and Mrs.
Thinh T. Thai), my family (Hang N. Nguyen, Eric N. D. Nguyen and Don N. Nguyen),
whose encouragement has been ever present.

Xl

Duc T. Nguyen
Norfolk, Virginia

www.manaraa.com

Disclaimer of Warranty

We make no warranties, express or implied, that the programs contained in this
distribution are free of error, or that they will meet your requirements for any particular
application. They should not be relied on for solving a problem whose incorrect solution
could result in injury to a person or loss of property. The author and publisher disclaim
all liability for direct, indirect, or consequential damages resulting from use of the
programs or other materials presented in this book.

xiii

www.manaraa.com

Contents

1. Introduction 0

1.1 Parallel Computers 1
1.2 Measurements for Algorithms' Performance 2
1.3 Vector Computers 3
1.4 Summary 0 10
1.5 Exercises 11
1.6 References 11

2. Storage Schemes for the Coefficient Stiffness Matrix 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 13

201 Introduction 0 13
202 Full Matrix 0 14
2.3 Symmetrical Matrix 0 14
2.4 Banded Matrix 0 14
205 Variable Banded Matrix 0 14
206 Skyline Matrix 0 15
207 Sparse Matrix 000 16
208 Detailed Procedures For Determining The Mapping Between

2-D Array and I-D Array in Skyline Storage Scheme 0 0 0 0 0 0 0 0 0 0 0 0 17
209 Determination of the Column Height (lCOLH) of a Finite Element

Model 000 19
2010 Computer Implementation For Determining Column Heights 0 0 0 0 0 0 23
2011 Summary 0 25
2012 Exercises 0 26
2013 References 0 26

3. Parallel Algorithms for Generation andAssembly of Finite Element
Matrices 0 27

301 Introduction 0 27
302 Conventional Algorithm to Generate and Assemble Element

Matrices 0 27
3.3 Node-by-Node Parallel Generation and Assembly Algorithms 0 0 0 0 0 29
3.4 Additional Comments on Baddourah-Nguyen's (Node-by-Node)

Parallel Generation and Assembly (G&A) Algorithm 0 0 0 0 0 0 0 0 0 0 0 37
3.5 Application of Baddourah-Nguyen's Parallel G&A Algorithm 0 0 0 0 0 38
306 Qin-Nguyen's G&A Algorithm 00000000000000000000000000000 41
307 Applications of Qin-Nguyen's Parallel G&A Algorithm 0000000000 46
308 Summary 0 48
309 Exercises 0 49
3010 References 0 50

xv

www.manaraa.com

xvi Contents

4. Parallel-Vector Skyline Equation Solver on Shared Memory Computers 51

4.1 Introduction. .. 51
4.2 Choleski-based Solution Strategies 51
4.3 Factorization .. 52

4.3.1 Basic sequential skyline Choleski factorization: computer
code (version 1) .. 55

4.3.2 Improved basic sequential skyline Choleski factorization:
computer code (version 2) .. 59

4.3.3 Parallel-vector Choleski factorization (version 3) 60
4.3.4 Parallel-vector (with "few" synchronization checks)

Choleski factorization (version 4) 64
4.3.5 Parallel-vector enhancement (vector unrolling) Choleski

factorization (version 5) .. 66
4.3.6 Parallel-vector (unrolling) skyline Choleski factorization

(version 6) .. 69
4.4 Solution of Triangular Systems 72

4.4.1 Forward solution 72
4.4.2 Backward solution .. 78

4.5 Force: A Portable, Parallel FORTRAN Language 81
4.6 Evaluation of Methods on Example Problems 82
4.7 Skyline Equation Solver Computer Program 86
4.8 Summary. .. 86
4.9 Exercises. .. 87
4.10 References.. .. 88

5. Parallel-Vector Variable Bandwidth Equation Solver on Shared Memory
Computers 91

5.1 Introduction. .. 91
5.2 Data Storage Schemes 91
5.3 Basic Sequential Variable Bandwidth Choleski Method. 96
5.4 Vectorized Choleski Code with Loop Unrolling 101
5.5 More on Force: A Portable, Parallel FORTRAN Language 103
5.6 Parallel-Vector Choleski Factorization 103
5.7 Solution of Triangular Systems 108

5.7.1 Forward solution 109
5.7.2 Backward solution. .. 112

5.8 Relations Amongst the Choleski, Gauss and LDU Factorizations . 115
5.8.1 Choleski (UTU) factorization .. 115
5.8.2 Gauss (with diagonal terms Ljj=l) LU factorization 117
5.8.3 Gauss (LU) factorization with diagonal terms U jj =1 118
5.8.4 LDLT factorization with diagonal term Ljj =1 120
5.8.5 Similarities of Choleski and Gauss methods 122

5.9 Factorization Based Upon "Look Backward" Versus "Look Forward"
Strategies ... 123

www.manaraa.com

Contents xvii

5.10 Evaluation of Methods For Structural Analyses 129
5.10.1 High speed research aircraft. .. 130
5. I 0.2 Space shuttle solid rocket booster (SRB) 131

5.11 Descriptions of Parallel-Vector Subroutine PVS 134
5.12 Parallel-Vector Equation Solver Subroutine PVS 136
5.13 Summary .. 137
5.14 Exercises .. 138
5.15 References .. 139

6. Parallel-Vector Variable Bandwidth Out-of-Core Equation Solver ... 14 I

6.1 Introduction. .. 141
6.2 Out-of-Core ParallellV ector Equation Solver (version 1) 141

6.2.1 Memory usage and record length. .. 142
6.2.2 A synchronous input/output on Cray computers. 144
6.2.3 Brief summary for parallel-vector incore equation solver on the

Cray Y-MP 145
6.2.4 Parallel-vector out-of-core equation solver on the Cray

Y-MP ... " 146
6.3 Out-of-Core Vector Equation Solver (version 2) 149

6.3.1 Memoryusage 149
6.3.2 Vector out-of-core equation solver on the Cray Y-MP 149

6.4 Out-of-Core Vector Equation Solver (version 3) 155
6.5 Application .. 157

6.5.1 Version 1 performance 157
6.5.2 Version 2 performance 159
6.5.3 Version 3 performance 160

6.6 Summary .. 162
6.7 Exercises. .. 163
6.8 References. .. 163

7. Parallel-Vector Skyline Equation Solver for Distributed Memory
Computers .. 165

7.1 Introduction. .. 165
7 .2 Parallel-Vector Symmetrical Equation Solver 165

7.2.1 Basic symmetrical equation solver 165
7.2.2 Parallel-vector performance improvement in decomposition 166
7.2.3 Communication performance improvement in factorization . 176
7.2.4 Forward/backward elimination 177

7.3 Numerical Results and Discussions .. 181
7.4 FORTRAN Call Statement to Subroutine Node 185
7.5 Summary. .. 187
7.6 Exercises. .. 188

www.manaraa.com

xviii Contents

7.7 References 188

8. Parallel-Vector Unsymmetrical Equation Solver 191

8.1 Introduction. .. 191
8.2 Parallel-Vector Unsymmetrical Equation Solution Algorithms. . .. 191

8.2.1 Basic unsymmetric equation solver 191
8.2.2 Detailed derivation for the [L] and [U] matrices 193
8.2.3 Basic algorithm for decomposition of "full" bandwidth/column

heights unsymmetrical matrix 194
8.2.4 Basic algorithm for decomposition of "variable"

bandwidths/column heights unsymmetrical matrix 198
8.2.5 Algorithms for decomposition of "variable" bandwidths/column

heights unsymmetrical matrix with unrolling strategies 199
8.2.6 Parallel-vector algorithm for factorization. 200
8.2.7 Forward solution phase [L]{y}={b} 202
8.2.8 Backward solution phase [U] {x} = {y} 204

8.3 Numerical Evaluations 206
8.4 A Few Remarks On Pivoting Strategies. .. 211
8.5 A FORTRAN Call Statement to Subroutine UNSOLVER 212
8.6 Summary .. 214
8.7 Exercises .. 214
8.8 References. .. 216

9. A Tridiagonal Solver for Massively Parallel Computers 217

9.1 Introduction. .. 217
9.2 Basic Sequential Solution Procedures for Tridiagonal Equations .. 217
9.3 Cyclic Reduction Algorithm .. 221
9.4 Parallel Tridiagonal Solver by Using Divided and Conquered

Strategies ... 226
9.5 Parallel Factorization Algorithm for Tridiagonal System of

Equations Using Separators 229
9.6 Forward and Backward Solution Phases 236

9.6.1 Forward solution phase: [L] {z} = {y} 236
9.6.2 Backward solution phase: [U] {x} = {z} 238

9.7 Comparisons between Different Algorithms 239
9.8 Numerical Results 240
9.9 A FORTRAN Call Statement To Subroutine Tridiag 241
9.10 Summary .. 244
9.11 Exercises. .. 244
9.12 References. .. 245

10. Sparse Equation Solver with Unrolling Strategies. 247
10.1 Introduction ... 247
10.2 Basic Equation Solution Algorithms 248

www.manaraa.com

Contents xix

10.2.1 Choleski algorithm 248
10.2.2 LDU algorithm. .. 249

10.3 Storage Schemes for the Coefficient Stiffness Matrix 252
10.4 Reordering Algorithms .. 254
10.5 Sparse Symbolic Factorization .. 255
10.6 Sparse Numerical Factorization 271
10.7 Forward and Backward Solutions 278

10.7.1 Forward substitution phase 279
10.7.2 Backward substitution phase 279

10.8 Sparse Solver with Improved Strategies. .. 280
10.8.1 Finding master (or super) degree-of-freedom (dot) 280
10.8.2 Sparse matrix (with unrolling strategies) times vector 281
10.8.3 Modifications for the chained list array ICHAINL (-) . .. 288
10.8.4 Sparse numerical factorization with unrolling strategies .. 289
10.8.5 Out-of-core sparse equation solver with unrolling

strategies .. 299
10.9 Numerical Performance of the Developed Sparse Equation Solver. 301
10.10 FORTRAN Call Statement to SPARSE Equation Solver 306
10.11 Summary .. 308
10.12 Exercises .. 308
10.13 References .. 309

11. Algorithms for Sparse-Symmetrical-Indefinite and Sparse-Unsymmetrical
System of Equations .. 311

11.1 Introduction. .. 311
11.2 Basic Formulation for Indefinite System of Linear Equations 311
11.3 Rotation Matrix [R] Strategies .. 318
11.4 Natural 2 x 2 Pivoting. .. 323
11.5 Switching Row(s) and Column(s) During Factorization 325
11.6 Simultaneously Performing Symbolic and Numerical Factorization 329
11. 7 Restart Memory Managements. .. 329
11.8 Major Step-by-Step Procedures for Mixed Look Forward!

Backward, Sparse LDLT Factorization, Forward and Backward
Solution With 2x2 Pivoting Strategies .. 331

11.9 Numerical Evaluations 332
11.10 Some Remarks on Unsymmetrical-Sparse System of Linear

Equations ... 334
11.11 Summary.. 338
11.12 Exercises.. 338
11.13 References .. 338

Index .. 341

www.manaraa.com

Parallel-Vector Equation
Solvers for Finite Element
Engineering Applications

www.manaraa.com

1 Introduction

1.1 Parallel Computers

Modem high perfonnance computers have multiple processing capabilities. The
Convex, Sequent, Alliant, Cray-2, Cray-YMP [1.1] and Cray-C90 [1.2], parallel
computers, for example, belong to the broad class of "shared memory" computers. The
nCUBE, Intel i860, Intel Paragon, Meiko, and IBM-SP2 [1.3, 1.4] parallel computers,
however, belong to the broad class of "distributed memory", or "message passing"
computers. Shared memory computers, in general, consist of few (say 20, or less)
processors. Each processor has its own local memory. Different processors, however,
can be communicated to each other through shared memory area, as shown in Figure
1.1.

Shared Memory Area

Local Mem. Local Mem. Local Mem. Local Mem.

Processor I Processor 2 Processor 3 Processor 4

Figure 1.1 Shared memory parallel computers

Distributed memory (or message passing) computers, in general, consist of many
(say hundreds, or thousands) processors (or nodes). Each processor has its own local
memory, but the processor itself usually is less powerful (in tenns of computational
speed and memories) than its counterpart shared memory processor.

Communication amongst different nodes can only be done by message passing, as
shown in Figure 1.2. Designing efficient algorithms, which can fully exploit the parallel
and vector capabilities offered by shared memory computers have already been
challenging tasks. It is generally safe to state that it is even more difficult to develop and
to implement efficient parallel-vector algorithms on distributed memory computers!

www.manaraa.com

2 Parallel-Vector Equation Solvers for Finite Element Engineering Applications

--------------(
Loca! Mem

~~essage passing

(Lo!,a! Mem. \

Processor 2
(or Node 2)

Processor I) /
(or Node I) __________ ~

Message passing (L / ___ I _ o!'a IM em

/ " ,~ .. w" ; /
Lp!,a! Mcm

Processor 3

Figure 1.2 Distributed memory (or message passing) parallel computers

1.2 Measurements for Algorithms' Performance

The performance of parallel-vector algorithms can be measured by parameters, such as
MFLOPS (Millions of FLoating point Qperations E.er ~econd), speed-up factor, and
efficiency. Definitions of the above parameters are given in the following paragraphs.

MFLOPS = __]',_o_ta_I_N_u_m_b_e_r _o"-if_O-,'P~e_r_a_ti_on_s--,of,--a_G_iv_e_n_A-,,lg,,-o_r_it_h_m_
106 * Time (in seconds, forexecuting a given algorithm)

InEq.(l.I),
an operation is defined as a multiplication, division, addition, or subtraction.

SPEED-UP FACTOR =
Time Obtained By Executing The Best Sequential Algorithm

Time Obtained By Executing the Algorithm Using NP Processors

(1.1)

(1.2)

In Eq. (1.2), NP represents the total !lumber of grocessors used by a parallel
algorithm

EFFICIENCY = SPEED-UP FACTOR
NP

(1.3)

Assuming 300* 106 operations, and 20 seconds (and 4 seconds) are required to execute
the best sequential algorithm on a single processor (and 8 processors), respectively, then
using Eqs (1.1 -1.3), one obtains

MFLOPS = 300 *106 operations = 15 MFLOPS
106 * 20 seconds

(1.4)

www.manaraa.com

Due T. Nguyen

SPEED-UP FACTOR 20Seconds = 5
4 Seconds

EFFICIENCY = 1 = 62.5%
8

3

(1.5)

(1.6)

Typical curves for Time versus # Processors, and Speed-up-Factor versus # Processors
are given in Figure 1.3. In practice, it is quite possible to see in Fig. 1.3 that time will
increase (or speed-up factor will decrease) as the number of processors exceed, say 8
processors (as shown in Figure 1.3).

:w
8
t.)

20

~10 .,
a

'.:;1 5

2 4 6 8
no. processors

Figure 1.3 Typical curves for time and speed-up factor versus number of processors

1.3 Vector Computers

Vector computers utilize the concept of pipelining, which basically divides an arithmetic
unit into different segments, each performs a subtask on a pair of operands (see Fig.
1.4).

all' a12, a l3, a14 a 1S '
a16, a17, a 18,

b ll b l2 bl3 , bls b l6 bl7 b l8

Fig. 1.4 Pipe lining for vector addition

The main advantage of having several segmentations is that the results can be
obtained at a rate 8 times faster (or more, depending on the number of segmentations),
provided the data must reach the arithmetic unit quickly enough to keep the pipeline full
at all time.

www.manaraa.com

4 Parallel-Vector Equation Solvers for Finite Element Engineering Applications

(a) Register-to-Register Processors
For register-to-register processors, the operands can be obtained directly from very fast
memory, called vector registers, and store the results back into vector registers (see Fig.
1.5).

Main Memory Vector Registers Vector Operations

Figure 1.5 Register - to - register processors

(b) Vector Start-up Times
Vector operations do incur some overhead penalty, the amount of overhead cost
depends on several factors, such as the vector lengths, the start-up time (time for the
pipeline to become full), the time interval at which results are leaving the pipeline
(related to the cycle time, or clock time of a particular computer).

(c) Sparse Matrix Computation
For sparse matrix computation, the following FORTRAN loop is often required (as

shown in Figure 1.6)
DO 1 1= 1, N
K = INDEX (I)
Y(K)=a * X (I) + Y(K)

I~ ~Gathery
~:::::Ep
x ---4r-EE
o -y

Scatter ax /I~
+ ffix :::::::t i x 0

x --+ x
o -y

Figure 1.6 Sparse matrix loop

(d) A void Putting Subroutine and/or Function Calls Within DO LOOPS
It is not a good idea, in general, to put subroutine(s) and/or function(s) calls within the

www.manaraa.com

Due T. Nguyen 5

DO Loops (see Table 1.1), since it may prevent the compiler for vectorizing. Good
vectorization will be realized, however, if the algorithm shown in Table 1.1 is modified,
as shown in Table 1.2. It should also be noticed here that the index J (instead of I) is
used for the inner loop in Table 1.2 to avoid any dependencies within the inner loop. In
other words, for the fixed value of!, the inner-loop (shown in Table 1.2) does not have
any dependencies on the index J.

Table 1.1 Vectorization can be prevented if subroutine call
is laced inside DO LOOP

DO 1 J = 2, N

DO 1 I = 2, N
CONSTl = VEL (I, J)

CONSTO = VEL (I-I, J)

CONST2 = VEL (HI, J)

CALL ABC (CONSTl, CONSTO, CONST2)
VEL(I,J) = SQRT (CONSTl)

CONTINUE

SUBROUTINE ABC (CONSTl, CONSTO, CONST2)

CONSTl = 3.8 * CONSTl + 2.7 * (6.2 + CONSTO + CONST2)
RETURN

I

I

I

I
END ---~

Table 1.2 Vectorization can be realized if subroutine call
is removed from DO LOOP

I DO 1 I = 2, N

DO 1 J = 2, N
l

i

I

VEL (I, J) = 3.8 * VEL (I, J) + 2.7 * (6.2 + VEL (1-1, J) + VEL(I + I, J»
VEL(I, J) = SQRT(VEL (I, J»

[I CONTINUE

(e) Using Few Loops (with more work loads) Rather Than Using Many Loops (with
less work loads)
The algorithm shown in Table 1.3 (a) basically involved with vector addition, to be
followed by vector multiplication, and again by vector addition. While this algorithm
will be vectorized, better vectorization can be realized by rewriting the algorithm into
the form shown in Table 1.3 (b).

I

I
I

www.manaraa.com

6 Parallel-Vector Equation Solvers for Finite Element Engineering Applications

Table 1.3 Many loops (with less work loads) versus
few loops (with more work loads)

(a) 3 Loops Are Used (b) 1 Loop Is Used

DO 1 1= 1, N CALL ADDV (N, A, B, RESULTl)

CALL MULV (N, RESULTl, A, RESULT2)

CALL ADDV (N, RESULTI, B, RESULTl)

A(I) = (A(I) + B(I))* A(I)+B(I)

1 CONTINUE

(f) Innermost DO-LOOP Should Have Long Vector Length
The algorithm shown in Table 1.4 has poor vector performance, since the innermost DO
LOOP only has the vector length of 8. Substantial improvements in the vector
performance can be realized, however, simply by reversing the order of the I and J
loops.

.
11

Table 1.4 A void using short vector length for inner-most DO LOOP

DO 1 I = 1, 4000

DO 1 J = 1,8

A(I, J) = ~(I,J) + B(I,J)) * A(I, J) + B(I,J)

(g) Using Compiler Directive if Necessary
The appearance of the FORTRAN code segment, shown in Table 1.5, seems to indicate
the dependency of the inner-most loop index L, and hence vectorization may not be
recognized by the compiler. Careful examinations on the innermost loop computation,
however, will reveal that for the fixed value of index K, the "even-values" for innermost
loop index L (on the left hand side) depend only on the "odd-values" for index L. Thus,
there is no dependency on the innermost index L, and therefore, usage of compiler
directive (see CDIR$ IVDEP in Table 1.5) is appropriate. The compiler directive
statement may be different for different computers. However, some modem (high
performance) vector computers do have compiler directive statements.

Table 1.5 Compiler directive should be used appropriately

DO 3 K=2,N,2

CDIR$ IVDEP

DO 3 L=2,N,2

A(L, K) = 7.8 * (A(L-l, K) + A(L+l, K) +A(L,K-l)+A(L, K+l)

3 CONTINUE

(h) Avoid to Use If Statement within Innermost DO-LOOP

Intrinsic functions may be used to replace If statement within innermost do-loop, as

www.manaraa.com

Due T. Nguyen

illustrated in Table 1.6.

Table 1.6 A voiding IF statement by using intrinsic functions

(a) Avoid IF Statement

DO 22 K= I, N

IF (C(K). LT. 0.) C(K) = O.

22 *

(i) Avoid too Use Temporary Arrays

(b) Use Intrinsic Statement

DO 22 K=I, N

C(K) = AMAXI (C(K),O.)

*

7

Even though both cases shown in Table 1.7 will be vectorized, case 2 will have better
vector performance than case I, because the former avoids using temporary array T(-)

I Case I

DO I J =2, N

T(J) = D(1-1)
D(J) = E (1)

F(J) = T (1)

CONTINUE

Table 1.7 A void using temporary array

Case 2
DO I J = 2, N

D(J) = E(J)

F(1) = D(1-I)

CONTINUE

G) Avoid Scalar Variable Which are Computed before the Execution ofthe Containing
Loop
Segments ofthe FORTRAN codes, shown in Table 1.8, can be used to illustrate the
disadvantage of calculating scalar variables before the execution of the containing loop.

Table 1.8 A void computing scalar variables
before execution of the contain in 100

Case I

(No Vectorization)

C=O

DO I K=2, N

D = E (K) *F(K)

G(K) = D + C
C=D

Case 2

(With Vectorization)

C (1) = 0

DO I K=2, N

C(K) = E (K) * F(K)

G(K) = C(K) + C(K-I)

(k) "Vector Unrolling" and Dot Product Operations
Assuming a square matrix [A]N,N and a vector {X}N.l are given, and the objective is to
compute matrix-vector mUltiplications ([A] * {x}), and to store the results into vector
{Y}N,l' Algorithm based upon dot product operations (for matrix-vector multiplications)
is given in Table 1.9, while better (load and store) vector performance can be obtained

www.manaraa.com

I

8 Parallel-Vector Equation Solvers for Finite Element Engineering Applications

by using dot product operations in conjunction with "vector unrolling," say level 2 (see
the increment for the index I), is illustrated in Table 1.10.

DO 21 1= 1, N

DO 21 J = 1, N

Table 1.9 Dot-product operations

Y(I) = Y(I) + A(I,J) * X(J)

Table 1.10 Dot-product operations with "vector unrolling" level 2

DO 21 I = 1, N, ~
DO 21 J = 1, N

Y(I) = Y(I) + A(I, J) *X(J)

l

121 Y(l+l) = Y (1+1) +A(l+l, J) * X(J)

For the fixed value of index I, the innermost loop operations (shown in Table
1.9) A(I,J) * X(J) is essentially the dot product of2 vectors A(I,J) and X(J).

(1) "Loop Unrolling" and Saxpy Operations

2
Given the matrix [A] = -1

o
[A}*{X}

-1 0] J 1 }
_ ~ -:' and the vector X = l1

;: {y} can be computed by the following steps.

, the product of

Step 1: "Partial" answer for vector {y} can be obtained by mUltiplying the first
column of [A] with
the first component of {X}

(l.7)

Step 2: Multiplying the second column of [A] with the second component of {X},
then adding the results into the "partial" answer of {y}, in order to obtain the "updated"
answer for {y}.

{y} = (-1 } * (1) = (-t} (l.8)

Step 3: Multiplying the third (or the last) column of [A] with the third component of

www.manaraa.com

Duc T. Nguyen 9

{X}, then adding the results into the "updated" answer for {y}, in order to obtain the
"final" answer for {y}

(1.9)

The operations involved in Eqs. (1.8) and (1.9) can be recognized in the form of
~ummation of a constant "~" times a vector {~} 12lus a vector {y}. Thus, the above
operations are called SaxBy-operations! - -

Algorithms based upon saxpy operation (for matrix-vector multiplications)
is given in Table 1.11, while better (load and store) vector performance can be obtained
by using saxpy operations in conjunctions with "loop unrolling," say level 2 (see the
increment for the index J), is illustrated in Table 1.12.

I
[22

DO 22 J = I, N

DO 22 I = I, N

Table 1.11 Saxpy operations

Y(I) = Y(I) + A(I, J) * X(J)

Table 1.12 Saxpy operations with "loop unrolling" level 2
-------~-l

! DO 22 J = I, N, ~ !

I DO 22 I = I, N I

1=2=-2 __ --=-Y-"'(I:L) _=--=Y--,,(I:L) _+-=-A=(I::L' "--,J),-*--=-X-=-,(",-,J),-+-=A~=-(=I,,--,,J_+--=-I~) _* "-=X-'C(J_+_I:L) ______ ~~

For many computers, such as the Cray-2, Cray-YMP and Cray-C90 etc ... ,
saxpy operations can be substantially faster than dot product operations. It is also
important to emphasize here the key differences between dot product operations (and
its associated vector unrolling operations), and saxpy operations (and its associated loop
unrolling operations). The former will give the "final" results, while the latter will only
give the "partial" results. Furthermore, "vector unrolling" operations involve with
several FORTRAN statements within the inner-most DO LOOP, whereas "loop
unrolling" operations involve with a single FORTRAN statement (but with more
calculations attached) within the inner-most DO-LOOP.
(m) Stride

For a given 3x3 matrix [A], as discussed in the previous section, and
assuming the matrix [A] is stored in a row-by-row fashion, then the basic dot-product
operations (in Table 1.9) will have the stride to be equal to 3. The matrix [A] will be
internally stored in a column-by-column fashion. Thus, for the given data, matrix A can
be internally represented as a "long" vector;

www.manaraa.com

10 Parallel-Vector Equation Solvers for Finite Element Engineering Applications

2 1st column
-1

° --------

-1
2ndcolumn [AJ 2 (1.10)

-1

°

-1
1 3rdcolumn

Corresponding to a fixed rh_ row, say I = 1, the operations inside the
innermost DO-loop will involve with the dot-product between the 2 vectors

A {2,-I,0} and X= {~ I (1.11)

The first vector in Eq. (1.11) can be retrieved from the data shown in Eq.
1.10, at the 1'\ 41h and 71h locations, respectively. The "distance" between any 2
consecutive numbers is called the "stride." Thus, in this example (for algorithm shown
in Table 1.9), one obtains:

stride = 41h location - 151 location = 71h location _ 41h location
stride = 3

However, if saxpy operations are used for the same matrix-vector
multiplications (as indicated in Eq. 1.7), then the stride will be equal to 1. The reason

is because the 3 consecutive numbers used in Eq. (1.7), such as {-J I, can be retrieved

from the 15\ 2 nd, and 3 rd locations, respectively (see Eq. 1.10). Thus:

stride = 2nd location - 151 location = 3,d location - 2nd location
stride = 1.

For better vector performance, the smallest stride (such as stride = 1) is the most
desirable!

1.4 Summary

Modem high-performance computers (Cray - C90, Intel Paragon, IBM - SP2 etc ...)
offer both parallel, cache, and vector processing capabilities. Thus, efficient algorithms
need to exploit both parallel, cache, and vector capabilities. For nested do-loops (such
as matrix factorization), effective vectorization need to be done at the innermost do
loop, while effective parallelization need to be done at the outermost do-loop.

www.manaraa.com

Due T. Nguyen

1.5 Exercises

1.1 Given the coefficient matrix [A] and the vector {x} as following:

[A]

4 1 2 0
-1 5 1 1
2 1 3 -2
o -1 2 8

Using a hand calculator,
(a) find the product of[A] * {x} by employing "Dot Product" operations.
(b) find the product of [A]* {x} by employing "saxpy" operations.

11

1.2 Write a general purpose Fortran computer program to compute the product
of [B] * {y}, using "saxpy" operations with loop-unrolling level 3, where:

[BI = A A A A A and (v) = I~l
20x20 l~ 20x I

The matrix [A]4x4 and vector {X}4 X ! has been defined in Problem 1.1 (Hint: Algorithm
shown in Table 1.12 needs to be modified slightly) .

1.3 Same as described in Problem 1.2, but using loop-unrolling level 8

1.6 References

1.1 Cray-YMP manuals
1.2 Cray-C90 manuals
1.3 IBM-SP2 manuals
1.4 IBM-R6000/590 manuals

www.manaraa.com

2.1 Introduction

2 Storage Schemes for
the Coefficient Stiffness Matrix

For many important engineering and science applications [2.1, 2.2], the coefficient
matrix [A] involved in the system of linear simultaneous equations

[A] {X} = {b} (2.1)

is usually symmetrical, positive-definite and sparse. In structural engineering
applications [A], {X} and {b} represent stiffness matrix, nodal displacement vector and
nodal load vector, respectively.

Consider, for example, a 9 x 9 (stiffness) matrix [A] of the type:

~ AI2 0 AI4 0 0 0 0 0

AI2 ~ A 23 0 0 0 0 0 0

0 A 23 ~ A34 0 A36 0 0 0

AI4 0 A34 A II A4S A46 0 0 0
[A]= 0 0 0 A4S IT;J AS6 0 Ass 0 (2.2)

0 0 A36 A46 AS6 ~ A67 0 A69

0 0 0 0 0 A67 ~ A7S 0

0 0 0 0 Ass 0 A78 [&] AS9

0 0 0 0 0 A69 0 AS9 ~

There are several different storage schemes that can be used for the matrix
expressed in Eq. (2.2). Different storage schemes will lead to different storage
requirements. Furthermore, as will be explained in subsequent chapters, the choice for
the appropriate storage scheme will be influenced (or dictated) by the equation solution
strategies to be employed for solving the unknown vector {X} from Eq. (2.1).

Since effective equation solution algorithms are heavily influenced by the storage
scheme used to store the coefficient matrix [A] (shown in eqs. 2.1-2.2), the objective
of this chapter is to describe some common storage schemes used in many practical
engineering and science applications.

l3

www.manaraa.com

14 Parallel-Vector Equation Solvers for Finite Element Engineering Applications

2.2 Full Matrix

This is the simplest way to store matrix [A] ofEq. (2.2). The entire matrix is stored,
thus 81 (=9x9) words of memory is required to store matrix [A].

2.3 Symmetrical Matrix

In this storage scheme, only the upper triangular portion (including diagonal terms) of
matrix [A] needs to be stored (due to the symmetrical property of [AD. Thus, this
storage scheme only requires 45 (=9xlO/2) words of memories.

2.4 Banded Matrix

By observation, the maximum bandwidth (the maximum "distance" between the
diagonal term and the last non-zero term in each row) of the matrix [A] is 4 (including
the diagonal term). Furthermore, taking the advantage of symmetry, matrix [A] can be
stored as

All Al2 0 A'4

A22 A 23 0 0

A33 A34 0 A36

A44 A45 A46 0

[A] = A55 A56 0 A5S (2.3)
A66 A67 0 A69

A77 A78 0 0

Ass AS9 0 0

A99 0 0 0

It should be noted here that the diagonal terms of matrix [A] in Eq. (2.2) are shifted to
become the first column of the rectangular matrix [A] in Eq. (2.3). This banded storage
scheme requires 36 (9x4) words of memory.

2.5 Variable Banded Matrix [2.3]

In this storage scheme, the matrix [A] shown in Eq. (2.2) is stored as a I-dimensional
array according to the following row-by-row fashion

A~ IAu lAo: 10 lAO' IA" lAo> lolA" IA" 10 IA~ lAW IA" IA~ IA" IA" I

10 IA" I~ lA., 1° lAm IA" IA" 1° IA" IA" I~ I

The above I-dimensional (row-by-row) array corresponds to the following 2-
dimensional array (or matrix) representation:

www.manaraa.com

Due T. Nguyen 15

All AI2 0 /1 14

A22 A23 0

A33 A34 0 /116

A44 A45 /1 46

[AJ A55 A56 0 /158 (2.4)
A66 A67 o /169

S Y M. A77 A78 0
Agg /189

A99

It should be observed that in Eq. (2.4), the (imaginary) vertical (see bold face numbers)
enveloped lines always keep shifting toward the right direction. The lower triangular
portion of [AJ in Eq. (2.4) is not shown due to the symmetry of [AJ. As it will be
explained with more details, this variable banded (row-by-row) storage scheme requires
28(=4+3+4+3+4+4+3+2+ I) words of memory.

2.6 Skyline Matrix [2.1, 2.4J

In this storage scheme, the matrix [AJ shown in Eq. (2.2) is stored as a I-dimensional
array according to the following column-by-column fashion.

A(1) A(3) A(9)
A(2) A(5) A(8)

A(4) A(7) A(15)
A(6) A(1I) A(14)

[AJ A(10) A(13) A(21) (2.5)
A(12) A(17) A(20) A(25)

S Y M. A(16) A(19) A(24)
A(18) A(23)

A(22)

The "height" of each column (including the diagonal term)
of [AJ in Eq. (2.5) is usually referred to as the "skyline" of matrix [AJ. It can be
observed from Eq. (2.5) that the original values of A(8), A(20) and A(24) are all
zeroes, since these numbers correspond to A 24 , A68 and A 79• As it will be explained with
more details in subsequent chapters, these initial zero values may become non-zero
values later on (during the factorization phase). In the literature, the non-zero values
for A(8), A(20) and A(24) are commonly referred to as "fills-in." This skyline (column
by-column) storage scheme requires only25(= 1 +2+2+4+2+4+2+4+4) words of memory

www.manaraa.com

16 Parallel-Vector Equation Solvers for Finite Element Engineering Applications

2.7 Sparse Matrix [2.5]

In this storage scheme, only non-zero terms of matrix [A] are stored according to the
following I-dimensional, (row-by-row), integer and real arrays:
Thus, the integer array IA (N + I), where N is the size of the matrix, describes the

1 1
2 3
3 4
4 6

fA 5 8
(2.6) 6 10

7 12
8 13
9 14
10 14

starting locations of the first non-zero, off-diagonal term in each row. The number of
non-zero, off-diagonal terms in each row of matrix [A] can be easily computed from the
IA(N+ 1) array, for example:

the number of non-zero, off-diagonal terms in the 1st row is IA(2)-IA(1) =2
the number of non-zero, off-diagonal terms in the 2nd row is IA(3)-IA(2)=I
the number of non-zero, off-diagonal terms in the 6th row is IA(7)-IA(6)=2
the number of non-zero, off-diagonal terms in the 7th row is IA(8)-IA(7)=1
the number of non-zero, off-diagonal terms in the 8th row is IA (9)-IA(8)=1
the number of non-zero, off-diagonal terms in the 9th row is IA(10)-IA(9)=O

The column numbers of the non-zero, off-diagonal terms in each row can be
described by an array JA(NCOF), where NCOF is the total number of non-zero, off
diagonal terms of matrix [A] (before factorization). For the matrix data given by Eq.
(2.2), one has:

NCOF = IA (N+ 1) - IA(I) = 14-1 = 13

1
2
3
4
5
6

JA 7
8
9
10
11
12
13

2
4
3
4
6
5
6
6
8
7
9
8
9

(2.7)

www.manaraa.com

Due T. Nguyen 17

The numerical values of diagonal terms of [A] can be described by the array D(N),
where N=9, and:

All
1 A22
2

A33 3
4 A44

D 5 Ass (2.8)
6 A66
7

A77 8
9 Ass

A99

The numerical values of off-diagonal terms of [A] can be described by the
array AN (NCOF), where NCOF = 13, and:

Al2

1 Al4
2 A23
3 A34
4

A36 5
6 A4S

AN (2.9)

13

In this truly sparse storage scheme, the number of storage requirements for
matrix [A], see Eq. (2.2), is only 22 (=9 for storing diagonal terms + 13 for storing off
diagonal terms). For large-scale engineering and science applications, sparse storage
scheme is the most efficient one.

2.8 Detailed Procedures for Determining the Mapping Between 2-D Array and
I-D Array in Skyline Storage Scheme

The stiffness matrix [A] can be expressed either in a 2-dimensional array, or in a 1-
dimensional array, as indicated by Eq. (2.2), or Eq. (2.5), respectively. The key issue
that needs to be discussed in this section is evolved around the following question:

How can we find the mapping between Eq. (2.2) and Eq. (2.5)?? In other
words, how do we know that Ass and A69 in Eq. (2.2) will be mapped into AIO and A2S

in Eq. (2.5), respectively??

www.manaraa.com

18 Parallel-Vector Equation Solvers for Finite Element Engineering Applications

Let's first define the "column heights" ofa given symmetrical matrix [A], such
as shown in Eq. (2.2), as following:

Column height of the ith column of a matrix A is defined as the "distance"
between the diagonal term and the furthest non-zero term of the same ith column. The
diagonal term itself, however is NOT included in the calculation for the distance.

With the above definition, the column heights of the symmetrical matrix [A],
shown in Eq. 2.2, can be defined by the integer array ICOLH(N) as following:

1
2
3
4

ICOLH 5
6
7
8
9

Thus, column height of column 1 of [A] is 0
column height of column 2 of [A] is I
column height of column 8 of [A] is 3
column height of column 9 of [A] is 3

o
1
I
3
I
3
1
3
3

(2.10)

Once the column heights array ICOLH(N) is known, we can easily determine
the mapping of the diagonal terms' locations between Eq. (2.2) and Eq. (2.5), through
the integer array MAXA (N+l), where:

MAXA (1) = 1 (2.11)

MAXA (1+ I) = MAXA(I) + ICOLH(I) + I (2.12)

Using the known column height information (shown in Eq. 2.10), the mapping
of the diagonal locations, array MAXA(N+ 1), can be determined (by referring to Eqs.
2.11 and 2.12) as:

1 1
2 2
3 4
4 6

MAXA 5 10
(2.13) 6 12

7 16
8 18
9 22
10 26

From Eq. (2.13), we can easily see that the diagonal terms All, A22, Ass and

www.manaraa.com

Due T. Nguyen 19

A99 (of the 2-dimensional array, shown in Eq. 2.2) will be mapped into the locations
1,2,18 and 22, respectively (of the I-dimensional array, shown in Eq. 2.5).

The total number of storages, NTERMS, required to store the entire stiffness
matrix [A], in a skyline format, is given as

NTERMS MAXA(N+ 1)- M4XA(l)

M4XA(lO)- 1=26-1 = 25
(2.14)

Finally, the mapping between the 2-dimensional stiffness array [A], shown in
Eq. (2.2), and the I-dimensional stiffness array [A], shown in Eq. (2.5), can be
established as:

Aij = A[Maxa(j) + j - i) (2.15)

Using Eq. (2.15), the term As,s will be stored in the I-dimensional array as
As,s = A[Maxa(5) + 5 - 5]
As,s = A [Maxa(5)] = A(lO)

Similarly, the term A6,9 can be mapped into the I-dimensional array as
A6,9 = A[Maxa(9) + 9 - 6]
A6,9 = A[Maxa(9) + 3] = A(22+3)
A6•9 = A(25)

2.9 Determination of the Column Heights (ICOLH) of a Finite Element
Model

Figure 2.1 represents a simple structure which is modeled by 4 rectangular elements
(with 2 translational degree-of-freedom at each node) and 9 nodes. Nodes 1 through
3 are constrained by the pin support boundary conditions. Thus, there are no
translational motions in these three nodes. To specify the boundary conditions at each
node, the following conventions are adopted:

If a particular degree-of-freedom (dof) of a node is fixed (due to support
boundary condition), then this dof is assigned a value 1. If a particular degree-of
freedom (dot) of a node is free to move, then this dof is assigned a value O.

Since at each node, there are usually at most 6 dof (3 translational dof, Tx, Ty
& Tz and 3 rotational dof~, Ry & R. about the three coordinate axis), one can construct
the integer array ID(6, NUMNP) from Figure 2.1 as:

www.manaraa.com

20 Parallel-Vector Equation Solvers for Finite Element Engineering Applications

2 3 4 5 6 7 8 9

Tx 0 0 0 0 0 0

Ty 0 0 0 0 0 0

[ID]6x9 = Tz (2.16)

Rx
Ry
Rz

Since there are 9 nodes in the finite element model, shown in Figure 2.1, the
integer array ID in Eq. (2.16) has 9 columns.

dol 6 dol 12

t---+-d 015 t
6 9 ~dol II

(J) dol 4 @ dof 10
t 5 8 t---+- dol.9 2

---+-dol3
CD dol 2 ® dof 8

1 t4 7 t-..dol 7
---+-dol I

Figure 2.1 Finite element model with 4 rectangular elements

It is obvious from Eq. (2.16) and from Figure 2.1 that there are two (free to move)
translational dof at nodes 4 to 9, while the rests of the dof at these nodes are fixed. A 11
dof at nodes 1 to 3 are also fixed.

Thus, the ID array in Eq. (2.16) can be modified to become:

www.manaraa.com

Due T. Nguyen 21

2 3 4 5 6 7 8 9

Tx 0 0 0 3 5 7 9 11

Ty 0 0 0 2 4 6 8 10 12

[ID]6x9 = Tz 0 0 0 0 0 0 0 0 0 (2.17)

R. 0 0 0 0 0 0 0 0 0

Ry 0 0 0 0 0 0 0 0 0

Rz 0 0 0 0 0 0 0 0 0

Equation (2.17), therefore, will give us the global dof (or global equation) associated
with each node. Since each of the rectangular element (shown in Figure 2.1) is
associated with 4 nodes, there are 8 dof associated with each rectangular element.

Since the nodal numbers associated with each rectangular elements are known
(refer to Figure 2.1), the global dof, (array LM), associated with each element can be
defined (with the help of Eq. 2.17) as:

Rectangular element 1 is connected by nodes 5,2, 1 & 4, hence

LM(e=l)

3
4
o
o
o
o
1
2

Rectangular element 2 is connected by nodes 6, 3, 2 & 5, hence

5

LM(e=2)

6
o
o
o
o
3
4

Rectangular element 3 is connected by nodes 8, 5,4 & 7, hence

(2. 18)

(2.19)

www.manaraa.com

22 Parallel-Vector Equation Solvers for Finite Element Engineering Applications

LM(e=3)

9
10
3
4
1
2
7
8

Rectangular element 4 is connected by nodes 9,6,5 & 8, hence

LM(e=4)

11
12
5
6
3
4
9
10

(2.20)

(2.21)

The total structural stiffness matrix [A] of Figure 2.1 has 12 active dof (refer
to Eq. 2.17), which can be obtained from the contributions of 4 rectangular element
stiffness, as shown in the following Figure 2.2.

I 2 3 4 5 6 7 8 9 10 II

IfD@ (j)@ (j)@ (j)@ @ @ @ @

2 (j)@ (j)@ (j)@ @ @ @ @

3 fD® (j)® ®@ ®@ @ @ rID@ @@ @

4 (j)® ®@ ®@ @ @ fID@ fID@ @

5 ®@ ®@ @ @ @

[A] = 6 ®@ @ @ @

7 @ @ @ @

8 @ @ @

9 rID@ @@ @

10 @@ @

11 @

12

Figure 2.2 Total stiffness matrix of 4 rectangular finite element model

The column heights, ICOLH, of matrix [A] shown in Figure 2.2 can be
identified as

12

@

@

@

@

@

@

@

@

www.manaraa.com

Due T. Nguyen 23

1 0
2 1
3 2
4 3
5 2

ICOLH 6 3 (2.22)
7 6
8 7
9 8
10 9
11 8
12 9

2.10 Computer Implementation for Determining Column Heights

In the previous section, a simple finite element model has been used to illustrate detailed
steps to obtain the assembled, structural stiffness matrix. Once the structural stiffness
matrix has been assembled, the column heights (refer to Eq. 2.22) and diagonal
locations (refer to Eqs. 2.11 and 2.12) can be easily determined.

The purpose ofthis section is to present and explain a simple algorithm (in the
form of "pseudo" FORTRAN coding, shown in Table 2.1) to obtain the column heights
information directly from element connectivity data and without the need to assemble
the structural stiffness matrix.

It should be emphasized here that for parallel-vector skyline (column-by
column) equation solution strategies (to be discussed in Chapter 4), column heights
information is crucially important, since it contains enough information to describe the
non-zero terms required during the factorization phase.

C

C

C
C++++

C++++

C++++

Table 2.1 Algorithm to find column heights

NEQ = number of equations

NEL = number of elements (say = 4)

NDOFPE = number of degree-of-freedom (dot) per element

Initialized column height array

DO 1 1= 1, NEQ

ICOLH (I) = 0

CONTINUE

Looping through all finite elements

DO 2 J = 1, NEL

Looping through all dof per element to find min. dof

MINDOF = 10000000

www.manaraa.com

24 Parallel-Vector Equation Solvers for Finite Element Engineering Applications

13 C LM(K) = global dof (or equation) associated with each element
14 IDOF =LM(K)

15 If (IDOF.EQ.O) GO TO 3

16 If (IDOF.LT.MINDOF) MINDOF = IDOF

17 3 CONTINUE

18 C++++ Begin to find and update column heights

19 DO 4 K = 1, NDOFPE
20 IDOF =LM(K)

21 IF (IDOF.EQ.o) Go to 4
22 ICH = IDOF - MIND OF
23 IF (ICOLH(IDOF).LT.lCH) ICOLH(IDOF) = ICH

24 4 CONTINUE

25 2 CONTINUE

In Table 2.1, lines 10 through 17 will determine the minimum degree-of
freedom number (=MINDOF, see line 16) associated with each finite element. It is
assumed that all the degree-of-freedoms (dot) associated with each element (=LM(K),
see lines 14, 20) is known before using the algorithm shown in Table 2.1.

The IF statements on lines 15 and 21 will skip those dof with zero prescribed
displacement boundary conditions. These boundary conditions are also referred to as
Dirichlet boundary conditions.

Lines 18 through 24 (in Table 2.1) will find and update the column heights of
all dof associated with each finite element. The IF statement on line 23 will assure that
the "old" column height be updated only if its old value is less than its current (column
height) value.

For the data shown in Figure 2.1 and Eqs. (2.18-2.21), the column heights
after processing element 1 (the smallest dof = MINDOF = 1) can be computed as (refer
to Table 2.1):

After processing element 2 (the smallest dof= MIND OF = 3), we have

ICO~ il : {i~l} : {~} {
previous values were }

~ 2 kept, see IF statement
~ 3 on line 23 of algorithm

given in Table 2.1

www.manaraa.com

Due T. Nguyen 25

After processing element 3 (the smallest dof= MINDOF = 1), we have

9 9-1 8
10 10-1 9
3 3-1 2

ICOLH 4 4-1 3
I 1-1 0
2 2-1 1
7 7-1 6
8 8-1 7

After processing element 4 (the smallest dof= MINDOF = 3), we have:

II 11-3 8
12 12-3 9
5 5-3 2

ICOLH
6 6-3 3
3 3-3 0 -2
4 4-3 -3
9 9-3 6 -8
10 10-3 7 -9

It should be noticed here that after processing all 4 elements (using the algorithm
presented in Table 2.1), the final updated column height array ICOLH (-) will have the
corrected values as indicated earlier in Figure 2.2 and Eq. (2.22).

2.11 Summary

In this chapter, various storage schemes for storing the coefficient stiffness matrix have
been discussed. The detailed algorithm and computer implementation of the column-by
column (skyline) storage scheme has also been presented, since this skyline storage
scheme will lead to the development of efficient parallel-vector skyline equation solver
in Chapter 4. The variable bandwidth storage scheme will be further discussed in
Chapter 5, since it has direct impact on the development of efficient parallel-vector
variable bandwidth equation solver. The use of sparse storage scheme will be discussed
with more details in Chapter 10, where efficient sparse equation solver will be
presented.

www.manaraa.com

26 Parallel-Vector Equation Solvers for Finite Element Engineering Applications

2.12 Exercises

2.1 Given the following 9x9 symmetrical stiffness matrix [A):

A=

1 1f)

2 11

3 12. 13

4 14

5 15
(i 1 (i.

S Y M 7. 17.

R. 1 R
Q

(a) Using the I-D array B(-) to store the above matrix A in a "variable
banded" fashion (Hint: read section 2.4) ??

(b) How many "real" words of computer memory required by the above I-D
array B(-) to store the given matrix [A) ??

2.2 Using the data, shown in Problem 2.1, for matrix [A):
(a) Using the I-D array C(-) to store the matrix [A) in a "skyline" fashion??
(b) How many "real" words of computer memory required by the above I-D

array C(-) ??
(c) Construct the integer (column heights) array ICOLH (-) for this

example??
(d) Construct the integer (diagonal locations) array MAXA(-) for this

example ??

2.3 Using the data, shown in Problem 2.1, for matrix [A)
(a) Using the I-D arrays D(-) to store the matrix [A) in a "sparse" fashion??
(b) Construct the I-D arrays IA(-), JA(-), D(-) and AN(-) for this example

(Hint: see Eqs. 2.6-2.9)??
(c) How many "real" words of computer memory required by the above 1-D

array AN(-)??

2.13 References

2.1 KJ. Bathe, Finite Element Procedures, Prentice-Hall (1996)
2.2 T.R. Chandrupatla and A.D. Belegundu, Introduction to Finite Elements In Engineering, Prentice

Hall (2nd Edition, 1997)
2.3 0.0. Storaasli, D.T. Nguyen and T.K. Agarwal, "A Parallel-Vector Algorithm for Rapid Structural

Analysis on High Performance Computers," NASA-TM-I02614 (March 1990)
2.4 0.0. Storaasli, D.T. Nguyen and T.K. Agarwal, "The Parallel Solution of Large-Scale Structural

Analysis Problems on Supercomputers,' AIAAJournal, Vol. 28, No.7, pp. 1211-1216 (July 1990).
2.5 A. George and J.W. Liu, Computer Solution of Large Sparse Positive Definite System, Prentice-Hall

(1981).

www.manaraa.com

3.1 Introduction

3 Parallel Algorithms for
Generation and Assembly of

Finite Element Matrices

The solution of simultaneous linear equations or eigenvalue equations can be
considered as a major component of many existing finite element codes, since it
represents a major fraction of CPU time for the solution process in statics, free
vibration, transient response, structural optimization, and control structure interaction
(CSI) oflarge-scale, flexible space structures. Researchers are endeavoring to develop
efficient parallel algorithms for solving large systems of linear equations, eigenvalue
equations, and much progress has been recently reported in the literature [3.1-3.7].

Since the time for solving large system of linear equations has been reduced
significantly by using the recently developed parallel-vector equation solvers [3.1-3.7],
generating (complicated) element (stiffness and mass) matrices and assembling the total
(structural) matrices may now represent a significant amount of the total CPU time for
many practical engineering applications [3.4, 3.8-3.9]. This is especially true for
nonlinear structural analysis [3.8, 3.10], structural optimization and CSI [3.11, 3.12],
since in these application, new element matrices need to be generated and assembled in
an iterative procedure.

The objective of this chapter is to develop algorithms for parallel generation and
assembly of element matrices which exploit advanced computer with multiple
processors (such as Cray-C90, Cray-J90, Cray-T90, Cray SV 1, Intel Paragon, Mieko,
and IBM-SP2). The derivation of the new methods are presented, and practical
examples are given to demonstrate the effectiveness of the new methods.

3.2 Conventional Algorithm to Generate and Assemble Element Matrices

In this section, a conventional assembly procedure for generating and assembling
element matrices is described. To facilitate the discussions, a simple three-bar truss
structure, shown in Figure 3.1, is used in this section.

In Figure 3.1, each (truss) element stiffness matrix has the dimension ofa4-by-4
matrix, since each truss element is connected by 2 nodes (node i and node j), and each
node has 2 degree-of-freedom (dot). For example, element @ is connected by node i
=1 and node j=3. Also, the 4 dof associated with element @ are u l , u2, us, and u6 •

The total (or structural) stiffness matrix has the dimension of a 6-by-6 matrix,
since the structural stiffness matrix has a total of 6 dof (ul , u2, ••• , u6).

27

www.manaraa.com

28 Parallel-Vector Equation Solvers for Finite Element Engineering Applications

y j=3
j= 3

3 Q)

CD i= 1
i=2

i=2 ~------------. j=l
(3)

x

Figure 3.1 Three bar truss example

In the conventional procedure, the element stiffness (or mass) matrices are
generated and their contributions to the total (structural) stiffness (or mass) matrix can
be obtained in a form of a pseudo-Fortran code, as shown in Table 3.1

Table 3.1 Conventional generation and assembly structural stiffnes.s matrix

DO 1 e = 1,3 elements
• generate element stiffness matrix [k(e)]

• add contribution of [k(e)] to structural matrix [K] = ~ k(e)

1 Continue

Upon executing the algorithm shown in Table 3.1, each of the (4 by 4) element
stiffness matrix [k(e)] will have its contribution to the (6 by 6) total (or structural)
stiffn,ess matrix [K], as shown in Eq. (3.1)

1 2 3 4 5 6
1 @@ @@ @ @ @ @

2 @@ @ @ @ @
3 CD@ CD@ CD CD (3. 1)

4 CD@ CD CD
5 S Y M. @CD @CD
6 @CD

In Eq. (3.1), only the upper triangular portion of the structural stiffness matrix
[K] is presented, since matrix [K] is symmetrical and positive definite. At this stage, it
is only important to see the contributions of each element stiffness matrix into the total

www.manaraa.com

Due T. Nguyen 29

stiffness matrix [K]. Thus, only the element numbers (shown in circles) are shown in
Eq. (3.1), and their actual numerical values are NOT shown in Eq. (3.1).

Referring to Figure 3.1, one can clearly see that elements CD and @ both have
contributions to node 2 (or degree-of-freedoms U3 and u 4), while elements @ and @, for
example, both have contributions to node 1 (or degree-of-freedoms U I and u2). These
observations are also reflected in Eq. (3.1).

In a parallel computer environment, however, synchronization is a problem. This
can be demonstrated by the simple 3-bar truss of Figure 3.1. In Table 3.1, if each eth

finite element is assigned to a separate processor, then at node 1 (see Figure 3.1), for
example, both elements @and @ will often need to write their element stiffness
contribution to the structural stiffness matrix at the same locations, simultaneously! In
other words, generating all three element stiffness matrices (for elements CD, @ & @)
simultaneously and independently will be a trivial task. Assembling these element
stiffness matrices simultaneously, however, do have complications and problems!

This synchronization problem can be partially overcome by either setting the
local locks in the common shared memory pool, or by special numbering of the
elements throughout the entire structure [3.10]. The first method, setting the local locks,
reduces the speed of parallel assembly considerably. The second method (special
numbering of the elements), while improving the speed of parallel assembly, is not
general since the method will not work if a large number of processors are used and the
number of substructures is small.

To alleviate the above synchronization problem, new alternative methods are
proposed and discussed in the following sections.

3.3 Node-By-Node Parallel Generation and Assembly Algorithms [3.8-3.9]

In this new algorithm, element matrices will be generated and assembled in a node-by
node fashion. For a two-node (node i and node j) truss element (refer to Figure 3.1),
for example, a two dimensional, 4x4 element stiffness matrix [k(e)] can be symbolically
represented as:

k(e) k(e)

[k(e)]
II If

k.(e) k(e)
(3.2)

.JI II

In Eq. (3.2), ki~e) and k;e) refer to the 2x2 sub-matrices which represent a

portion of an element stiffness matrix attached to node i and node j, respectively. The
coupling effect between nodes i and j of an element stiffness matrix [k(e)] is represented

by a 2x2 sub-matrix k~e) (or its transpose 2x2 sub-matrix ki~e». Using the three

bar truss structure (shown in Figure 3.1) as a simple illustration, the new node-by-node
algorithm can be described in the following step-by-step procedure:

Step 1: Element Connectivity Data
The standard element connectivity data of the three-bar truss structure (see Figure 3.1)
can be readily obtained as shown in Table 3.2.

www.manaraa.com

30 Parallel-Vector Equation Solvers for Finite Element Engineering Applications

Table 3.2 Element connectivity

Element Number Node-i Node-j

1 2 3

2 1 3

3 2 1

In general, a truss element is connected by nodes i and j. The selection of nodes
i and j are arbitrary.

Step 2: Node Connectivity Information
In this step, elements which are attached to nodes i and nodes j of the entire structure
need to be identified. The global degree-of-freedom (dot) associated with each node can
be readily identified. For the three-bar truss structure shown in Figure 3.1, the node
connectivity information can be generated as shown in Table 3.3

Table 3.3 Node connectivity for 2-D truss elements

Node Global Elements with "Node Number"
Number dof Node i Nodej

1 I 2 3
2

2 3 1,3 None
4

3
5

None 1,2
6

In Table 3.3, element 2 for example, appears in the last 2 columns because
element 2 is connected by node i = I and node j = 3. Similarly, element I also appears
in the last 2 columns because element I is connected by node i = 2 and node j = 3. It
should be emphasized here, however, there are no elements attached to node j = 2.
Similarly, there are no elements attached to node i = 3. This step represents an
additional overhead cost ofthe proposed new algorithm, since the information generated
in this step is usually not required in conventional finite element codes. In actual
computer implementation, the additional cost (in terms of computer CPU time),
however, has been found to be negligible.

Step 3: Parallel Generation and Assembly (G&A) of Element Stiffness Sub
matrix ki~e) for Each Node of a Structure

Considering a typical truss member, such as truss member 2 as shown in Figure 3.1, this

www.manaraa.com

Duc T. Nguyen 31

member is connected by 2 nodes (node i = 1, and node j = 3). The four dof associated
with this member are u1, u2 (associated with node i) and Us & u 6 (associated with node
j). The element stiffness matrix [k(e)] for this 2-dimensional truss is a 4 x 4 symmetrical
matrix, which can be partitioned as (refer to Eq. 3.2).

[k(e=2)]
4x4

U

node i nodej
u, u2 Us u6

, ki~e) kJe)
u2 node i

U

S k.(e) k.~e) node j
U6 .11 11

(3.3)

In this step, the portion Kii = L ki~e) of the structural (or global) stiffness (or
mass) matrix K is generated and assembled in a parallel computer environment. From
the nodal connectivity information generated in the previous step, each node can be
assigned to a separate processor. Thus, in the three-bar truss structure (see Figure 3.1?,
node 1 will be assigned to processor 1. Processor 1, therefore will generate ki~e
portions of element e=2 (see the 3rd column of Table 3.3), and add the contribution to
appropriate locations (dof 1 and 2). Simultaneously, node 2 is assigned to processor 2
which will generate ki~e) portions of elements e=l and 3 in a sequential fashion, and
add its contribution to appropriate locations (dof 3 and 4) of the structural stiffness
matrix K. At the same time, processor 3 is assigned to node 3 (associated with dof 5
and 6). In this particular three-bar truss example, processor 3 is idle, as there are no
elements with node i=3 (refer to the 3rd column of Table 3.3). The parallel generation
and assembly (G & A) of Kii = L ki~e) for each structural node can be represented as
shown in Table 3.4.

Table 3.4 Parallel generation and assembly of ki~e)

node i = 1, i = 2, i = 3

2 3 4 5 6

2

3
4

5

6

® ®
®

1@

(1)(3)
---- ----

I 1

1 1

____ oJ

node i = 1,

node i = 2,

node i = 3,

It is important to realize that in Table 3.4, processors 1 and 2 simultaneously
generate their own contributions to different locations of K jj • There is no overlapping
between processor 1 (which is assigned to dof 1 and 2), processor 2 (which is assigned
to dof 3 and 4, and processor 3 (which is assigned to dof 5 and 6). Thus, in this step,
parallel G & A computation can be done without any communication among

www.manaraa.com

32 Parallel-Vector Equation Solvers for Finite Element Engineering Applications

processors. The actual numerical values of K;; are NOT given, since they are NOT
important in this discussion. Thus, only the element numbers which have contribution
to K;; are given (see numbers in circle of Table 3.4). In this particular example (refer
to Figure 3.1), work-balancing is not good, since processors 1,2 and 3 have to process
1, 2, and 0 element stiffness matrices, respectively.

As will be seen later in this chapter, however, for real, practical, large-scale
structural problems, the work-balancing among processors are quite good, and therefore
excellent parallel speed up factors can be achieved.

Step 4: Parallel Generation and Assembly (G & A) of Element Stiffness Sub-matrix ki~e)
for Each Node of a Structure. ..

In this step, the portion K;j = L ki~·) of the structural stiffness matrix K is
generated and assembled in a parallel ·computer environment. Each node is again
assigned to a separate processor, and the information in the last column of Table 3.3 is
used here. Processor I, which is assigned to node 1, will generate ~~e) of element e=3,
and add its contribution to appropriate locations (dof 1 and 2) of the structural stiffness
matrix [K]. Simultaneously, processor 3 which is assigned to node 3, will generatekj~e)
of elements e = 1 and 2, and add its contribution to appropriate locations (dof 5 and 6)
of the structural stiffness matrix [K]. At the same time, processor 2 is assigned to node
2 (associated with dof 3 and 4). In this particular example (refer to Figure 3.1),
processor 2 is idle, since there are no elements with node j =2. The parallel G & A of ki~e)
for each structural node is shown in Table 3.5

2

3

4

5

6

Table 3.5 Parallel generation & assembly of ki~e)
12345 6

® ®

® ---- ---
I I

I I
-- ----

CD@ CD@

CD@

nodej = I

nodej = 2

nodej = 3

Step 5: Parallel Generation & Assembly (G & A) of Element Stiffness Sub-matrix ki~e)
for Each Node of a Structure

In this step, the portion Kij = L kJe) of the structural stiffness matrix K is
generated and assembled in a parallel computer environment. To find out what
elements are attached to a given node of a structure, information on either node i (see
the 3rd column of Table 3.3) or nodej (see the 4th column of Table 3.3) can be used to
generate the portion Kij of the structural stiffness matrix K.

In this section, the information for nodes j is used in this step. Thus, processor
1 is assigned to node 1 to process element e = 3. Element 3 is connected to dof 1, 2, 3
and 4, and its contribution to Kii and Kjj have already been done in step 3 and step 4,
respectively.

In this step, processor 1 will generate ki~e=3) and add its contribution to the
appropriate locations of Kij. Simultaneously, processor 3 is assigned to node 3 to

www.manaraa.com

Due T. Nguyen 33

process elements 1 and 2. Processor 3 will therefore, generate k;;e) for elements e = 1
and 2, and add its contribution to the appropriate locations of Kjj • In this particular
example, processor 2 is idle since there are no elements with node j = 2. The parallel
G & A of kJe) for each structural node is conveniently represented in Table 3.6.

Table 3.6 Parallel generation & assembly of k;;e)
123 456

2
3
4
5
6

@ @

(3) (3)

@ @

@ @

CD CD
CD CD

Since the structural stiffness matrix K is symmetric, only the upper-half of K jj ,

K.ii and K jj are considered in step 3, step 4 and step 5, respectively.
The above five-step procedure to generate and assemble element stiffness

matrices in parallel is quite general, since there is no assumption on the type of element
used in the finite element model. For a more convenient and efficient computer
implementation, the execution in step 5, for the coupling terms k;;e) and k}e), can be and
should be included in steps 3 and 4. Thus, the overhead cost due to the re-calculation
of some parameters for generating the element stiffness matrix can be reduced.

The actual computer implementation of Baddourah-Nguyen's algorithm for
generation and assembly of two-dimensional truss elements (see Figure 3.1, and Table
3.3) can be shown with a "pseudo-Fortran" code in Table 3.7. The variable NEL(n),
shown in Table 3.7, represents the number of elements to be processed by the nth
processor.

Table 3.7 Actual computer implementation for G & A
of two-dimensional truss elements

For each nth processor:
DO 1 e = 1, NEL (n)

c. Step 3 and Step 5 combined
c. Generate & Assembly k;~e) and k;;e) (where j > i)

1 2 3 456 2 3 4 5 6 12345 6

1
2

3

4
5
6

@ @ @

@ @

Processor 1

@

@ 2

3
4

5

6

(j)@ ®@
®@

Processor 2

® ®
® ®

2

3

4

5

6

-- -
I I

I I - _.J

Processor 3 (idle)

www.manaraa.com

34 Parallel-Vector Equation Solvers for Finite Element Engineering Applications

Continue
DO 2 e=l, NEL (n)

c. . . . Step 4 and Step 5 combined
c Generate & Assemblykjje) andk)") (where i> j)

1

2

3

4

5
6

@

2 3 4 5 6
@ @ @

~ @ @

Processor 1

2 Continue

1 2 3 4 5 6

2

3
4

5
6

Processor 2 (idle)

1 2 3 4 5 6

2

3
4

5 @<D @<D

6 @<D

Processor 3

For a three-node triangular element (with 2 translational dof at each node, refer
to Figure 3.2), a two dimensional, 6x6 element stiffness matrix k(e) can be symbolically
represented as:

k,(e)
1/

k,(e)

"
k(e)

1m

k(e) k(e)
1I

k(e)
1m (3.4)

k(e)
mm

y

~----------------------~X

Figure 3.2 Three-node triangular element

www.manaraa.com

Due T. Nguyen 35

4~ ______ ~ ____ ~~3

J

o

1 2

Figure 3.3 Triangular elements

In Eq. (3.4), k;~e), kj~e) and k~l refer to the 2x2 sub-matrices which represent a
portion of an element stiffness matrix attached to node i, node j and node m,
respectively. The coupling effect between nodes i, j and m of an element stiffness
matrix k(e) is represented by the sub-matrices k;;e), k;~) and ki~). Thus, for a three
node triangular element, an additional step needs to be inserted before the last step (step
5) for parallel generation and assembly of k~~ for each node m of the structure. As
an illustrative example, a four triangular element structure is shown in Figure 3.3. The
corresponding node connectivity for this structure is shown in Table 3.8 (Similar to
Table 3.3)

Table 3.8 Node connectivity for 2-D triangular elements

Processor Global Elements with "Node Number"
(or Node) Number dof Node i Nodej Nodem

I 1,2 CD,@ None None

2 3,4 @ @ None

3 5,6 ® @ None

4 7,8 None ® CD

5 9,10 None CD @,@,®

The actual computer implementation of Baddourah-Nguyen's algorithm for
generation and assembly of two-dimensional triangular elements (see Figure 3.3 and
Table 3.8) can be shown with a "pseudo-Fortran" code in Table 3.9.

www.manaraa.com

36 Parallel-Vector Equation Solvers for Finite Element Engineering Applications

Table 3.9 Actual computer implementation for G&A
of two-dimensional triangular elements

For each nth processor:
DO 1 e=l, NEL (n)

c Generate & Assembly k(e),
II

c... Processors 4 and 5 are idle

2 3 4 5 6 7 8 9 \0 \ 2 3 4 5 6 7 8 9 \0 \ 2 3 4 5 6 7 8 9 \0

2

3

4

6

8

9

\0

c
c .. .

2

3

4

5

6

7

8

9

10

\,2 \,2 2 2

\,2 2 2

Processor 1
continue

\ \ \,2

\ \ \,2

DO 2 e=l, NEL (n)
Generate & Assembly
Processor 1 is idle

\,2

\,2

3 3 3 3

3 3 3

Processor 2

3 3

3 3

4 4 4 4 4 4

4 4 4 4 4

Processor 3

2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10

2 2 2 2

2 2 2

3 3 3 3

.1 3 3

4 4 4 4

4 4 4

Processor 2 Processor 3 Processor 4

www.manaraa.com

Due T. Nguyen

2 continue
DO 3 e = 1, NEL (n)

c Generate & Assemble keel mm'

c...... Processors 1, 2 and 3 are idle

121456711Qto

2
3
4

5
6
7
8
9
10

3 continue

1

Processor 4

1 1 1

.I. 1 1

37

II I
1

Processor 5

k (e) and k (e) (where i, J' > m)
1111 111./

1 214 ~ 6 7 1I --'l 10

2,3 &4 2,3 &4

71 &4

Processor 5

3.4 Additional Comments on Baddourah-Nguyen's (Node-by-Node) Parallel
Generation and Assembly (G&A) Algorithm

In general, the overhead cost is increased with elements which have more nodes
attached to them. For example, examining Table 3.3 carefully (2-D truss elements), one
can see that the proposed G&A algorithm requires generating each element stiffness
matrix TWICE (refer to the 3rd and 4th columns of Table 3.3). However, due to perfect
parallel computation (without any communication required) of three processors used,
the "net gain" in parallel speed-up is still 1. = 1.5. This parallel speed-up will be
significantly better for large finite element mbdel with larger number of processors.

Similar observation in Table 3.8 (2-D triangular elements) will reveal that each
element stiffness matrix is generated THREE TIMES (refer to 3rd, 4 th and 5 th columns
of Table 3.8). However, since 5 processors have been used (without any communication
between processors), the "net gain" in parallel speed-up is still ~. This parallel speed
up will be scalable for large finite element model with larger nJmber of processors.

www.manaraa.com

38 Parallel-Vector Equation Solvers for Finite Element Engineering Applications

Practical finite element models have a large number of degree-of-freedom. For
these large models, many finite elements need to be processed. Furthermore, there are
fewer processors available as compared to the number of elements in a large finite
element model. Thus, a balance of the work load among the processors is well
preserved. The idle time of the processors, therefore, is significantly reduced through
this generation and assembly process.

3.5 Applications of Baddourah-Nguyen's Parallel G & A Algorithm

The proposed parallel algorithm [3.9] for G & A the element stiffness matrices has been
coded using a parallel Fortran language FORCE [3.13] (FORtran with Concurrent
Extension). It should be emphasized here that FORCE is used merely for convenient
purpose, other parallel software language such as PVM, or MPI (Message Passing
Interface) can also be used for parallel implementation of the proposed G & A
algorithm. Four structural examples were used to evaluate the numerical performance
of the new algorithm. In all examples considered in this section, elapsed (or wall clock)
time in a multiuser (non-dedicated) computer environment are reported. The times given
include the overhead cost in step 2 (of Section 3.2), and the G & A of the structural
stiffness matrix. The computation speed-up is defined in most parallel algorithms as

d time for I processor
spee -up = (3 5)

time for N processsor .

While parallel implementation ofthe "conventional" method for G & A of the structural
stiffness matrix has not completely resolved the synchanization problem [3.10], this new
parallel G & A algorithm is quite general, and a significant reduction in elapsed time
has been observed (see Tables 3.10 --+ 3.13) when multiple processors are used.

Even better speed-up factors can be expected in all these examples in a dedicated
computer environment, where the required processors are NOT shared by different
users.

Example 1: Three-Dimensional Truss Structure
A pattern of a three-dimensional truss structure is shown in Figure 3.4. The 5 story x
150 bay structure has 3416 three-dimensional truss elements, 612 nodes with 3 dofper
node. The elapsed time for this example using the new algorithm is presented in Table
3.10.

www.manaraa.com

Due T. Nguyen 39

Figure 3.4 Three-dimensional pattern of truss structure

Table 3.10 3-D Truss: speed-up on Cray Y-MP

Number of Generate/Assemble Speed-up
Processors Stiffness Matrix (sec)

0.1057 1.0000

2 0.0544 1.9418

4 0.0285 3.7052

6 0.0205 5.1619

For this example, the elapsed time using the conventional algorithm (on a single
processor) is 0.0855 seconds. As can be expected on a single processor, the new method
is a little slower than the conventional method. This is due to the overhead cost (refer
to Step 2) of the new algorithm. The power of the new method is fully realized on
massively parallel MIMD computers where the overhead becomes negligible.

Example 2: Two-Dimensional Frame Structure
A pattern of a two-dimensional frame structure is shown in Figure 3.5.

Figure 3.5 Two-dimensional frame structure

The 5 story x 150 bay structure has 1005 frame elements, 306 nodes with three
DoF per node. The elapsed time for this example using the new algorithm is presented
in Table 3.11.

www.manaraa.com

40 Parallel-Vector Equation Solvers for Finite Element Engineering Applications

Table 3.11 2-D Frame: speed-up on Cray Y -MP

Number of Generate/Assemble Speed-up
Processors Stiffness Matrix (sees)

0.0295 1.0000

2 0.0152 1.9390

4 0.0083 3.5502

6 0.0071 4.1541

F or this example, the elapsed time using the conventional algorithm (on a single
processor) is 0.0242 seconds.

Example 3: Two Dimensional Plate Structure

A pattern of a plate which is modeled by three-node triangular elements is shown
in Figure 3.6.

Figure 3.6 Two-dimensional plate structure

The 5 story x 150 bay structure has 1500 triangular elements, 906 nodes with two
DoF per node. The elapsed time for this example is presented in Table 3.12.

Table 3.12 2-D Plate: speed-up on Cray Y -MP

Number of Generate/Assemble Speed-up
Processors Stiffness Matrix (sees)

1 0.0607 1.0000

2 0.0305 1.9909

4 0.0164 3.6990
6 0.0121 5.0362

F or this example, the elapsed time using the conventional algorithm (on a single
processor) is 0.0400 seconds. The overhead cost (0.0607 seconds -0.0400 seconds) for
this example is larger than in the preceding examples. This is expected since the 3-node
plate element used requires more computations than the simpler 2-node truss and 2-node

www.manaraa.com

Due T. Nguyen 41

frame elements. Furthermore, the amount of redundant (or overhead) works in
evaluating element stiffness matrices, in general, is increased with increasing number
of nodes (or dot) per element.

Example 4: Three-Dimensional Beam Finite Element Model
A three-dimensional beam finite element antenna model to study Control-Structure
Interaction (CSI) [3.11] is shown in Figure 3.7.

Figure 3.7 Three-dimensional CSI antenna model

The structure has 1647 beam elements, 537 nodes with six DoF per node. The
elapsed time for this example is presented in Table 3.13.

Number of
Processors

2
4

Table 3.13 CSI speed-up on Cray Y -MP

Generate/Assemble
Stiffness Matrix (secs)

1.3396

0.6927
0.3711

Speed-up

1.0000

1.9339
3.6098

For this example, the elapsed time using the conventional algorithm (on a single
processor) is 1.0989 seconds.

In all the above examples (see Tables 3.10-3.13), the elapsed time is decreased
with increasing number of processors. For linear structural analysis, the generation and
assembly of the structural stiffness matrix need to be done only once. Thus, more
significant time-saving can be expected in nonlinear structural analysis, structural
optimization and control-structure interaction where the element matrices are updated
and assembled repeatedly.

3.6 Qin-Nguyen's G & A Algorithm

In this section, a massively parallel G & A of element stiffness matrices is developed
for large-scale structural analysis on massively parallel computers with distributed
memory (such as the Intel Gamma, Delta, Paragon, Mieko, IBM-SP2). The same
algorithm can also be applied for shared memory computers (such as Cray YMP, Cray
C-90). A block-skyline column storage scheme is used to enhance the vector
performance of the equation solver (to be discussed in Chapter 7) and to reduce the

www.manaraa.com

42 Parallel-Vector Equation Solvers for Finite Element Engineering Applications

memory demand for each processor. This column storage scheme can also be used to
improve the parallel performance of generation and assembly of element stiffness
matrices. The parallel computers used in this section are the Intel iPSC/860 (such as the
Gamma computer with 128 processors and the Delta computer with 512 processors).
Both computers have the same floating-point operation speed, while the Delta machine
has a higher communication rate as compared to that of the Gamma (say 3 to 1 ratio, for
matrices with an average half-bandwidth around 1000).

It is important to emphasize here that any proposed G & A algorithms should be
compatible with the equation solvers to be developed in subsequent chapters.

For illustrative purpose, let's consider a two-dimensional frame structure as
shown in Figure 3.8. This 2-D frame structure has 16 nodes, each node has 3 degree-of
freedom (2 translational dof in the x & y directions, and 1 rotational dof about the z
direction). Nodes 13-16 have no degree-of-freedoms since these nodes are constrained
by the support boundary conditions. There are 21 frame finite elements, each element
is connected by 2 nodes, hence each element has 6 dof, and the entire structure has 36
dof.

To simplify the discussions, assuming there are 3 processors available, thus each
processor can be assigned to store block columns of the total stiffness matrix [KJ, as
shown in Figure 3.9 (where the block size k = 4 is shown). In real computer
implementation, however, block size k = 8 is selected, since this block size will give
near optimum performance during G & A and equation solution phases (to be discussed
with more details in Chapter 7). Thus column numbers (or dof numbers) 1-4, 13-16 and
25-28 belong to processor 1 (or PI), column numbers 5-8, 17-20 and 29-32 belong to
processor 2 (or P2). Similarly, column numbers 9-12, 21-24 and 33-36 belong to
processor 3 (or P 3).

The dof associated with each finite element are known, once the finite element
model (see Figure 3.8) has been defined. This information is shown in the first 2
columns of Table 3.14. Since each dof(or each column) can be mapped into a particular
processor (refer to Figure 3.9), element number to processor number(s) mapping can be
easily established as shown in the 3,d column of Table 3.14.

Once the information shown in Table 3.14 is known, the mapping from processor
number to element number(s) can be readily identified as shown in Table 3.15.

In fact, once the dof associated with each element are known (refer to the 2nd
column of Table 3.14), Table 3.15 can be easily obtained in a parallel fashion, as
indicated in the following "pseudo-FORTRAN" coding (refer to Table 3.16).

www.manaraa.com

Due T. Nguyen 43

Table 3.16 Parallel algorithm to find which elements belong to each processor

For each processor i (where i = processors 1,2 & 3)

2 DO I K = 1, ALLELS (say K=7)

3 c Get the dof, ELDOF(-) array, associated with the Kth element

4 c ... Get ELDOF(I, 2, 3, 4, 5, 6) = 25, 26, 27, 28, 29,30

5 DO 2 M = 1,6

6 If [ELDOF(M) belongs to processor i] Then

7 . Record element K belongs to processor i

8 . Exit loop 2, and go to loop 1

9 Endif

10 2 Continue

III 1 Continue

y

4
CD ® (]

@ @ @ 1

S
6 7 a

G) CD 0
-+---.. x

® @ @ ~
9 10 11 12

CD 0 ®
@ @ @ 2

3 ~ ~ ~ ~~ IT'"T '7

Figure 3.8 A 2-D frame structure

www.manaraa.com

44 Parallel-Vector Equation Solvers for Finite Element Engineering Applications

6 9 12 16 18 70 74 30 36

----- _____ J_ _____ .. ~ __ .,.._ ,"'Irl-+-I-t-+-+-+-t-+~I-t--+-IH-+-+-t-+-t-t-t-H row 12

i

..r-- .. ---......!
11._4 !

.... ot··· ·················i········ __ · u····i·······

... -~.--. + --- .. l .. ---.. ····t- _-_ --" ::-t--t--t-t-l-i row 30

1""
i "

Figure 3_9 Block columns (skyline) storage scheme for
Qin-Nguyen's G & A algoritnm

Table 3_14 Degree-of-freedom and processor number
assocIated with each finite element

Frame Element Number Frame Element DOF Numbers Processor Number

I 1,2,3,4,5,6 PI' P,
2 4,5,6,7,8,9 PI' P, P"
3 7,8,9,10, II, 12 P" P,
4 13,14,15,16,17,18 PI' P,
5 16,17,18,19,20,21 P" P,
6 19,20,21,22,23,24 P" P,
7 25,26,27,28,29,30 PI' P,
8 28,29,30,31,32,33 PI' P, P,
9 31,32,33,34,35,36 P" P,
10 13,14,15,1,2,3 PI
11 25,26,27,13,14,15 PI
12* 0,0,0,25,26,27 PI
13 16,17,18,4,5,6 PI' P,
14 28,29,30,16,17,18 PI' P,
15* 0,0,0,28,29,30 PI> P,
16 19,20,21,7,8,9 P" P,
17 31,32,33,19,20,21 P" P,
18* 0,0,0,31,32,33 P" P,
19 22,23,24,10,11,12 P,

20 34,35,36,22,23,24 P,
21 0,0,0,34,35,36 P,

www.manaraa.com

Due T. Nguyen 45

Table 3.15 Frame elements associated with each processor

Processor~umber Frame Element ~umbers ~umber of Elements

1 1,2,4,7,8,10-15, 11

2 1-9,13-18 15
3 2,3,4,5,8,9, 16-21 12

In Table 3.16, variable ALLELS (on line 2) refers to the total number of finite
elements. For the example shown in Figure 3.8, ALLELS =21 (also refer to Table 3.14).
The if statement (on line 6 of Table 3.16) will assure that an element will not be recorded
more than once by the same processor.

Each processor will scan through all finite elements (refer to the "do loop" on line
2). The dof associated with the Kth element are known, and are given by the integer array
ELDOF (M), where M = 1 through 6 (since each 2-D frame element has 6 dof). Once the
dof are known, the corresponding processor number can be identified (for example, by
referring to the information shown in Figure 3.9).

Assuming the value ofK (on line 2) is 7. All three processors (PI' P2 and P3) will
examine the 6 dof(25, 26, 27, 28, 29, 30) associated with frame element number 7 (refer
to lines 4 and 6). Upon exiting from loop 2 (refer to line 10), element 7 will be recorded
by processor 1 (since element 7 contains dof 25, 26, 27 and 28), and also will be
recorded by processor 2 (since element 7 also contains dof 29 and 30). Element 7,
however, will ~OT be recorded by processor 3 (since all dof25-30 are ~OT belonging
to processor 3, refer to Figure 3.9).

The parallel G & A algorithm proposed by Qin & ~guyen [3.4] can be
summarized in Table 3.17.

2

Table 3.17 Qin-~guyen's parallel G & A algorithm

For each processor i (where i=processors 1,2 & 3)

DO 1 K = 1, ~EL (i)

1

3 c.... Get the 6 dof associated with the Kt h element, ELDOF (M)

4. c ... Where M = 1,2,3,4,5 and 6

I!
I;

• Generate element (stiffness) matrix of the Kth element

• Assemble the entire (or just a portion of) stiffness

matrix of the Kth element into a global matrix

I Continue

In Table 3.17, ~EL (i), on line 2, represents the number of elements which belong
to the jlh processor. Based upon the data presented in Table 3.15, then ~EL (1) = 11,
~EL (2) = 15 and ~EL (3) = 12. The first element of processors 1,2 and 3 is element 1,
element 1 and element 2, respectively. Similarly, from Table 3.15, the last element of
processors 1, 2 and 3 is element 15, element 18 and element 21, respectively.

Assuming processors 1, 2 and 3 are trying to simultaneously generate element

www.manaraa.com

46 Parallel-Vector Equation Solvers for Finite Element Engineering Applications

stiffness matrices (of elements I, I and 2, respectively) and add (or assemble) its
contribution to the appropriate locations ofthe total (or global) stiffness matrix K. At this
stage, processor I (or PI) will generate a 6 by 6 element stiffness matrix (for element 1).
However, it assembles only a portion (associated with dof 1-4) of its 6x6 element matrix
into the appropriate locations ofthetotal matrix [K] as shown in Figure 3.10. At the same
moment, processor 2 (or P2) will also generate a 6 by 6 element stiffness matrix (for
element 1). However, it assembles only a portion (associated with dof 5-6) of its 6x6
element matrix into proper locations of the total matrix [K]. Simultaneously, processor
3 will generate a 6 by 6 element stiffness matrix (for element 2). However, it assembles
only a portion (associated with dof 9) of its 6x6 element matrix into proper locations of
the total matrix [K]. From Figure 3.10, it is important to observe that there is no
overlapping among processors when each processor simultaneously adds its contribution
to global matrix [K].

4

5

8
[K] 9

12

13

16

4 5
G)G)G)G) G)G)

G)G)G) G)G)
G)G) G)G)

G) G)G)

G)G)
G)

8 9 12 13 16

@

@
@
@
@

@

Figure 3.10 Parallel G & A of element stiffness matrices for elements
1 and 2 by processors 1,2 and 3, respectively

The numerical values of the total (or global) stiffness matrix [K] are
unimportant at this point, hence, only element numbers are shown in Figure 3.10.

3.7 Applications of Qin-Nguyen's Parallel G & A Algorithm

2-D truss structures with 'nb' bays and 'ns' stories (shown in Figure 3.11) are denoted
as nb x ns. Table 3.18 gives the CPU times for the generation and assembly of the global
stiffness matrix (on the Gamma computer with up to 128 processors). For the 200 x 6
model, nel = 4806, neq = 2412. For the 1 x 16500 model, nel = 82,500 and neq = 66,000.

www.manaraa.com

Due T. Nguyen 47

Table 3.18 CPU times for the generation and assembly of the global matrix

nb x ns k 1 2 4 8 16 32 64 128

200x6 4 .337 .206 .1036 .0593 .0290 .01398 .00718 .0034

200x6 8 .339 .1885 .1145 .0569 .0273 .01412 .00664 .0033

1x16500 4 4.64 3.537 1.793 .9083 .4515 .2267 .114 .057

1x16500 8 - 2.985 1.507 .7564 .376 .188 .0945 .0481

*small overhead tlmmgs for obtaining Table 3.15 is not included here.

As it can be seen from Table 3.18 that in general, larger block size k will lead
to higher speedup, because there will be fewer elements that contribute to more than one
processors. The price one has to pay is, however, more memory will be required for
larger block size (to be discussed and explained in Chapter 7). The block size will also
have the effects on the performance of the equation solver, which will be discussed in
Chapter 7.

Figure 3.11 Two dimensional pattern of truss structure
with "nb" bays and "ns" stories

Larger-Scale numerical examples of 2-D truss structures with 750 bays and 6
stories (with 18,006 truss elements) and 1096 bays and 41 stories (with 179,785 truss
elements) are presented in Table 3.19.

Table 3.19 Performance of Qin-Nguyen G&A algorithm
D I I or arge-sca e truss structures

Number Processors 8 16 32 64 128 256 512

750 bays, 6 stories 0.1585 0.0806 0.0403 0.0188
(Intel Gamma Computer)

750 bays, 6 stories 0.3203 0.1506 0.0785 0.0377 0.0176 0.0095 0.00463
(Intel Delta Computer)

1096 bays, 41 stories 0.12251
(Intel Delta Computer) (38.46

Mflops)

www.manaraa.com

48 ParaIlel-Vector Equation Solvers for Finite Element Engineering Applications

It is interesting to note that there are a few places in Table 3.19 which indicate
more than ideal speed-up factors. In this work, a processor will generate a complete
element stiffness matrix even though it may need only a portion of it. This kind of a
"redundant computation" may be reduced when more processors are used.

In Table 3.20 [3.5], the fmite element used is an eight-node solid element with
3 d.o.f. per node, thus there are 24 d.o.f. per element. Since every 8 d.o.f. are stored in
one processor, it is generally true to state that the same element should be shared by AT
LEAST three (24/8=3) processors, or AT MOST (the worst case) by eight processors.

The above observations imply that for the 24 d.o.f. solid element, the speed-up
for generation and assembly is AT BEST NP/3, or AT WORST NP/8. When the number
of processors (NP) is small and the problem size is fixed, the "actual" speed- up may be
more or less than the "predicted" range. However, when NP is large enough, the change
of the speed-up will be proportional to the change ofNP (i.e., when NP is doubled, the
speed-up will also be doubled.)

In Table 3.20, the "actual" change in speed-up shown in row 5 can be easily
obtained from the "actual" change in time shown in row 4. Furthermore, the change in
NP shown in row 6 is in close agreements with row 5 when NP is large. The "actual"
number of elements processed by each processor is shown in row 2, the "predicted"
worst case is shown in row 3 and is in good agreement with row 2 when NP is large.

Table 3.20 "Predicted" and "actual" speed-up for Qin-Nguyen's G/A
of 24 d.o.f. solid elements on multiple processors MEIKO computer

Nel=15**3 NP=8 NP=1O NP=16 NP=20 NP=30 NP=64 NP=96

#Els.lProcessor 1830 2120 1620 1300 870 415 270
(actual)

#Els.lProcessor 3375 2700 1687 1350 900 421.9 281.3
(predicted)

"actual" time 30.01 34.85 26.68 21.22 14.20 6.73 4.49
for G/A (seconds)

"actual" change N/A 1.1613 1.30622 1.2573 1.4944 2.11 1.499
in speed-up (=34.851 (=14.201

30.01) 6.73)

"predicted" N/A 1.25 1.60 1.25 1.50 2.13 1.50
change in (=10/8) (=64/30)
speed-up

3.8 Summary

Simple and efficient parallel algorithms for generating and assembling the structural
stiffness (or mass) matrix have been developed and tested in a non-dedicated computer
environment on different supercomputers. The new algorithms circumvent the processor
synchronization problem associated with implementing the conventional approach on a

www.manaraa.com

Due T. Nguyen 49

parallel machine.
Good speed-up factors were obtained even for small to medium scale structural

examples. Better speed-up factors can be expected from the new algorithms in a truly
dedicated computer environment. The new parallel algorithms are general since there
is no assumption made on the type of finite elements used.

While both parallel G & A algorithms (presented in Sections 3.2 and 3.5) have
offered excellent speed up as the number of processors increased, the Qin-Nguyen's G
& A algorithm is a preferred choice due to its simplicity, generality (the algorithm can
be easily used to construct the stiffness matrix in either column-by-column, or row-by
row fashion) and portability (the algorithm can be implemented on either distributed, or
shared memory computers).

3.9 Exercises

3.1 In Figure 3.9 (which is related to Figure 3.8), the following assumptions have
been made:
(a) 3 processors were used, and
(b) each processor stored block (4) columns of the coefficient stiffness matrix.

Re-construct Tables 3.14, 3.15 and Figure 3.10, due to the following changes in the
assumptions:

(c) 4 processors and block (4) columns are used?
(d) 3 processors and block (6) columns are used?
(e) 4 processors and block (6) columns are used?

3.2 A two dimensional finite element problem is modeled by 4 triangular and 1
rectangular elements as shown in Figure P3.2. For this problem, construct a
Table similar to the one explained in Table 3.8 ??

1
m.

6

Figure P3.2

www.manaraa.com

50 Parallel-Vector Equation Solvers for Finite Element Engineering Applications

3.10 References

3.1 Storaasli, 0.0., Nguyen, D.T., and Agarwal, T.K., "Parallel-Vector Solution of Large-Scale
Structural Analysis Problems on Supercomputers," AIAA Journal, Volume 28, Number 7, July
1990, pp. 1211-1216 (also in Proceeding of the 30th AIAA/ASME/ASCEIAHS Structures,
Structural Dynamics and Materials Conference, Mobil, AL, April 3-5, 1989, pp. 859-867).

3.2 Qin, J., Gray, C.E. Jr., Mei, C., and Nguyen, D.T., "Parallel-Vector Equation Solver for
Unsymmetric Matrices on Supercomputers," Computing System in Engineering, Vol. 2, No. 2/3,
pp. 197-201, 1991.

3.3 Qin, J., Gray, C.E. Jr., Mei, C., and Nguyen, D.T., "Parallel-Vector Equation Solver for
Unsymmetric Matrices on Supercomputers," Proceedings of the NASA-USAF Symposium on
Parallel Methods on Large-Scale Structural Analysis and Physics Applications, Hampton, V A,
February 5-6, 1991.

3.4 Qin, J., and Nguyen, D.T., "A New Parallel-Vector Finite Element Analysis Software on Distributed
Memory Computers," Proceedings of the AlAA/ASME/ASCE/AHS 34th SDM Conference, La
Jolla, CA (April 19-22, 1993).

3.5 Maker, B.N., Qin, J. and Nguyen, D.T., "Performance ofNIKE3D with PVSOLVE on Vector and
Parallel Computers," Computing Systems In Engineering Journal (1995).

3.6 Qin, J., Nguyen, D.T., and Zhang, Y., "Parallel-Vector Lanczos Eigensolver for Structural Vibration
Problems," in Proceeding of Fourth International Conference on Recent Advances in Structural
Dynamics, July 15-18, London, UK, 1991.

3.7 Qin, J., and Nguyen, D.T., "A Parallel-Vector Equation Solver for Distributed-Memory
Computers," presented at The 2nd Symposium on Parallel Computational Methods for Large Scale
Structural Analysis and Design, February 24-25, 1993, Norfolk, VA.

r8 Baddourah, M.A., "Parallel-Vector Computation for Geometrically Nonlinear Frame Structural
Analysis and Design Sensitivity Analysis," Ph.D. Thesis, Old Dominion University, Department
of Civil and Environmental Engineering, (1991).

3.9 Baddourah, M.A., Storaasli, 0.0., Carmona, E.A. and Nguyen, D.T., "A Fast Parallel Algorithm
for Generation and Assembly of Finite Element Stiffness and Mass Matrices." Proceedings of the
AlAA/ASME/ASCE/AHS 32"" SDM Conference, Baltimore, MD (April 8-10,1991).

3.10 Chien, L.S., and Sun, C.T., "Parallel Processing Techniques for Finite Element Analysis of
Nonlinear Large Truss Structures," Computer & Structures, Volume 31, No.6, pp. 1023-1029,
1989.

3.11 Belvin, W.K., Elliott, K.E., Bruner, A., Sulla, J., and Bailey, J., "The LaRC CSI Phase-O
Evolutionary Model Tested: Design and Experimental Results, Proceedings of the Fourth Annual
NASA/DOD Conference on Control/Structure Interaction Technology, Orlando, Florida, November
5-7,1990.

3.12 Belvin, W.K., Maghami, P.G. and Nguyen, D.T., "Efficient Use of High-Performance Computers
for Integrated Controls and Structures Design," Computing Systems in Engineering Journal, Vol.
3, No. 1-4, pp. 181-188 (1992).

3.13 Jordan, H.F., Benten, M.S., Arenstorf, N.S., and Ramann, A.V., "Force User's Manual: A Portable
Parallel FORTRAN," NASA CR 4265, January 1990.

www.manaraa.com

4.1 Introduction

4 Parallel-Vector Skyline
Equation Solver on

Shared Memory Computers

The solution of linear systems of equations on advanced parallel and/or vector
computers is an important area of ongoing research. [4. 1 - 4.2]. The development of
efficient equation solvers is particularly important for static and dynamic structural
analyses, eigenvalue and buckling analyses, sensitivity analysis and structural
optimization procedures.[4.3 - 4.5] Research has been directed towards developing
either effective vector methods or parallel methods to solve linear systems of equations.
However, modem supercomputers now have both parallel and vector capability;
algorithms that exploit both capabilities are the most desirable.

This chapter presents a direct Choleski-based equation solver which exploits
both parallel and vector features of supercomputers. The objective of this chapter is to
describe this new equation solver and to evaluate its performance by solving structural
analysis problems on high-performance computers.

4.2 Choleski-based Solution Strategies

The key to reducing the computation time for structural analysis is to reduce the time
to solve the resulting linear system of equations. Using matrix notations, the linear
system of equations can be conveniently expressed as:

[K] {Z} = {F} (4.1)

For many engineering applications, the coefficient matrix (or stiffness matrix, for
structural engineering applications) often has nice properties, such as symmetry and
positive definiteness. In Eq. 4.1, {Z} and {F} are unknown (ornodal displacements, for
structural engineering applications) and known (or nodal forces, for structural
engineering applications) vectors, respectively.

On sequential computers, direct methods based on Choleski factorization are
both accurate and fast in solving a wide range of structural analysis problems. These
methods are used in most commercial finite element codes. Choleski-based methods
have also been found to be accurate and fast in solving structural analysis problems on
parallel computers.

51

www.manaraa.com

52 Parallel-Vector Equation Solvers for Finite Element Engineering Applications

In the Choleski methods, the unknown vector {Z} can be found in three
distinct steps.
First Step: Factorization (or Decomposition)

In this step, the coefficient matrix [K] can be decomposed as

(4.2)

where [U] is an upper triangular matrix, and thus [U]T is a lower triangular matrix.

Second Step: Forward Solution
Assuming the matrix [U] in Eq. 4.2 has already been obtained, one can

substitute Eq. 4.2 into Eq. 4.1 to obtain

[uV[UJ{Z} = {F} (4.3)

The product [U] * {Z} in Eq. 4.3 can be renamed as vector {y}. Hence, Eq. 4.3
becomes:

[UV*{y}={F} (4.4)

The forward solution step is completed upon solving the unknown vector {y} from Eq.
4.4.

Third Step: Backward Solution
From the second step, one has

[UJ{ Z} = {y} (4.5)

where the factorized matrix [U] and vector {y} have already been found from the first
and second steps, respectively.

The final (and original) unknown vector {Z} can be found by solving Eq. 4.5.
For a single right-hand-side vector {F}, the first step is the most time consuming step.
Approximately 90% or more of the total equation solution time is spent in the
factorization step alone. The remaining 10% or less of the total equation solution time
is spent on Forward/Backward solution steps.

4.3 Factorization

In Choleski-based methods, a symmetric, positive definite (stiffness) matrix [K] can be
factorized as indicated in Eq. 4.2. The U ij terms of matrix [U] in Eq. 4.2 can be
computed according to the following formulas

Uij = 0 for i > j (4.6)

(4.7)

www.manaraa.com

Due T. Nguyen 53

;-1 2)112 - L Uk;
k=1

for i > 1 (4.8)

(
;-1)

K;j - L Uk; Uk}
u.. = k=1

1) u..
/I

for i,j> 1
(4.9)

Having obtained the upper triangular matrix [U] from the Choleski decomposition
phase, the solution vector {Z} for the system of simultaneous equations (see Eq. 4.1)
is found by the forward (see Eq. 4.4) and backward (see Eq. 4.5) substitution phases.
Equation 4.6 is obvious, since [U] is an upper triangular matrix, and therefore, its lower
triangular portion must be zero. The determination of the Eqs. 4.7 - 4.9 can be easily
understood with the help of the following example of a 3 x 3 [K] matrix. From Eq. 4.2,
one has

[
KI1 KI2 KI3 ul1 0 0
K21 K22 K 23 = Ul2 U22 0
K31 K32 K33 UI3 U23 u 33

(4.10)

Equating the upper triangular portion of the left hand side of Eq. 4.10 with the
corresponding right hand side, one obtains:

Kll = u l
2
1 or U1I = {K;; (4.11)

KI2 U II U I2
Kl2

or u\2 (4.12)
U 11

K13
Kl3 = U 11 Ul3 or u13 (4.13)
U 11

K22
2 2 J K22

2 (4.14) u\2 + U22 or U22 u\2

K 23 = U l2 Ul3 + U22 U23 or U23 =
K 23 - U l2 u13

U22
(4.15)

2 2 2 = J K33 - u\23 - U;3 (4.16) K33 = u l3 + U23 + u 33 or u 33

Thus, it can be seen that Eqs. 4.7 - 4.9 are general versions of Eqs. 4.11 - 4.16.
The order of computation for the matrix [U] can be dictated by the storage

schemes used to store the "stiffness" matrix [K] and its corresponding factorized matrix
U. For example, a closer look into Eqs. 4.11 - 4.16 will reveal the facts that matrix U

www.manaraa.com

54 Parallel-Vector Equation Solvers for Finite Element Engineering Applications

has been computed according to a row-by-row storage scheme. Eqs. 4.11 - 4.13
compute the first row of matrix [U], and Eqs. 4.14 and 4.15 compute the second row of
matrix U. Similarly, Eq. 4.16 computes the third row of matrix U. In this case, since
matrix U can be computed in a row-by-row fashion, the original stiffness matrix [K]
should also be stored in a row-by-row fashion (refer to Section 2.4 of Chapter 2). A
more detailed row-by-row storage scheme and its associated equation solution strategy,
however, will be discussed in Chapter 5.

In this chapter, however, the original stiffness matrix [K], shown in Eq. 4.10,
will be stored, and factorized in a column-by-column (or skyline) fashion[461. Details of
the skyline storage scheme has already been discussed in Section 2.5. To simplify the
discussions, assuming the 3 x 3 matrix [K], shown in Eq. 4.10, is completely full. In
practice, only the upper-half of the matrix [K] needs to be stored in a I-dimensional
array A(-), column-by-column fashion. Furthermore, for each column ofthe matrix [K],
its corresponding numerical values will be stored from the diagonal term and in the
upward direction. As an example, the 1 st, 2nd and 3,d columns of [K] will be stored in a
I-D array A(-), according to the following patterns:

1
K))

2 K22

A 3 K)2 (4.17)
4 K33
5 K 23
6

K13

The factorized matrix [U], therefore, should also be computed in the following column
by-column fashion, refer to Eqs. 4.11 - 4.16:

U" = .;x:: Beginning of 1 51 column of [U] (4.llR)

K'2 Beginning of 2nd column of [U] (4. 12R) u'2
ull

J K22
2 (4. 14R) u 22 - U'2

K)3
Beginning of 3'd column of [U] (4.13R) u l3

ull

u 23
K 23 - u'2 u'3 (4.15R)

u 22

U33 = J K33 - u,23 - U;3 (4.16R)

It is rather obvious to see that Eqs. 4.11 through 4.16 are simply the repeated equations
ofEqs 4.11 R through 4.16R. The major difference between these two sets of equations
is only in the order of computations for the factorized terms uij. The former was based
on a row-by-row factorization scheme, while the latter was based on a column-by-

www.manaraa.com

Due T. Nguyen 55

column scheme. Furthermore, for each column, the factorized elements uij (for j ~ i)
have been computed in the direction from the top element of the column to the diagonal
element of the same column, refer to Eqs. 4.11R through 4.16R, and Figure 4.1.

UII u12 u13

1 1
u22 U23

1
u33

Figure 4.1 Column-by-column (skyline) factorization

4.3.1 Basic, sequential skyline Choleski factorization:
computer code (version 1)

To facilitate the discussion in this section, a full and symmetrical stiffness matrix [K],
with nine rows and nine columns, is shown in Figure 4.2.

Column Column

/=4 J=7

Kl2 K13 Kl4 K l5 Kl6 Kl7

K22 K 23 K24 K 25 K 26 K27

K33 K34 K35 K36 K37

K44 K45 K46 K47

SYM. KS5 KS6 KS7

K66 K67

K77

Kl8 Kl9

K 28 K 29

K38 K39

K48 K49

K58 KS9

K68 K69

K78 K79

K88 K89

K

Row /-1 = 3

Row / = 4

Row J = 7

Figure 4.2 A full, symmetrical stiffuess matrix [K]

In practice, the calculated factorized matrix [U], with its terms uij' will be
stored in the same locations as the original terms Kij. Furthermore, the original matrix
[K] will not be full and it will be stored in the one-dimensional array, as it has been
discussed in Sections 2.5, and 2.7 through 2.9. Factorizing the matrix [U] with
implementations of these detailed features will be postponed in later sections of this
chapter. Let us try to carefully examine Eqs. 4.8 and 4.9 by computing the following
typical off-diagonal term of the matrix [U]. According to Eq. 4.9, one has

i-I

K47 - L Uk. Ur
(. h· 4 . 7) k=1 uii WIt 1= ,j = = U47 = ------

u44

(4.18)

www.manaraa.com

56 Parallel-Vector Equation Solvers for Finite Element Engineering Applications

Eq. 4.18 can be written in the expanded form as
_ K47 - (U 14 u17 + U24 u27 + U34 U37)

U47 -
u44

(4.19)

Similarly, the typical diagonal term u77 can be computed according to Eq. 4.8 as

(4.20)

At this point, it should be pointed out that if i = j, then Eq. 4.9 will be automatically
reduced to Eq. 4.8 (with the exceptions of the square root and dividing of U jj operations).
Thus, the most important equation in this section is Eq. 4.9, which is used to compute
the off-diagonal terms, as well as the diagonal terms, for the reasons which have already
been cited.

Equation 4.19 reveals an important factthat, in order to compute U 47' one needs
to know the factorized matrix [U] associated with only columns, 4 and 7. The
summation done inside the parenthesis ofEq. 4.19 can be considered as the dot product
of two vectors

{~~:} and {~~~}.
U34 U37

This dot product operation can be conveniently visualized by referring to columns 4 and
7 of Figure 4.2. Similarly, Eq. 4.20 indicates that, in order to compute u77, one needs to
know the factorized matrix [U] associated with only columns 7 and 7. In other words,
only the factorized column 7 is needed in order to compute u77 • The summation done
inside the parenthesis of Eq. 4.20 can be considered as the dot product of the vector

IUI7l U27

~!; on itself. This dot product operation can be conveniently visualized by referring
U57
U67

to column 7 of Figure 4.2.
It has been stated in Section 4.3, in particular to the references to Eqs. 4.11 R

through 4.16R, that column-by-column (or skyline) factorization of the given matrix [K]
will proceed in the direction from left to right. In other words, column 1 is factorized
first, then columns 2, 3, ... n are factorized. Furthermore, within each column,
factorization will proceed in the direction from the top of the column down to the
diagonal term of the same column. Thus, if one wishes to compute the factorized term
U47 (the 4th term from the top of column 7), then it has been implied that the first 6
columns of [U], and the first 3 terms of column 7, such as U 17' U 27 and U 37' of [U] had
already been completely factorized.

Similarly, the computation of the factorized term U 77 has the implications that
the first 6 columns of [U], and the first 6 terms of column 7, such as u l7, U 27' ... , U 67' of
[U] had already been completely factorized.

www.manaraa.com

Due T. Nguyen

Column i

~A
Columnj

~D
00 o

B §
x----~- E

l!;i -----X
I

I

I
I
~rowm

~rowi

~ ~ ~ ~ ~ ~ ~ ~ row j

Figure 4.3 Factorization of general diagonal term U jj (= point C)
and general off-diagonal term V jj (= point F)

57

As indicated in Figure 4.3, factorizing a typical diagonal term U jj will require
the dot product operations of column i on itself. Thus, according to Eq. 4.8 and referring
to Figure 4.3, one has, (assuming column i has full height).

[(2 2 2)]1/2
U;; = K;; - Uti + U2; + + U; - 1, ; - 1 (4.21)

Similarly, factorizing a typical off-diagonal term uij will require the dot product
operations of column i and columnj (above the ith row). In general, a column may not
have its full height. As an example, the r column in Figure 4.3 only has the height EF,
whereas the jlh column has the full height AC. Thus, factorizing uij will require the dot
product operations of segment BC for the ith column, and segment EF (=BC) for the rh

column. In other words, according to Eq. 4.9, one has

Ki; - (um i * umJ' + Um+ 1 i * U + 1 . + ... + Ui - 1 i Ui - 1 .) U .. = ~, , m.1 , J
Y Uii

(4.22)

A skeleton, pseudo FORTRAN code (version 1) for column-by-column Choleski
factorization, is now given in Table 4.1.

The pseudo FORTRAN code, shown in Table 4.1, can be understood with the
aid of Figure 4.2, and Eqs. 4.8 and 4.9. Referring to Table 4.1, different FORTRAN
statements will perform different operations during the Choleski factorization.

www.manaraa.com

58 Parallel-Vector Equation Solvers for Finite Element Engineering Applications

Table 4.1 Basic (column oriented) Choleski factorization (version 1)

U II = SQRT (K II) (referring to Fig. 4.2)

2 DO 1] = 2, N (Say J= 7th column)

3 DO 2 I = Top Row # of Column], Row] (Say I = 4th Row)

4 SUMI = 0

5 DO 3 K = Top Row # of Column I, Row 1-1

6 3 SUMI = SUMI + UKI * UKJ

7 Uu = Ku - SUMI

8 IF (I. EQ.]) THEN

9 Un = SQRT (Uu)

10 ELSE

11 Uu = UulUn

12 ENDIF

13 2 CONTINUE

14 CONTINUE

Referring to Table 4.1 and Figure 4.2 simultaneously, one observes:

Line 1: First column of the [K] matrix is factorized. The factorized diagonal term U I I
is computed by using Eq. 4.8.

Line 2: This first do loop will sweep from column 2 to column N, with the increment
1. Let us just concentrate on a typical Jlh column, say] = 7th column.

Line 3: This second nested do loop is needed, since within the 7th column, there are
several terms (= 7 terms, since the [K] matrix is assumed to be fuJI) that need
to be factorized (U 17, U27, U37, U47, ... Un). Since the 7th column is assumed to
have its fuJI height, this loop should sweep from row 1 to row] (=7). In
general, if the column height of the 7th column is shorter, then this loop may
sweep from TOP ROW # OF COLUMN] (either row 2, or 3, etc) Let us
just concentrate on a typical term, say U47 (or I = 4).

Line 4: The summation is initialized.
Line 5: This 3rd nested loop is needed, since the computation ofU47 will require the

dot product of 2 vectors {~~:} and {~~~}. In this case, the index K of this
U34 U37

loop will sweep from 1 to 1-1 (= 4-1 =3). Again, since the 4th column may not
have its fuJI height, the index K of this loop will sweep from TOP ROW # OF
COLUMN I to 1-1.

www.manaraa.com

Due T. Nguyen 59

Line 6: The dot product of the 2 vectors {~~:) and {~~;) are carried, and the
U34 U37

result is stored in variable SUMl.
Line 7: The nominator ofEq. 4.8, or Eq. 4.9 is computed.
Lines 8,9: Ifthe index I and J are the same, then the factorized term is recognized as

a diagonal term. Hence, Eq. 4.8 is applied.
Lines 10-12: If the index I and J are NOT the same, then the factorized term is an off

diagonal term. Hence, Eq. 4.9 is applied.
Line 13: End of the 2nd loop.
Line 14: End of the 1'1 loop.

4.3.2 Improved basic, sequential skyline Choleski factorization: computer code
(version 2)

In FORTRAN computer coding, logical "IF" statement is not cheap to execute. The
purpose of this section is to try to avoid the use of logical "IF" statement, as shown in
statement number 8 of Table 4.1.

Referring to Figure 4.2, one can see that factorizing column 7 will require the
computation ofu l7, U27' U37' U47' US7, U67' and u77. Loop I of Table 4.1 (see statement #3)
will sweep through from TOP ROW # OF COLUMN J (= row 1) to ROW J (= row 7).
However, it is obvious that the first 6 rows of column 7 (= u\7, U 27' ... U67) contain only
off-diagonal forms, while the last row of column 7 contains the diagonal term u77 •

Realizing this fact, Table 4.2 offers a simple coding strategy to avoid the use
of a logical IF statement during Choleski factorization. Comparing Tables 4.1 and 4.2,
one can see that Loop 2 in Table 4.1 has been separated into 2 loops, loop 2 and loop
33, in Table 4.2. In Table 4.2, loop 2 now sweeps from TOP ROW # OF COLUMN J
(= row 1) to ROW #J-l (= row 6). Thus, even without an IF check on the index I and
J, one knows for sure that loop 2 will compute only off-diagonal terms. Since only the
first 6 rows (instead of 7 rows) of column 7 have been processed by the index I of loop
2 in Table 4.2, it implies that loop 3 (see Table 4.2) needs to be executed one more time
to take care of the diagonal term u77 • Statements 11 through 14 of Table 4.2, therefore,
are used to factorize diagonal term u77•

www.manaraa.com

60 Parallel-Vector Equation Solvers for Finite Element Engineering Applications

Table 4.2 Basic Choleski factorization without IF statements (version 2)

U II = SQRT (K II)

2 DO 1 J = 2, N (Referring to Figure
4.2 Say J = 7th
Column)

3 C TREAT ALL OFF-DIAGONAL TERMS FIRST

4 DO 2 I = Top Row of Column J, Row J - 1 (Say! = 4)

5 SUMI = 0

6 DO 3 K = Top Row of Col. I, Row I - 1

7 3 SUMI = SUMI + UKI * UK)

8 UIJ = (KIJ - SUMI) / Un

9 2 CONTINUE

10 C NOW, TREAT THE CASE I = J
C (DIAGONAL TERM) SEP ARA TEL Y

11 SUMI = 0

12 DO 33 K = Top Row of Col I, Row I - I

13 3 SUMI = SUMI + UKI * UKI

14 Un = SQRT (Kn- SUMI)

15 CONTINUE

4.3.3 Parallel-vector Choleski factorization (version 3)

From Eqs. 4.8 and 4.9, and by referring to Figure 4.2, it may seem the column-by
column Choleski factorization algorithm involves highly sequential operations. For
example, factorizing all 7 terms (=U I7 ' U27' ... u77) in the 7th column of Figure 4.2 cannot
completely be done, unless "all" previous columns 1 through 6 have been completely
factorized.

However, a more careful look into Eqs. 4.8 and 4.9 and Figure 4.2 will reveal
the following important facts, which can be further exploited later on to develop
efficient parallel Choleski factorization algorithms for shared memory computers, such
as Cray-YMP, Cray C-90 computers.

Using Eq. 4.9, one has

(4.23)

(4.24)

www.manaraa.com

Due T. Nguyen 61

(4.25)

(4.26)

(4.27)

(4.28)

(4.29)

Equation 4.23 clearly indicates that as soon as factorization of column 1, or u]],
is done, the first term of the 7th column (= ul7) can be computed, even though columns
2 through 6 may NOT be done yet!

Similarly, Eq. 4.26 indicates that the term U47 of the 7th column can be readily
computed as soon as column 4 has been completely factorized, even though columns
5 and 6 may not be done (or factorized) yet. Since the column-by-column factorization
scheme proceeds in the direction from the top down to the diagonal term (of a given
column) therefore, the computation of U47 has already implied that u l7, U 27' and U37 had
already been completely factorized earlier.

The above observations will immediately lead to different options for parallel
factorization strategies. In Figure 4.2, assuming that each column will be factorized by
different processors. For example, Columns 1 through 9 will be handled by processors
1 through 4 (see Figure 4.4).

Option A: Make Only One (1) Synchronization Check
Again, we assume that the 7th column is currently being factorized by a particular
processor, say the 2nd processor. In this option, the 2nd processor will make only 1
synchronization check:

Has column #6 been completely factorized, by the 1st processor, yet?
If the answer to the above questions is NO, then processor
#2 will wait, until column 6 is done. If the answer is YES,
then processor #2 will proceed to compute, in the direction
from top down, U]7' U 27' ... ' u77• Finally, processor #2 will
broadcast to all other processors that column #7 has been
completely factorized.

Option B: Make "A Lot" of Synchronization Checks
In this option, the 2nd processor will make "a lot" of synchronization checks:
Has column #1 been completely factorized yet?

www.manaraa.com

62 Parallel-Vector Equation Solvers for Finite Element Engineering Applications

If the answer is NO, then it (= processor 2) will wait, until
column I is done. If the answer is YES, then it will
compute u I7, and proceed to ask the next question:

Has column #2 been completely factorized by processor I yet?
If the answer is NO, then it will wait, until column 2 is
done. If the answer is YES, then it will compute u27, and
proceed to ask the next questions. etc.

Has column #6 been completely factorized by processor I yet?
If the answer is NO, then it will wait. If the answer is YES,
then it will compute U67 and proceed to compute U 77' without
asking any further questions, since processor #2 is the
"owner" of column 7, and alI required information to
compute U77 are already available and belongs to this
processor. FinalIy, processor #2 will broadcast to alI other
processors that column #7 has been completely factorized.

Option C: Make "A Few" Synchronization Checks
In this option, the 2nd processor wiIl make "a few" synchronization checks:

Has column #3 been completely factorized, by the 2nd processor?
If the answer is NO, then it wiIl wait, until column 3 is
done, or else it will compute u I7, u27 and U37• Then, another
synchronization check will be made.

Has column #6 been completely factorized?
If the answer is NO, then it will wait, or else it wiIl compute
U 47' U S7' U67' and u77• FinalIy, all processors wiIl be informed,
by processor #2, that column 7 has been completely
factorized.

Analysis of Options A, B, and C:
It is rather obvious to see that Option A is an extreme, where factorization has been
conducted essentialIy in a sequential fashion. For example, unless all first 6 columns of
the stiffness matrix [K] have been completely factorized, none of the terms in column
7 wiIl be factorized, by processor #2.

Option B is another extreme, it wiIl offer good parallel computation, but at the
price of paying higher communication cost. In this option, assuming only the first 2
columns of stiffness matrix [K] have been completely factorized, the other columns 3
through 6 have not been factorized yet, then the first two terms, from the top, of column
7 (= u I7 and U 27) can stiIl be computed by the 2nd processor. In this option, if column J
belongs to processor I, then the ph processor wiIl have to make (J-l) synchronization
checks.

Option C is a compromise between the 2 options A and B, since only a "few,"
say 2 or 3 (instead of only "1" as in Option A, or "J - 1" as in Option B)
synchronization checks need to be done. The key idea presented in Section C can also
be partialIy explained in Figure 4.5.

The skeleton ofa pseudo-FORTRAN Parallel-Vector Choleski factorization
computer code (Version 3) is outlined in Table 4.3.

www.manaraa.com

Due T. Nguyen 63

In Table 4.3, different statements will perform different operations during the
Choleski factorization, as will be explained in the following paragraphs.
Line 1: All columns are initially declared as NOT done (or NOT factorized) yet.
Line 2: The first column is factorized by a particular processor.
Line 3: All processors are informed that column 1 has been done (or factorized).
Line 4: In the first do loop, different values of index J, which represent column

numbers, are assigned to different processors for parallel factorization. For the
matrix example shown in Figure 4.4, columns (2, 6), (3, 7), (4, 8), and (5,9)
are assigned to processors 1, 2, 3 and 4, respectively.

Line 5: The second do loop with index I, has already been explained in statement 4 of
Table 4.2

Line 6: Synchronization checks are performed according to Option B.
Lines 7 - 16: In this third do loop, different off-diagonal terms are factorized by

different processors. In Figure 4.4, for example, the off-diagonal terms
u12, u l3 , U l4 and U l5 are being factorized simultaneously by processors 1,
2, 3 and 4, respectively. Upon completions these tasks, processor 1 will
get out ofthe 2nd do loop and it proceeds to compute the factorized term
U 22 (for the case index I = J). At the same moment, processors 2,3, and
4 all have to wait, "idle," since they cannot compute U23 ' U24' and U 25

(refer to Eq. 4.9) unless the computation of the diagonal term U22 has
been completed by processor 1.

As soon as U 23 ' U 24 and U25 have been computed, by processors 2, 3, and 4,
respectively, processor 2 will also get out of the 2nd loop and it proceeds to compute the
diagonal term U33 (for the caSe index I = J).
Line 17: As soon as the diagonal terms of any columns have been computed (by

any processor) the associated column will be declared to all other
proceSsors as completely done.

Line 18: Another Jth column will be processed by a processor

ColI Processor P2 P3 P4 PI P2 P3 P4
Done (or PI)

X X X X X X * X X
X X X X X * X X

X X X X * X X
X X X * X X

SYM X X * X X
X * X X

* X X
X X

X

Figure 4.4 Parallel and basic vector Choleski factorization

www.manaraa.com

64 Parallel-Vector Equation Solvers for Finite Element Engineering Applications

Table 4.3 Parallel vector Choleski factorization (version 3)

I ALL COLUMNS ARE DECLARED AS NOT DONE (OR NOT
F ACTORlZED) YET

2 U II = SQRT(Kll)

3 BROADCAST TO ALL PROCESSORS THAT COL. #1 WAS DONE
ALREADY

4 PARALLEL DO I J = 2, N (Referring to Figure 4.4)
5 DO 2 I = TOP ROW OF COL J, ROW J - I
6 Is Col. #1 Done? (If NOT, then wait here!)
7 SUMI = 0
8 DO 3 K = TOP ROW OF COL I, ROW I - I
9 3 SUMI = SUMI + UKI * UIU

10 UJ] = (KJ] - SUMI) / Un
II 2 CONTINUE (PROCESSOR #2, 3,4 GO BACK LOOP 2

PROCESSOR #1 EXIT LOOP 2)
12 C... NOW, TREAT THE CASE I = J SEPARATELY
13 •
14 •
IS •
16 Un = SQRT (Kn - SUMI)
17 BROADCAST TO ALL PROCESSORS THAT COL. I (= COL J) WAS DONE
18 I CONTINUE

X X
X

SYM

PI

COL COL COL
(J/2) (J -I) J=7

* X X X * X X

* X X X * X X

* X X X * X X
XX X * X X .. COL JI2 = 3 DONE?

X X * X X
X * X X

* X X . . COL (1-1) = 6 DONE?
X X

X
P2 PJ P4 PI P2 PJ P4 = Processor Numbers

Figure 4.5 Parallel (with a few sychronization checks) and
vector Choleski factorization

4.3.4 Parallel-vector (with "few" synchronization checks) Choleski
factorization (version 4)

In the previous section, parallel Choleski factorization based on Option B strategy has
been discussed. While Option B strategy has the advantage of keeping most of the
processors busy (or less idle time) most of the time, it also has potential problems of
increasing the communication costs. For most high-performance parallel computers,
the communication rate is very slow as compared to the computation rate. This is

www.manaraa.com

Due T. Nguyen 65

especially true for distributed memory parallel computers, such as the Intel Paragon,
IBM-SP2, etc For these reasons, parallel Choleski factorization based on Option C
strategy (or Version 4) is presented in Table 4.4. Explanations for various statements
in Table 4.4 are given in the following paragraphs.
Lines 1-3: The fIrst three statements have already been explained in Table 4.3.
Line 4: Assuming the current column #7 (or J = 7) is being factorized by a particular

processor, say processor #2 (or P2), processor P2 will make the fIrst
synchronization check:

Has column #J/2 (or 712 = 3) been completely factorized yet?
If the answer is NO, then processor P2 will wait until
column #3 has been completely factorized, and declared as
READY by another processor. If the answer is YES, then
processor P2 will proceed to statements 5-8.

Lines 5-8: Assuming column #3 has already been completely done (or completely
factorized), a typical processor, say P2, will compute the factorized terms
U m U 27' and u J7 (see Figure 4.5) according to Eq. 4.9.

Line 9: Again, assuming the current column #7 (or J = 7) is being factorized by a
particular processor, say P 2' processor P 2 will make the second synchronization
check:

Has column #J-l (or 7-1 = 6) been completely factorized yet?
If the answer is NO, then processor P 2 will wait, until
column #6 has been completely factorized, and declared as
READY by another processor. If the answer is YES, then
processor P 2 will proceed to statements 10-13.

Lines 10-13: Assuming column #6 has already been completely done (or completely
factorized), a typical processor, say P2, will continue to compute U 47' U S7

arid U67 according to Eq. 4.9.
Lines 14, 15: A typical processor, say P2, will continue to compute the last term of the

Jlh (= 71h) column, which always happens to be the diagonal term (the case
where index I = J) say u77, according to Eq. 4.8.

Line 16: Once the diagonal term of the Jlh (= 71h) column has been factorized, the
Jlh column will be broadcasted by the processor P 2' to all other processors
that this Jlh column has been done.

Line 17: ProcessorP2 will now move to its next column (say column #11, assuming
the matrix shown in Figure 4.5 has much more then just 9 columns).

1
2
3
4

5
6
7
8

3
2

Table 4.4 Parallel (with a few synchronization checks)
vector Choleski factorization (version 4)

UJI = SQRT (KJI)
BROADCAST COL. #1 WAS DONE
PARALLEL DO 1 J = 2, N (Referring to Figure 4.5)
IS COL. # (J 12) DONE? IF YES, THEN PROCEED. IF NO, THEN
WAIT.
DO 2 I = TOP ROW OF COL J, ROW (J - 1) 12
DO 3 K = TOP ROW OF COL I, ROW (1- 1)
SUMI = SUMI + UKJ * UKJ
U = K - SUMI IU

www.manaraa.com

66 Parallel-Vector Equation Solvers for Finite Element Engineering Applications

9 IS COL. # (J - 1) DONE? IF YES, THEN PROCEED. IF NO, THEN
WAIT.

10 DO 22 I = ROW (J - 1)/2 + 1, ROW (J - 1)
11 DO 33 K = TOP ROW OF COL I, ROW (I - 1)
12 33 SUMI = SUMI + UKI * UK}

113 22 UIJ = (KIJ - SUMI)/Un
i 14 C ... NOW, TREAT THE CASE I = J SEPARATELY
15 Un = SQRT (Kn - SUMI)
16 BROADCAST COL # I (= COL # J) WAS DONE
17 CONTINUE

4.3.5 Parallel-vector enhancement (vector unrolling) Choleski factorization
(version 5)

In earlier discussions, it has been seen several times that the Choleski factorization will
require three nested do-loops. Furthermore, it has also been explained in Table 4.4 that
parallel computation can be exploited in the outermost (or the first) nested do-loop,
whereas the most numerical intensive computation can be most effectively vectorized
in the innermost (or the third) nested do-loop. In order to further improve the vector
speed in the third nested do-loop (refer to statements 11 and 12 in Table 4.4) the general
idea is to add more works inside the innermost (or the third) nested do-loop. This can
be achieved by using "unrolling" techniques, which have been introduced and explained
in Chapter One (through simple applications, such as Matrix-Vector multiplications).

In this section, the unrolling techniques will be extended and incorporated into
the Choleski factorization algorithm.

To simplify the discussions, unrolling level 2 is used in Figure 4.6, where the
9 x 9 matrix is also assumed to be full. One also assumes that there are NP = 3
processors available.

Unrolling strategy means each processor will be the owner of a "block" of
columns. Thus, unrolling level 2 means each processor will be the owner of block of2
columns. According to this definition, block columns (2, 3) and block columns (8, 9)
etc will be assigned to processor PI' Similarly (assuming that the matrix size is much
larger than 9, as shown in Figure 4.6) block columns 4 and 5 and block columns 10 and
11, etc will be assigned to processor P2• Finally, block columns 6 and 7, and block
columns 12 and 13, etc will be assigned to processor P3•

P, P, P, P,
J a 6 J-7

X X :1 ~ :1 :
x x ... IS COLUMN #3 DONE?

x" x x ... IS COLUMN #6 DONE?

Xn X X

xx
x

Figure 4.6 Parallel-vector (unrolling) enhancement Choleski factorization

www.manaraa.com

Due T. Nguyen 67

The skeleton of a pseudo-FORTRAN parallel-vector "unrolling" Choleski
factorization computer code (Version 5) is outlined in Table 4.5. It should be
emphasized here, that version 5 simply reflects some simple modifications on version
4. The readers are strongly suggested to fully understand the previous versions (versions
I through 4) before reading this section!

In Figure 4.6, one assumes the matrix size is 9 (or much larger), there are 3
processors available, and unrolling level 2 is used. In Table 4.5, different statements
will perform different operations during the Choleski factorization, as will be explained
in the following paragraphs. (Refer to Figure 4.6).
1: Depending on the total number of equations is an odd, or an even number, the

first one (or first two) column(s) need to be factorized initially, by any
processor(s).

2: Having been factorized completely, the first one (or two) column(s) are
declared as done.

3: Assuming the total number of equations (= N) is an odd number. (i.e. N = 9).
In the first do loop (the outermost do loop), different values of index J, which

represents "block" column numbers, are assigned to different processors for parallel
factorization. For the matrix example shown in Figure 4.6, "block" columns 2 and 3,8
and 9, etc are assigned to processor PI' Similarly, "block" columns 4 and 5, etc are
assigned to processor P2• Finally, "block" columns 6 and 7, etc are assigned to
processor P3 • To simplify the following discussions, assuming currently columns J = 6
and J = 7 are being factorized by a particular processor, say P3. This statement is
completely equivalent to statement 3 of Table 4.4. The only difference is the increment
of 2 is used in Table 4.5, due to the use Of unrolling level 2.
4: Processor, (i.e. P3) which possesses columns J (= 6) and J+ 1 (=7) will ask the

following question:
Is column # (J/2), or column 612 = 3, done??

If the answer is YES, then processor (i.e. P 3) will proceed
to the next statements, or else, it will wait, until column
#J/2 is declared as done. This statement is equivalent to
statement 4 of Table 4.4.

5: This statement is completely equivalent to statement 5 of Table 4.4. The only
difference is the increment of2 is used in Table 4.5, due to the use of unrolling
of level 2. Thus, within each column (i.e. columns J and J + 1), a block of 2
rows are considered at a time.

6-11: Since there is a block of2 columns, which are assigned to each processor, and
within these 2 columns, a block of2 rows are considered at a time. Thus, there
will be 4 dot product operations to be executed in the third (inner-most) nested
do loop, in order to compute the following 4 factorized terms:
uI. J; uI. J + I; U I + I. J' and uI + I, J + I

The reader should recall Table 4.4, where the third (inner-most) nested do-loop only
computes I factorized term (= ul , J)'
12: Having factorized about half the column height of columns J and J + 1, a

processor (i.e, P3) will ask the 2nd question:
Is column #J - 1 done?

www.manaraa.com

68 Parallel-Vector Equation Solvers for Finite Element Engineering Applications

If YES, then the processor, P 3' will proceed to the next
statement(s). If NO, then the processor, P3, will wait.

13-16: The processor, P3 will continue to factorize the remaining off-diagonal terms
in columns J and J + 1. Again, 4 dot product operations are computed in DO
LOOP 22. In other words, DO LOOP 22 is quite similar to loop 2.

17 and 18: The last diagonal term of column J (or uJ]) is now factorized.
19 and 20: The last off-diagonal, U1,1+I' and the diagonal terms U1+ I,1+1 of column J+ I

are now factorized.
21: Columns J and J+ 1 are now declared as completely done (or completely

factorized).
22: Processor, P3, will move to the next "block" of columns, (i.e. columns 12, 13,

etc), assuming the matrix shown in Figure 4.6 has much more than just 9
columns.
In summary, the algorithm presented in Table 4.5 is quite similar to the one

presented in Table 4.4. The major differences occur in the first (outer-most) nested do
loop, and the second nested do-loop.

In Table 4.4, since only 1 column at a time is assigned to a processor, and
within each column, only 1 row is processed at a time, therefore, only 1 dot product
operation is required in the third (inner-most) nested do-loop. However, in Table 4.5,
since a "block" of2 or more columns at a time are assigned to a processor, and within
these "block" columns, a "block" of2 or more rows are processed at a time, therefore,
at least 4 or more dot product operations are required in the third (inner-most) nested
do-loop.

Vector computers, such as the Cray, provide maximum vector speed to access
data that are stored continuously. "Stride" is the distance between two adjacent elements
of a vector involved in the computations (see Chapter 1). The elements of [U] are stored
in column form, in order that they will be in contiguous storage locations. The column
oriented skyline storage scheme offers stride 1 storage and hence the optimum memory
retrieval speed.

On parallel-vector supercomputers, such as the Cray-C90 that have high
computational speeds, the synchronization time relative to computation time is
significant. This synchronization overhead time is reduced by segmentin'g the loop into
two nearly equal sections (see Figure 4.6, and also refer to statements 4 and 12 of Table
4.5) and performing the synchronization only twice for each column.

1.
or,

2.
or,

3.
or,

Table 4.5 Parallel-vector enhancement (vector unrolling)
Choleski factorization (version 5)

FACTORIZE COL. 1, IF NUMBER OF EQUATIONS (N) IS ODDl
FACTORIZE COLS. 1 & 2, IF NUMBER OF EQUATIONS (N) lsi
EVEN I
BROADCAST COL. 1 WAS DONE, IF N IS ODD I
BROADCAST COL. 2 WAS DONE, IF N IS EVEN :

PARALLEL DO 1 J=2,N, ~ (lFN IS ODD), SAY J=6 I

PARALLEL DO 1 J = 3, N, 2 IF N IS EVEN -.J

www.manaraa.com

Due T. Nguyen 69

4. IS COL. # (J /2) DONE? IF YES, THEN PROCEED. IF NO, THEN
WAIT

5. DO 2 I = TOP ROW # OF COLUMN J, ROW (J - 1) / 2, 0
6. For the innermost loop, DO 3 : Compute a set 4 dot products for

7.

8.
9.
10.
11.
12.

13.

1

14.
15.

16.

18.

1

19.
20.
21.

22.

3
2

(4.9) 1

UI.]+I = .. .

ul + I.] = .. .

UI+I.]+I=· ..

CONTINUE
IS COL. # (J - 1) DONE? IF YES, THEN PROCEED. IF NO, THEN
WAIT.

DO 22 I = ROW (J-1)/2 + 1, ROW (J - 1),0

For the innermost loop, DO 33: Compute a set of 4 dot products for

ul .]; UU+I; U I+I.] and U I+I .]+1

33 CONTINUE
22 CONTINUE
17. C ... NOW, FACTORIZE THE REMAINED TERMS OF COLUMNS

JANDJ+l
UJ.] = .. .
U].]+I = .. .

U]+I.]+1 = .. .
C DECLARED COLUMNS J & (HI) HAVE BEEN COMPLETELY

DONE
(or completely factorized)
CONTINUE

4.3.6 Parallel-vector (unrolling) skyline Choleski factorization (version 6)
The column-oriented skyline Choleski method was implemented in a computer code to
exploit both parallel and vector capability of supercomputers. In actual computer code,
the elements of [U] overwrite the elements of [K]. The columns of [K] are stored one
after the other in a single vector array, and elements of each column are arranged from
the diagonal up. This storage arrangement is referred to as skyline storage and is
illustrated in Figure 4.7. Column 5 in Figure 4.7, for example, represents the terms K55,
K54, K53 , and K52 of the stiffness matrix [K]. In a vector skyline storage scheme, the
corresponding terms for K55, K 54' K 53 and K 52 are stored in a one dimensional array A
at the locations A(1 0), A(lI), A(l2), and A(l3), respectively (please refer to section 2.5
of Chapter 2). A typical skyline storage scheme for structural engineering applications,
such as aircraft panel finite element model, is shown in Figure 4.8.

A variable bandwidth storage scheme for the same aircraft panel finite element
model, is shown in Figure 4.9. The factorization, forward and backward solution

www.manaraa.com

70 Parallel-Vector Equation Solvers for Finite Element Engineering Applications

strategies associated with the variable storage scheme, however, is postponed until the
next chapter.

WlJ~~8~ 4 7 12 17 28

• 11 .. ~ 27 44

10 15 21 26 43

20 25 36 42

19 24 8 3S 41

23 30 34 40

29 33 39

32 38
37

Figure 4.7 Skyline storage scheme for stiffness matrix before and after decomposition

Figure 4.8 Skyline column storage of panel stiffness matrix

www.manaraa.com

I

I

I

Due T. Nguyen 71

Max.BW

Figure 4.9 Variable bandwidth row storage of panel stiffness matrix

Version 6 of the skyline Choleski factorization is outlined in Table 4.6.

Table 4.6 Parallel vector (unrolling) "skyline" Choleski factorization (version 6)

This version is "exactly" the same as shown in Version 5. However, the two
dimensional stiffness matrix [K], or its factorized matrix [U], will be converted into a
one-dimensional array A, using the mapping explained in Section 2.5 of Chapter 2.

UK1 A [MAXA (I) + I - K]

UKJ A [MAXA (J) + J - K]

U1+1, }+I A [MAXA (J + 1) + (J + 1) - (I + 1)]

Uu A [MAXA (J) + J - I]

UI+ I ,} A [MAXA (J) + J - (I + 1)]

Ku A [MAXA (J) + J - I]
UI,}+1 A [MAXA (J + 1) + (J + 1) - I]

UJ,] A [MAXA (J)]

UJ,J+I A [MAXA (J + 1) + (J + 1) - J]

U}+I,}+I A [MAXA (J + 1)]
K},J A [MAXA (J)]

!Note:
i

In actual coding, the decomposed matrix [U] will overwrite the original
stiffness matrix [K], For clarity, however, these 2 matrices have been shown
under different names,

www.manaraa.com

72 Parallel-Vector Equation Solvers for Finite Element Engineering Applications

4.4 Solution of Triangular Systems

It will be explained in subsequent sections that the forward and backward solutions (see
Eqs. 4.4 and 4.5) both require only two nested do-loops, instead of three nested do
loops, as required during the factorization phase.

The forward elimination and backward substitution phases can be made
parallel in the first loop (as it will be explained in Sections 4.4.1 and 4.4.2) which
requires synchronization statements. This parallel implementation was tested and
resulted in excellent computation speed-up for an increasing number of processors, but
it suffered from the added time for synchronization on Cray computers. Because of this
synchronization overhead time, the forward-backward solution phases were found to
be faster on one Cray processor (without parallel constructs) than on mUltiple
processors. Further time reduction for one processor was also obtained by using second
level vector unrolling in the forward elimination and second-level loop-unrolling in the
backward substitution.

4.4.1 Forward solution
In the forward solution phase, since the factorized matrix [U] has already been found
(in Section 4.3), the forward solution vector {y} can be solved from Eq. 4.4.

In order to derive the general formula for the unknown vector {y}, a simple
system with only 3 unknowns will be considered in details, as shown in Eq. 4.30

::: ~: u~,] t:} {~:} (4.30)

From the first part ofEq. 4.30, one can write

u\\y\ = F\

Thus

From the second part ofEq. 4.30, one can write

u\2 Y \ + U22 Y2 = F2

Thus

Similarly, from the last part of Eq. 4.30, one can write

u\3Y\ + u23Y2 + U33Y3 = F3

or

(4.31)

(4.32)

(4.33)

(4.34)

(4.35)

www.manaraa.com

Due T. Nguyen 73

(4.36)

In general, for any matrix size, the solution Eqs. 4.32, 4.34 and 4.36, can be
written as

(4.37)

In order to see how the operations shown in Eq. 4.37 can actually be executed
in parallel, Eq. 4.30 will be expanded into a system of 9 unknowns, as indicated in Eq.
4.38.

Ull YI FI PI
X Y2 F2 P2

X Y3 F3 P3
u41 X Y4 F4 PI
uSI X Ys Fs P2 (4.38)
u61 X Y6 F6 P3
U71 X Y7 F7 PI
u81 X Yg Fg P2
u91 X Y9 F9 P3

Assuming the matrix shown in Eq. 4.38 is full, and 3 processors (PI' P2 and PJ)

are available, thus the unknowns YI' Y4 and Y7 (in rows 1,4 and 7) will be processed by
processor PI. Similarly, processors Pz and PJ will handle rows 2,5,8 and rows 3, 6, 9,
respectively.

The unknowns, say Y4, Ys and Y6 can be computed from Eq. 4.37 as

Y4 = F4 -(U\4 Y \ +U24 Y 2 +U34 Y 3)

U44

Y
5

= F5 -(U\5Y\ +U25 Y2 +U35 Y3 +U45 Y4)

U55

Y6 = F6 -(U\6Y\ +u26 Y2 +U36 Y 3 +u46 Y4 +U56 Y 5)

U66

(4.39)

(4.40)

(4.41)

From Eqs. 4.39 through 4.41, it is obvious to recognize that as soon as the first
unknown, YI' has been computed, the unknown Y2 can be "completely" determined, by
using Eq. 4.34 and all other unknowns (say YJ, Y4, ... , Yn) can be "partially" computed
A T THE SAME TIME.

www.manaraa.com

74 Parallel-Vector Equation Solvers for Finite Element Engineering Applications

For example, the unknowns Y4' Ys and Y6 can be "partially" and simultaneously
(in parallel) computed as:

Incomplete Y4 F4 U\4Y\ (computed by PI) (4.42)

Incomplete Ys Fs u\sY\ (computed by P2) (4.43)

Incomplete Y6 F6 U\6 Y\ (computed by P3) (4.44)
While the above parallel forward solution strategy may offer good parallel

speeds (as the number of equations increased) synchronization checks are obviously
required. For example, synchronization checks are needed to make sure that the 2nd

unknown (= Y2) has been "completely" computed (say, by processor P 2) before the next
term ofEqs. 4.42 through 4.44 can be simultaneously processed by processors PI' P2

and P3 (as shown in Eqs. 4.45 through 4.47).

Incomplete (4.45)

Incomplete (4.46)

Incomplete (4.47)

As it has been mentioned in Section 4.4, on many supercomputers, the synchronization
overhead time will make the use of multiple processors to be slower than simply using
a single processor with a good vectorized code. During the Choleski factorization phase,
however, the synchronization overhead time is much less significant, since factorization
phase requires a higher number of operations as compared to the forward solution
phase. Because of these reasons, the following paragraphs will be devoted to the
development of efficient vectorized codes for forward solution phase using only a single
processor.

A straight forward implementation ofEq. 4.37 will lead to the computer code
presented in Table 4.7. Explanations of different FORTRAN statements in Table 4.7
are given as follows:
1: The first loop with the index J will sweep from the first unknown (or the first

row) to the last unknown (or the last row).
2: The summation in Eq. 4.37 is initialized.
3,4: The summation of the product (see Eq. 4.37) is computed inside the second

nested do-loop (with the index I).
5: The unknown YI is computed according to Eq. 4.37.
6: The index J of the first do-loop is increased, for the computation of the next

unknown.
It should be mentioned here that the forward solution vector {y} will overwrite

the original right-hand-side vector {F}.
In Table 4.7, the stiffness matrix has been stored as a 2-D array and is assumed

to be full. In actual computer coding, the stiffness matrix will be stored in a 1-D array,
and according to skyline fashion (refer to Section 2.5). Assuming the one dimensional
integer array, diagonal pointer MAXA (-) has already been computed from Eq. 2.12, and
the column heights array ICOLH(-) has also been calculated from Table 2.1. The
forward solution algorithm presented in Table 4.7 can be modified to the skyline storage

www.manaraa.com

Due T. Nguyen 75

scheme as shown in Table 4.8. Explanations of different FORTRAN statements in
Table 4.8 are given in the following:
1, 2: These first two statements have already been explained in statements 1 and 2

of Table 4.7.
3: Referring to Figure 4.10, and assuming that the first three unknowns have

already been found. The fourth unknown (or J = 4th row) y(J = 4) can be found
by Eq. 4.37 as

F4 - (U41 Y 1 + U42 Y 2 + U43Y3)

U44
(4.48)

In actual computer coding, one will store the factorized matrix in the upper triangular
matrix, hence, Eq. 4.48 should be re-written as

or

or

F4 - (UI4 YI + u24 Y2 + U34 Y3)

[F; - (U)jYI + U2JY2 + U3JY 3)]

uJJ

Jcolh(J)

F.- E uJJY./ .I
/=1

Y J =
uJJ

(4.49)

(4.50)

(4.51)

The number of terms inside the parenthesis ofEq. 4.49 is equal to the column
height (excluding the diagonal term) of the Jth column. For this reason, the second do
loop (with the index I) in Table 4.8 will sweep from I = 1 to ICOLH(J), or from I =
ICOLH(J) to 1 (with an increment-I).
4: The summation in Eq. 4.51 is computed. Notice thatthe first product inside the

summation sign is

u I4 * YI (4.52)

Since the factorized stiffness matrix is expressed in a I-D array U(-), expression in Eq.
4.52 can also be written as

U[MAXA (4) + 4 - 1] * YI (4.53)

where the value 3 (= 4 - 1) in expression 4.53 represents the column height of the 4th
column in Figure 4.10 or, using the index I and J notations, expression 4.53 becomes

U [Maxa (J) + 1] * Y (J - 1)

which is precisely the expression used in statement 4 of Table 4.8.
5: The final, complete unknown solution y(J) can be found from Eq. 4.5l.

Recalling UJJ = U[Maxa(J)].

www.manaraa.com

76 Parallel-Vector Equation Solvers for Finite Element Engineering Applications

6: The index J of the first do-loop is increased (for the computation of the next
unknown).

The forward solution algorithm presented in Table 4.8 can be further modified
to incorporate unrolling techniques (similar ideas have been presented in Section 1.3 of
Chapter 1), as shown in Table 4.9 and the associated Figure 4.11.

Explanations of different FORTRAN statements in Table 4.9 are given in the
following (assuming that the unrolling of level 2 is used).

1,2: The first unknown YJ' will be solved separately. Since the original stiffness and
its factorized matrix is symmetrical, the row or its correspondent column is
merely the image of each other.

3: The first do-loop with the index J will sweep from column (or its imaged row)
2 through the last column NEQ, with the increment 2 (since unrolling level 2
is used, hence a "block" of 2 columns are grouped together). It is important
here to refer to Figure 4.11 where columns J(= 4) and J + 1 (= 5) are grouped
together. For reasons which will soon be explained, any column within a group
must have a column height of 1 unit more than its previous column height.

In the example presented in Figure 4.11, since both columns 4 and 5 have the
column height of 3 (excluding diagonal terms), one needs to add 1 extra zero term on
to the top of the 4th column to make its column height becomes 4. Thus, the 4th column
height is 1 unit more than the 3,d column height within the same group.
4,5: Two summations (SUMI and SUM2) are initialized.
6: The second do-loop with the index I will sweep from the column height of the

Jlh column down to value 1, with the increment of -1. This statement has
essentially the same role as statement 3 of Table 4.8.

7 - 9: Since the unrolling of level 2 is used in the first outermost do-loop, the index
J has the increment of 2, which implies that 2 consecutive columns (or its
imaged 2 consecutive rows) are considered at a time. Because of this reason,
there are 2 summations (not just one summation, as shown in statement 4 of
Table 4.8) to be calculated inside the second do-loop, with the index I.

At this point, it should be obvious to understand there is a need to add extra
zero(s) to some column height(s), as mentioned earlier in statement 3. By adding the
appropriate extra zero(s) to some column(s), it will make the operations within the 2nd

loop, with index I, to be done properly. For example, considering the case where the
index J of the first do-loop has a fixed value, say J = 4, it is NOT possible for the index
I to have the values 3 (= column height of the 4th column) through 1 with increment-l
(or rows 3 through 1 of column J = 4) and the same index I to have the values 3 through
2 (or rows 3 through 2 of column 1+ 1 = 5)!

By adding 1 extra zero (in the example of Figure 4.11) to column 5, it is now
possible for the index I to have the same values 3 through 1 (or rows 3 through 1) with
increment -1, in both columns J (= 4) and 1+ 1 (= 5).

Obviously, the extra term ul , I+J = u4, 5 = U[Maxa(1+ 1)+ 1] will have to be
included separately when we compute the unknown YI+J (refer to statement 11).
10: The forward solution unknown Yl can now be calculated according to Eq. 4.37.

www.manaraa.com

Due T. Nguyen 77

II: The forward solution unknown Yl+1 can also be calculated now, by referring to
Eq. 4.37. Also, referring to Figure 4.11, one can write the following
expression to calculate Yl+1 or Ys:

Y5 = F5 -(u5I YI + U52 Y2 + U53 Y3 + U54 Y4)

U55

or, in general
J

FJ+I - L uJ + 1,; * Y;
;=1

YJ+ 1 = ---'-"-----
uJ + 1•J + 1

(4.54)

(4.55)

The product U S• 4 * Y4' or u4. S * Y4' or U1•1+1 * Yl' or u[Maxa(J+ 1)+ I] * Yl has not yet been
included in the calculation of SUM2 in statement 8. That is the reason we have to
modify the value of SUM2 to include the product term u[Maxa(J+ 1)+ I] * Yl in here.
12: The index J of the first do-loop is increased (by the increment 2) for the

computation of the next 2 unknowns.

11. 2.

1

3.
4.

[5.

6.

11.

1

2.

3.

1

4.
5.

L6.

2

2

Table 4.7 Basic scheme for forward solution

DO I J = I, NEQ
SUMI = O.
DO 2 I = I, J - I

SUMI = SUMI + U(I, J) * Y(O
Y(J) = (Y(J) - SUM!) / U(J,J)

CONTINUE

Table 4.8 Skyline scheme for forward solution

DO I J = I, NEQ
SUMI = O.

DO 2 I = COLH(J), I, - I
SUMI = SUMI + U [MAXA(J) + I] * Y(J - I)
Y(J) = (Y(J) - SUM!) / U (MAXA(J))

CONTINUE

[u] -

J"'Colwnn y
x x o! xl 0 0

x xlxlx 0

x1xlx 0
x·C:--::x:::--=xc:+[x:::-l. X X

X X
S Y M. X

Figure 4.10 Skyline scheme for forward solution

www.manaraa.com

78 Parallel-Vector Equation Solvers for Finite Element Engineering Applications

Table 4.9 Skyline and vector-unrolling scheme for forward solution

Assuming NEQ = number of equations, sayan odd number
1. C... TREAT COLUMN 1 SEPARATELY
2. Y{l) = Y(l) / U (MAXA (1»

3. DO 1 J = 2, NEQ, 2

2

SUM 1 = O.
SUM2 = O.
DO 2 I = COLH(J), 1,-1

SUMI = SUMI + U (MAXA(J) + I) * Y (J - I)

SUM2 = SUM2 + U (MAXA(J + 1) + 1 + I) * Y (J - I)
CONTINUE

Y(J) = (Y(J) - SUMI) / U (MAXA (J»

4.

5.
6.

7.

8.
9.

10.

11. Y(J+I) = [Y(J+I) - SUM2 - U (MAXA (J+1) + 1) * Y(J)] /
U [MAXA (J+l)]

12. CONTINUE

.Ih column and (J + J)lh column
have same column heights
1 1

X X 0 X 0 0 = extra zeros

X X X X

U = X X X

SYM. XX

X

Extra term = U(MAXA (J + J) + J) = U~5

Figure 4.11 Skyline and vector unrolling scheme for forward solution

4.4.2 Backward solution
In the backward solution phase, since the factorized matrix [U] and the forward solution
vector {y} have already been found, the backward solution vector {Z} can be obtained
from Eq. 4.5.

In order to derive the general formula for the unknown vector {Z}, a simple
system with only 4 unknowns will be considered in detail, as shown in Eq. 4.56

U II U 12 u\3 U 14

(4.56)
0 u22 u23 U24

0 0 U33 U34

0 0 0 U44

The last part of Eq. 4.56 can be used to solve for the last unknown Z4' as following

www.manaraa.com

Due T. Nguyen 79

(4.57)

Similarly, the unknowns Z3' Z2' and Z, can also be obtained from the 3rd, the 2nd and the
1 sl parts of Eq. 4.56, respectively.

and

Z = Y3 - u34 Z4
3

Y2 - (U23 Z3 + U24 Z4)

U22

Z = Y, - (Un Z2 + U'3 Z3 + U'4 Z4) ,
ull

In general, for any matrix size, one can write:

y. -
)

N

L uj;Z;
; =j +,

(4.58)

(4.59)

(4.60)

(4.61)

As soon as the last unknown Z4 has been "completely" solved, the "partial" solutions
for all remaining unknowns can be computed simultaneously, by different parallel
processors. For example, assuming the unknown Z3 has not been completely computed
yet, one can simultaneously compute the "partial" solution for

Incomplete (4.62)

Incomplete (4.63)

While the above parallel backward solution may offer good parallel speeds (as
the number of equations increased) synchronization checks are needed to make sure
that, say the 3rd unknown (= Z3) has been "completely" computed (say by a particular
processor) before the next term ofEqs. 4.62 and 4.63 can be simultaneously processed
by the other processors

Incomplete (4.64)

Incomplete (4.65)

The above parallel backward solution strategy, however, suffers significant
overhead time for synchronization checks (refer to the parallel forward solution phase
discussed in Section 4.4.1). Because of these reasons, the following paragraphs will be

www.manaraa.com

80 Parallel-Vector Equation Solvers for Finite Element Engineering Applications

devoted to the development of efficient vectorized code for backward solution, using
only a single processor.

In actual computer coding, once the (last) unknown has been found, the right
hand-side vector {y} in Eq. 4.56 can be updated as follows:

~=~-~~ ~~

(4.67)

(4.68)

In practice, the solution vector {Z} will overwrite the right-hand-side vector {y}. A
straight forward implementation of Eq. 4.61 will lead to the computer code presented
in Table 4.10.

Explanations of different FORTRAN statements in Table 4.10 are given in the
following:
1: The first do-loop with index J will sweep from the last unknown (or the last

column) to the first unknown (or the first column) with the increment -1. Since
the original stiffness matrix and its factorized matrix is symmetrical, the Jlh

column and the Jlh row are identical.
2: The (last) unknown y], (i.e. Y4) is finally computed (see Eq. 4.57).
3: The second do-loop with index I will sweep from row #J-l (= row 3) to the Top

Row # of column J (= row 1, assuming the stiffness matrix is full), with the
increment -1.

4: The right-hand-side vector {y} is updated (or modified) according to the
nominator ofEq. 4.61, or for the specific case of the matrix shown in Eq. 4.56,
according to Eqs. 4.66 through 4.68.

5: The index J of the first do-loop is decreased by 1, in order to compute
subsequent unknowns y].l (= Y3), Y].2 (= Y2), etc

To enhance the vector speed in the 2nd (inner-most) do-loop, "loop unrolling"
technique can be incorporated (refer to Section 1.3 of Chapter 1) into the backward
solution phase, as shown in Table 4.11, where unrolling level 2 (or a "block" of 2
columns are grouped together) is demonstrated.

Explanations of different FORTRAN statements in Table 4.11 are given in the
following. For a better understanding of the algorithm presented in Table 4.11, the
readers are also encouraged to specifically refer to Eq. 4.56. The column heights of
columns 1,2,3, and 4 (see Eq. 4.56) are assumed to be 0, 1,2, and 3, respectively.
Thus:

(4.69)

1: This statement has the same role as statement 1 of Table 4.10. The only
difference is that the increment of -2 is used here (due to the unrolling of level
2) instead of -1 as used earlier.

www.manaraa.com

Due T. Nguyen 81

2,3: The last 2 unknowns YJ and YJ-I (say Y4 and Y3) are finally and "completely"
computed (see Eq. 4.57). Notice that vectors {y} and {Z} are overwritten on
each other.

4: The index I of the second do-loop will sweep from J - ICOLH(1), or 4 -
ICOLH(4) = 4 - 3 = 1, to J - 2, or 4 - 2 = 2.

5: The "partial" solution for the unknowns YI and Y2 are computed, as follows
(notice that vectors {y} and {Z} are overwritten on each other).

(4.70)

(4.71)

It should be emphasized here, that the last products u l • 3 * Y3 in Eq. 4.70, and U 23
* Y3 in Eq. 4.71 are included here (but have not been included in statement 4 of Table
4.10) as a direct consequence of the use of unrolling level 2 (or, increment -2) for index
J in statement 1..
6: The index J of the first do-loop is decreased by -2, in order to compute

subsequent "block" unknowns YJ-2 (= Y2) and YJ.3 (= YI), and etc

Table 4.10 Basic scheme for backward solution

1. DO 1 J = N, 1, -1 (say, J = 4) II

2. Y(J) = Y(J) / U(1, J)

'---3~. ______ ~D~O~2 __ 1~= __ J~-~I'~T~O~P~R~O __ W~O __ F~C~O~L~U~M_N __ J~'~-I ______________ ~ 4. 2 Y(I) = Y(I) - U(I, J) * Y(J)

5. CONTINUE

Table 4.11 Loo -unroll in scheme for backward solution

It. DO 1 J = N, 1,-2

12. Y(1) = Y(J) / U(J, J)

1

3. Y(1-I) = [Y(J-I) - U(1-I,J) * Y(J)]/U(J-I,J-I)
4. DO 2 I = J - ICOLH (1), J - 2, + 1

15. 2 Y(I) = Y(I) - U(I, J) * Y(J) - U(I, J - 1) * Y(J - 1)

~ CONTINUE
--~

4.5 Force: A Portable, Parallel FORTRAN Language

Force is a machine-independent tool for parallel programming and, with certain
exceptions noted in the "Force User's Manual,,[47], it includes all FORTRAN constructs
and compiler options. It is a preprocessor which produces executable parallel code
from FORTRAN augmented with several simple parallel extensions. These parallel
extensions include such constructs as Pre- and Self-scheduled DO-loops (for parallel
computations), Barriers, Produce and Consume (for synchronization). Force permits

www.manaraa.com

82 Parallel-Vector Equation Solvers for Finite Element Engineering Applications

users to write efficient, yet portable, parallel code without referring to the many details
of multitasking or parallel programming found in vendor manuals. Thus, engineers and
numerical analysts can concentrate on developing effective parallel algorithms or
solution strategies for different engineering and/or scientific applications. Programs
written in Force are easily ported to and run on other parallel computers on which Force
is installed. In this chapter, Force is used (for convenient purpose only) to develop and
implement the parallel FORTRAN code on high-performance computers, such as the
Convex, Cray-2, Cray-YMP, and Cray C-90. The developed parallel-vector algorithms
can also be implemented in other parallel environments such as PVM[4.10], or MPI
(Message Passing Interface) [4.11] etc ...

4.6 Evaluation of Methods on Example Problems

To test the effectiveness ofthe parallel-vector skyline Choleski solver, several structural
analysis problems were solved on various high performance computers. Furthermore,
for user's convenience, a simple algorithm to automatically generate the coefficient
stiffness matrix [A] and load vector {B} for solving the unknown vector {x} from
[AJ {x} = {B} is also shown in Table 4.12.
In the solution of the following example problems, code was inserted to measure the

time spent by each processor during the equation solution. The Cray timing function,
tsecnd, was used to measure the total computation time used by each Force processor.
In addition, for each problem, the number of million floating point operations, MFLOP,
was calculated and then divided by the solution time, in seconds, to determine the
overall performance rate of the solver in MFLOPS.

I.

2.

3.

4.

5.

6.

7.

8.

9.

10.

II.

12.

13.

14.

51

15. 52

Table 4.12 Code for stiffness and load generation

MAXA(l) = 1

A(l)=2.

DO 51 I = 2, NEQ

COLHT = MIN(I- I, HALFBW)

MAXA(I) = MAXA(I - 1) + COLHT

A(MAXA(l» = 2.

B(I) = 2.

lEND = MIN(I + HALFBW,NEQ)

DO 52 1= I,NEQ

DO 52 J = I + 1, lEND

LOCA TE = MAXA(J) + J - I

A(LOCATE) = 1.0/ (I+J)

B(I) = B(I) + A(LOCA TE)

B(J) = B(J) + A(LOCA TE)

CONTINUE

www.manaraa.com

Due T. Nguyen 83

Example 4.1: 10,000 degree-of-freedom, 800 Bandwidth Test Problem
The parallel-vector supercomputer available for testing the column-oriented skyline
Choleski solver was the Cray-YMP.

80

..,
Q)
Ul Forward-Backward
ai 40 37

+-Solution E
i= +- De~~mposition

19

83 249

0
MFLOPS MFLQP

2 3 4
Number of Processors, Cray 2

Figure 4.12 Computation time reduction for test problem
with 10,000 equations and 800 bandwidths

Figure 4.13 Time comparison for one processor with 10,000 equations and 800
bandwidths. (F denotes Force used)

www.manaraa.com

84 Parallel-Vector Equation Solvers for Finite Element Engineering Applications

6

3l
ai 3
E
F

5.4

2

Forward-Backward
~Solution

~ Decomposition
1.8

1.5

159 200

3 4
Number of Processors, Cray 2

Figure 4.14 Computation time reduction for 3000 equation (cube)

135

100

70

36

n
2 3 4

Number of Processora, Cray 2

Figure 4.15 Computation time reduction for space shuttle solid rocket booster
with 54,870 equations

Although it is fast and has eight processors, the Cray-YMP used has only eight
million words of main memory available for a single job. This maximum eight million
words restricted the size of the largest problem that could be solved since the equation
solvers described are currently implemented only for main (in-core) memory storage of
[K]. Thus, the largest problem possible to solve on all three high performance
computers was designed to have a stiffness coefficient matrix with 10,000 degrees-of
freedom (DoF) and 800 bandwidth. In this test problem, the coefficient matrix A (stored
in a vector skyline form) and the load vector B are generated according to Table 4.12.
In this table, NEQ represents the number of equations, or the Degree-of-Freedom
(DoF). The integer array MAXA is used to store the location of the diagonal terms of
the stiffness matrix. This test problem is useful for debugging and can also serve to
evaluate the performance of this and other methods on any shared memory parallel
vector computer.

www.manaraa.com

Due T. Nguyen 85

The total processing time (of both the decomposition and the forward
backward solution phase) for the test problem on the Cray-2 using 1, 2, 3, and 4
processors is shown in Figure 4.12. The figure indicates a computation speedup of3.9,
(74 seconds divided by 19 seconds), at a rate of328 MFLOPS on four processors. The
major computation time was spent in the decomposition phase, while very little time
was spent in the forward-backward solution phase as indicated in Figure 4.12.

The total computation time for this test problem on the Convex-220, Cray-2
and Cray-YMP computers is shown in Figure 4.13. From this figure, one can see the
relative performance of the skyline Choleski solution method on a single processor for
the three computers. Here again the forward-backward solution phase represents a very
small fraction of the total solution time. Figure 4.13 also indicates that the Cray-YMP
runs almost twice as fast as the Cray-2, which in tum runs about three times as fast as
the Convex-220. By using Force (see Section 4.5) the same code was implemented on
the three computers. The code is running on the Cray-YMP in multitasking environment
(using 1 through 8 processors). The Cray-YMP multitasking timing subroutine is not
fully developed, thus accurate timings for eight processors on the Cray-YMP are not
known. However, preliminary indications are that this method achieves computation
speedups on the Cray-YMP similar to those achieved on the Cray-2.

To measure the overhead of Force, the same code, with all Force statements
removed, was implemented on the Cray-2 and Cray-YMP. The results obtained using
Force on the Cray-2 and Cray-YMP (denoted Cray-2(F) and Cray-YMP(F) in Figure
4.13) do not introduce any significant additional overhead in computation time.

Example 4.2: Three-Dimensional Cube Problem
Solution algorithms often display different characteristics on different classes of
problems. To investigate the behavior of the solver on the three-dimensional problem,
a cube-shaped, isotropic solid undergoing compression was solved. This 3000 degree
offreedom problem has a maximum bandwidth of336 and average bandwidth of313.
The 1000 node cube (10 nodes along each axis) was constrained at the comer nodes and
contained 729 eight-node solid elements (nine solid elements along each axis). The
computation times for mUltiple processors are shown in Figure 4.14. The computation
time reduction is in direct proportion to the number of processors used, with a speedup
of 3.6 for four processors. The result from a vectorized code on one processor is also
given in Figure 4.14.

Example 4.3: Space Shuttle Solid Rocket Booster (SRB) Problem
To evaluate the performance of the skyline Choleski solver on a large-scale static
structural analysis problem, a two-dimensional shell model of the Space Shuttle solid
rocket booster was solved. This SRB model was used to investigate the overall
deflection distribution for the SRB when subjected to mechanical loads corresponding
to selected times during the launch sequence [4.8]. The model contains 9205 nodes,
9156 four-node quadrilateral shell elements, 1273 two-node beam elements and 90
three-node triangular elements, with a total of 54,870 degrees offreedom. This problem
has a maximum bandwidth of 894 and an average bandwidth of 381. A detailed
description and analysis of this problem is given in reference [4.8 and 4.9].

www.manaraa.com

86 Parallel-Vector Equation Solvers for Finite Element Engineering Applications

F or this problem, the parallel-vector skyline Choleski method developed in this
chapter took 135 and 36 seconds on one and four processors, respectively.

By using four processors, the speed up obtained by the skyline Choleski
method was found to be 3.75 as can be seen in Figure 4.15. This good speedup of the
skyline Choleski method makes it attractive for supercomputers with more than four
processors, such as the Cray-YMP, or the Cray C-90.

The computation rate (i.e., MFLOPS) shown in Figures 4.12-4.15, is best for
problems with a large average bandwidth (i.e. Figure 4.12). The skyline Choleski solver
operates on vectors ranging in length from one to the column height of each column of
the upper triangular matrix [U]. For problems with a small average column height, the
major portion of the computation is performed on short vectors which results in a low
MFLOPS rate. In large structural analysis problems with large average column height,
the majority of the vector operations are performed on long vectors, which results in
higher MFLOPS rates.

4.7 Skyline Equation Solver Computer Program

For the complete listing of the FORTRAN source codes, instructions in how to
incorporate this equation solver package into any existing application software (on any
specific computer platform), andlorthe complete consulting service in conjunction with
this equation solver etc ... the readers should contact:

Prof. Duc T. Nguyen
Director, Multidisciplinary Parallel-Vector Computation Center
Civil and Environmental Engineering Department
Old Dominion University
Room 135, Kaufman Building
Norfolk, VA 23529 (USA)
Tel = (757) 683-3761, Fax = (757) 683-5354
Email = dnguyen@odu.edu

4.8 Summary

A portable and efficient skyline Choleski method for the solution of large-scale
structural analysis problems has been developed and tested on three high performance
computers - Convex-220, Cray-2 and Cray-YMP. The newly-developed equation solver
exploits both parallel and vector capabilities of modem high performance computers.
A unique feature of this method is the strategy used to minimize computation time by
performing parallel computation at the outermost DO-loop of the decomposition phase,
the most time-consuming part of the total equation solution time. In addition, the most
intensive computation of the decomposition phase was vectorized at the innermost DO-

www.manaraa.com

Due T. Nguyen 87

loop. The dot-product-based factorization scheme prohibits the traditional use of the
well-known loop-unrolling technique used for saxpy operations. To overcome this
difficulty, a novel use of "vector unrolling" has been introduced in the column-oriented
Choleski algorithm to reduce computation time. For the forward and backward solution
phases, it was found to be more effective to perform vector-unrolling and loop
unrolling, respectively, using vector rather than parallel code.

The new method was coded in a modular, and portable fashion using a generic
parallel FORTRAN, called Force. The generality and portability of the method should
make the use of it attractive for other engineering and scientific applications.

The newly-developed parallel-vectorized Choleski method has been applied
to the solution of several small- to large-scale structural analysis problems. For all
problems, the total equation solution time was reduced significantly, in direct proportion
to the number of processors used.

4.9 Exercises

4.1 Given the following 21 x 21 symmetrical matrix [K]

II. .2 o. .4 o. o. o.
55. . 6 .7 .8 .9 o.

110. . 11 o. o. o.
114. . 15 .16 o.

620. .21 . 22

725. .26

829

Row 9

[KJ-

Row 18

o. o . o. o. o.
o. o . o. o. o.
o. o . o. o. o.
o. .19 0 o. o.
o . . 24 o . o. o.
o. . 28 0 o . o.
.3 . 3 I o. o . o.

932. 33 o. o.
934. .35 .36 .37

938 0 4 .41 .42 .43 o. o. o. o. o.
104 AS A6 ~ ~ ~ ~ ~ ~ 0

214 A8 .49 o. o. o. o. o. o.
225. .51 .52 .53 o. o. o. o.

315. o. .56 .57 o. o. o.
415. o. .59 o. o. o.

616. .61 .62 .63 .64

716. .66 o. .67

968 .69 0

887. 71 o.

777. .73

897

a. Find the column height (integer) array ICOLH(-) of the above matrix.
b. Find the diagonal location (integer) array MAXA(-) of the above matrix.
c. How many (real) words of computer memories are required to store the

above matrix?
4.2 For the matrix [K] given in Problem 4.1:

a. Find (using hand calculator) the first 4 columns of the factorized matrix
[U] using the Choleski algorithm.

b. The original term K35 = o. , without any actual computation, explain your
reason(s) for saying the corresponding factorized term U35 = O.?? ,orU35

'I- O.??

www.manaraa.com

88 Parallel-Vector Equation Solvers for Finite Element Engineering Applications

c. The original tenn KII, 14 = O. , without any actual computation, explain
yourreason(s) for saying the corresponding factorized tenn V II • 14 = O.??
, or VII, 14 '" O.?? .

4.3 For the matrix [K] given in Problem 4.1, and assuming "vector unrol1ing" level
3 is used:
a. How many "additional" (real) words of computer memories will be

required due to vector unrol1ing's (level 3) strategies?
b. Assuming 4 processor (PI' P2, P3, and P4) are used in this example, and

according to the fol1owing given infonnation

Processor "Columns" of Matrix [K] Which Belong To a Processor

PI 1,2,3,13,14,15

P2 4,5,6, 16,17,18

P3 7,8,9, 19,20,21

P4 10,11,12

Without any actual computation, and assuming the first 5 columns of the
factorized matrix [V] have already been completely factorized, identify which
tenns (if any) Vij of the matrix [V] can be factorized by processors PI' P2, P3

and P 4' respectively?

4.10 References

4.1 Storaas1i, 0.0., D.T. Nguyen, and T.K. Agarwal, "Parallel-Vector Solution of Large-Scale Structural
Analysis Problems on Supercomputers," AlAA Journal, Vol. 28, No.7, July 1990, pp.1211-1216
(also in Proceedings of the 30th AlAAIASMElASCEIAHS Structures, Structural Dynamics and
Materials Conference, Mobile, AL, April 3-5, 1989, pp.859-867).

4.2 Qin, J. and D.T. Nguyen, "A New Parallel-Vector Finite Element Analysis Software on Distributed
Memory Computers," Proceedings of the AlAAIASMElASCEIAHS 34th SDM Coriference, La Jolla,
CA, April 19-22, 1993.

4.3 Nguyen, D.T. and K.T. Niu, "A Parallel Algorithm for Structural Sensitivity Analysis on the
FLEXl32 MUlticomputer," Proceedings of the 6th ASCE Structures Congress, Orlando, FL, August
17-20,1987.

4.4 Nguyen, D.T., J.S. Shim, and Y. Zhang, "The Component Mode Method In a Parallel Computer
Environment," Proceedings of the 29th AlAAIASMEIASCEIAHS Structures, Structural Dynamics
and Materials Conference, Williamsburg, VA, April 18-20, 1988, AlAA Paper No. 88-2395.

4.5 Qin, J. and D.T. Nguyen, "A Parallel-Vector Simplex Algorithm on Distributed Memory
Computers," accepted to appear in Structural Optimization Journal (1996).

4.6 Bathe, KJ., Finite Element Procedures, Prentice-Hall (1996).
4.7 Jordan, H.F., M.S. Benten, N.S. Arenstorf, and AV. Ramann, "Force User's Manual: A Portable

Parallel FORTRAN," NASA CR 4265, January 1990.
4.8 Knight, N.F., R.E. Gilliam, and M.P. Nemeth, "Preliminary 2-D Shell Analysis of the Space Shuttle

Solid Rocket Boosters," NASA TM- /005 I 5, 1988.
4.9 Knight, N.F., S.L. McCleary, and S.C. Macy, "Large Scale Structural Analysis: The Structural

Analyst, the CSM Testbed, and the NAS System," NASA TM-/00643, 1988.
4.10 Beguelin, A, Dongarra, J., Geist, G.A, Manchek, R. and Sunderam, V., "A User's Guide to PVM:

Parallel Virtual Machine," Technical Report TM-11826, ORNL, 1991.

www.manaraa.com

Due T. Nguyen 89

4.11 William D. Gropp and Ewing Lusk. A test implementation of the MP! draft message-passing
standard. Technical Report ANL-92/47, Argonne National Laboratory, December 1992.

www.manaraa.com

5.1 Introduction

5 Parallel - Vector Variable
Bandwidth Equation Solver on

Shared Memory Computers

In the previous chapter, parallel and vectorized Choleski algorithms which were based
on the skyline (colurnn-by-colurnn) storage scheme for shared memory computers (such
as the Cray-2, Cray-YMP, Cray-C90, etc) had been discussed. The factorized
algorithms discussed in Chapter 4 have been based upon the "dot product" operations.
For certain types of shared memory computers (such as Cray-YMP, Cray-C90, etc),
"Saxpy" operations (to be explained in more detail, later on in this chapter) are known
to be faster than "dot product" operations[51J• The skyline storage scheme and its
associated parallel and vectorized algorithms has been found to prohibit the traditional
"loop unrolling" technique used to optimize vector performance, so a less powerful
"vector unrolling" strategy was used. This chapter describes a different algorithm that
overcomes the deficiency of skyline storage by using a variable bandwidth storage
scheme. The objective of this chapter is to describe this new algorithm for solving
matrix equations and to demonstrate its accuracy and speed by solving large-scale
structural analysis applications on shared memory (such as Cray) supercomputers.

5.2 Data Storage Schemes

The Choleski method for the solution of simultaneous equations requires the
decomposition of the matrix of stiffness coefficients, [K], into an upper-triangular,
factored stiffness matrix, [U]. Two methods most often used in structural analysis codes
to store [U] are the variable-band, and skyline storage schemes.

For large finite-element applications, the user defines the geometry, finite
elements and loads of the finite-element model[S.2]. The user may use automated
algorithms to reorder the resulting stiffness matrix, [K], in the form that is most efficient
for the solver. The reverse Cuthill-McKee algorithm[S.3] reorders the [K] matrix into
a near minimum bandwidth, and thus is used for the examples in this chapter.

In a row-oriented, variable-bandwidth Choleski approach, the bandwidth of
each row of the upper-triangUlar matrix [U], is generally defined as the number of
coefficients from a diagonal term to the last non-zero coefficient of the row, excluding
the diagonal term. Exceptions to this definition, however, can be found in row 3 of

91

www.manaraa.com

92 Parallel-Vector Equation Solvers for Finite Element Engineering Applications

Figure 5.3 (and is also indicated in row 3 ofEq. 5.4). The coefficients of the stiffness
matrix for a stiffened panel with a circular cutout (bottom of Figure 5.1), are plotted in
a variable-band format as shown in Figure 5.1.

Max.BW

Figure 5.1 Variable-band row storage of panel matrix

Figure 5.2 Skyline column storage of panel matrix

The coefficients of the matrix are stored by rows where each row represents
a degree offreedom in the finite-element model. The variable-band storage includes all
zero coefficients within the so called "profile" which is defined by the ragged right edge
of the matrix represented in Figure 5.1. Variable-band storage requires less memory
than earlier schemes which stored all coefficients within the maximum bandwidth,
(refer to the distance Max. BW, shown in Figure 5.1), since earlier schemes stored and
operated on many zeros outside the variable-band profile (see the double cross hatch
region in Figure 5.1).

The same panel stiffness matrix is stored by columns in the skyline format, like
skyscrapers, in Figure 5.2 from each diagonal coefficient up to the last nonzero directly
above it.

In the column-oriented storage scheme, the column height is defined as the
number of coefficients from a diagonal coefficient to the last nonzero coefficient in the

www.manaraa.com

Due T. Nguyen 93

same column, excluding the diagonal coefficient, as shown in Figure 5.2. This skyline
fonnat requires fewer coefficients to store and operate on during equation solution as
indicated by the many zeros (white spaces) in Figure 5.2. The panel example is used for
illustrative purposes only, as in many applications, the reduction in storage offered by
the skyline approach is not so pronounced (as compared to variable bandwidth storage
scheme).

Factorization of a matrix using skyline storage has the advantage that
calculations with zeros outside the skyline need not be perfonned since zeros remain
in these locations after factorization. Although the skyline method has the advantage of
minimizing the storage and number of operations required on sequential computers, it
cannot achieve optimal vector speed on high-perfonnance computers since it cannot use
efficient SAXPY operations, which stands for ~ummation of AX rlus y, (i.e., L ax +
y, or scalar * vector + vector). Details on the skyline (column-by-column) storage
scheme and its associated Choleski factorization, forward and backward solution
algorithms have already been fully discussed in Chapter 4. SAXPY operations achieve
optimal perfonnance on vector computers since they continually stream operations to
separate add and multiply units which can operate simultaneously.

2 0 4
5 6 7 8 9 k = 2

10 11 0 0
14 15 16 0 0 19

20 21 22 0 24 k = 5
25 26 0 28 i = 6

29 30 31
32 33

34

Figure 5.3 Variable-band storage of stiffuess matrix

To better understand the variable bandwidth storage schemes in greater detail,
the location of the coefficients in the upper half of a 9x9 symmetric stiffness matrix are
shown in Figure 5.3 as a simple illustrative example. The non-zero integers in Figure
5.3 are the index (location) of each stiffness coefficient stored contiguously in a one
dimensional array. The 34 matrix coefficients are numbered row-wise according to a
variable-band storage scheme, where for illustrative purposes, the seven zeros are stored
within five of the rows (rows 1,3,4,5, and 6). The skyline storage scheme requires
only 29 locations to store the same matrix, since the five zeros in columns 3, 7 and 8 in
Figure 5.3 fall outside the skyline and need not be stored. The two zeros in row 3 must
be stored in both the variable-band and skyline storage schemes since they may become
non-zero during factorization. Using numerical data shown in Figure 5.3, and referring
to Equation 4.9 in Chapter 4, one has

K35 - U23 * U25
(5.1) u3S =

u33

K36
U36

- U23

U33

* U26
(5.2)

www.manaraa.com

94 Parallel-Vector Equation Solvers for Finite Element Engineering Applications

Thus, even though the original values for K3S and K36 are zeros, their correspondent
factorized matrix U 3S and U 36 are NOT zeros, as indicated in Eqs. 5.1 and 5.2. The
bandwidth of row 2 in Figure 5.3 is 4, excluding the diagonal coefficient, and the height
of column 6 is 4, excluding the diagonal coefficient.

Using the simple stiffness matrix example shown in Figure 5.3, one can
compute the column height (integer) array, for variable bandwidth storage scheme, as
follows:

1 ° 2 1
3 1
4 3

ICOLH 5 3 (5.3)
6 4
7 2
8 1
9 5

The variable bandwidth, or row length, of each row associated with the
example shown in Figure 5.3 can be computed as:

1 3
2 4
3 3
4 5

IROWL 5 4 (5.4)
6 3
7 2
8 I
9 ° In actual computer code implementation, the stiffness matrix [K] is usually

stored in a one-dimensional array (instead of using a two-dimensional array as shown
in Figure 5.3) in the following row-by-row fashion

{Kf _{1,2,0,4,5,6,7,8,9,IO, 11,0,0, 14, 15, 16,0,0, 19,}
- 20,21,22,0,24,25,26,0,28,29,30,31,32,33,34 (5.5)

The numerical values of diagonal terms for the (two dimensional array)
stiffness matrix can be identified as (refer to Figure 5.3):

:,~ .: :0 I (5.6)

K99 = 34

In the corresponding one-dimensional array, the above nine diagonal terms will be
located at the 1st, 5th, 10th, 14th, 20th, 25th, 29th, 32nd, and 34th positions of Eq. 5.5. The
"diagonal pointer" (integer) array MAXA, therefore, can be defined as:

www.manaraa.com

Due T. Nguyen

MAXA

1
2
3
4
5
6
7
8
9 = N
1O=N+1

1
5
10
14
20
25
29
32
34
35

95

(5.7)

The integer MAXA array can, therefore, be used as the "mapping" between the two
dimensional and the one-dimensional arrays stiffness matrix.

The column heights integer array ICOLH can be computed from any given finite
element models, according to the procedures described in Section 2.9 of Chapter 2. Once
the column height information is known, the row length (IROWL) array shown in Eq.
5.4 can be easily calculated (the reader may refer to a segment of Subroutine CSMIN,
given in Section 5.12 of this chapter for detailed computer codings).

The array MAXA, shown in Eq. 5.7, can be conveniently computed from
IROWL according to the following formulas

M4XA(1) = 1 (a/ways !) (5.8)

MAXA (i+ 1) =MAXA(i) +IROWL(i) + 110r i = 1,2, ... N (5.9)

M4XA(N+ 1) = M4XA(N) + 1 (5.10)

In Eqs. 5.9 and 5.10, N represents the total number of equations. The total
number of terms (or total number of memory requirements, in words) can be computed
as

NTERMS = M4XA (N + 1) - 1 (5.11)

For the example shown in Figure 5.3, one has (referring to Eq. 5.7, or Eqs. 5.8 through
5.10) NTERMS = 35 - 1 = 34. It should be emphasized at this point, that in the variable
band storage scheme, the row length of ith row MUST also satisfy the following criteria:

IROWL (i lh row) :? IROWL ((i - 1)'h row) - 1 (5.12)

For example, since the row length of the 2nd row of Figure 5.3 is 4, therefore, the row
length of the 3,d row of Figure 5.3 MUST BE "at least" 3. The requirement stated in Eq.
5.12 is necessary to guarantee the possibilities of a zero term may become non-zero
during the factorization (see explanations given in Eqs. 5.1 and 5.2). In general, using

www.manaraa.com

96 Parallel-Vector Equation Solvers for Finite Element Engineering Applications

the variable bandwidth storage scheme, the envelope of the coefficient (stiffness) matrix
may have the form shown in Figure 5.4

(a) Acceptable Envelope

J.
,

D E

(b) Unacceptable Envelope
(The vertical line CD must move to the
right direction, at least to location BE!)

Figure 5.4 Acceptable and unacceptable variable bandwidth storage scheme

The parallel-vector Choleski method, described in later sections of this chapter, uses a
variable-band storage scheme to achieve optimal vector performance combined with the
skyline column heights to avoid calculations with zeros outside the skyline.

5.3 Basic Sequential Variable Bandwidth Choleski Method

In the sequential Choleski method, a symmetric, positive-definite stiffness matrix, [K],
can be decomposed as

[K] = [UV[U] (5.13)

with the coefficients of the upper-triangular matrix, [U]:
Uij = 0 fior i > J. (5.14)

for j ~ I (5.15)

for i> 1 (5.16)

www.manaraa.com

Due T. Nguyen 97

for i, j > 1 (5.17)

When j=i, the numerator of Eq. 5.17 is identical to Eq. 5.16 without the square root
operation, which simplifies coding.

For better understanding of the developments of the basic (sequential) variable
bandwidth Choleski code for factorization, let us consider a full, symmetric, positive
definite matrix, where the matrix size N = 9 as shown in Figure 5.5

2nd loop, k = 1 - i-I (say k = 4)
1

Kll K'2 K'3 K'4 K'5 K'6 K'7 K'8 K'9

K22 K23 K24 K 25 K 26 K27 K 28 K 29

K33 K34 K35 K36 K37 K38 K39

)"0 loop,j=i~N K44 K45 K46 K47 K48 K49

K56 K57 (say j = 6 ~ 9) K55 K58 K59

K66 K67 K68 K69
~ pt loop, i = 1 ~ N

K77 K78 K79 (say i = 6th row)
SYM. K88 K89

K99

Figure 5.5 A full, symmetric stiffness matrix

In a variable bandwidth storage scheme, since the stiffness matrix has been
stored in a row-wise fashion, factorization will also be done according to a row-by-row
fashion (the reader should recall that factorization has been done according to a column
by-column fashion in Chapter 4!) as illustrated in the skeleton FORTRAN code shown
in Figure 5.8.

According to Figure 5.5 and Eq. 5.16, the factorized diagonal term U 66 can be
computed as

[(2 2 2 2 2)]1/2
U66 = K66 - U 16 + U26 + U36 + U46 + U56 (5.18)

The above summation, within the inner parenthesis, can be considered as the
inner product of

Ul6 U 16

U26 U26

U36 U36

U46 U46

U56 U56

www.manaraa.com

98 Parallel-Vector Equation Solvers for Finite Element Engineering Applications

or, with the aid of Figure 5.5, can be considered as the dot product of column #6
(excluding the diagonal term) onto itself. Similarly, the factorized off-diagonal term U 69

can be computed from Eq. 5.17 as
_ K69 - (u 16 ul9 + U26 U29 + + U56 U59)

U69 - (5.19)
U66

Again, the summation within the parenthesis in Eq. 5.19 can be considered as the dot
product of column #6 and column #9, such as

U l6 ul9

U26 u29

u36 u39

U46 u49

US6 US9

From Eqs. 5.18 and 5.19, one can easily see that if we wish to factorize the "entire" row
#6 of Figure 5.5 (for example, to compute U 66' U 67' U 68 ' and U 69) then we only need to
know the factorized terms in the rectangular region "right above" the 6th row. In general,
the factorized information required in order to factorize any ith row of a full matrix, and
variable bandwidth matrix can be shown in Figure 5.6 and Figure 5.7, respectively.

+- Information required to
factorize the ith row

+- ith row (to be factorized)

Figure 5.6 Choleski factorization of the ith row of a full matrix

www.manaraa.com

Due T. Nguyen

k = lop row # of ph ccluftll -+ row # i . I
[2nd loop, Jay k = 7]

i = i -+ k + row len'th+-----.
of row k

information requi"ed 10
factorize the ilh row

ith row (10 be fadolized)
~

~rdloop, ,ayl = 9 -+ 7 + 4] [1 ,I loop, 'ay I = 9]

Figure 5.7 Choleski factorization for the i'h row of a variable bandwidth matrix.

99

Regardless of whether the Choleski or Gauss method is used (see Section 5.8), the basic
skeleton FORTRAN sequential code for matrix factorization, based on the variable
bandwidth storage scheme, is given in Table 5.1 with comments inserted to explain its
connection to Eqs. 5.15 through 5.17

Table 5.1 Sequential Choleski variable-band skeleton code
for matrix factorization

I~ DO 1 i = row# 1, row#N

-I D02 k = top tow# of i'h column, i-I

13 c compute multiplication factor, xmult
4 xmult = U(k,i)

5 cgauss xmult = U(k,k) * U(k,i) replaces above statement

I 6 D03 j = i, k + row length of row k

7 c calculate the numerator of Eq. 5.17 I

8 U(ij) = K(i,j) - xmult * U(k,j)

9 3 Continue

10 2 Continue

11 c calculate final value ofU(i,i) as in Eq. 5.16

12 U(i,i) = SQRT (U(i,i))

1

13
cgauss remove above statement

14 c DO loop 4 divides the numerator of Eq. 5.17 by U jj

1

15
xinv = l/u(i,i)

16 D04 j = i+l, i + row length of row i

117 U(ij) = U(i,j) * xinv

\18 4 Continue

119 Continue

www.manaraa.com

100 Parallel-Vector Equation Solvers for Finite Element Engineering Applications

Detailed explanations of Table 5.1 are given in the following paragraphs (the
reader should refer to Figure 5.7).
Line 1: Since the Choleski variable bandwidth factorization proceeds in a row-by

row fashion, the first loop, with the index i, will scan from row # 1 to the last
row #N, (say i = 9th row, as shown in Figure 5.7)

Line 2: Since the ith = 9th row is being factorized, it implies that all the previous
rows (row 1 through row 8) have already been completely factorized. Thus,
if the matrix is assumed to be full as shown in Figure 5.6, then the
information required to factorize the ith = 9th row are rows k = 1 through 8.
However, if the matrix has variable bandwidths as shown in Figure 5.7, then
the information required to factorize the ith = 9th row are rows k = 4 through
8, or to be more general, the index k of the second loop should be k = top
row number of the ith column, i-I, (say k = 7, as shown in Figure 5.7).

Line 3-4: Copy the known value Uk; into the variable xmult, where xmult is referred to
as "multiplier factor".

Line 5: This "comment" statement will be discussed in greater detail in Section 5.8
Line 6: Assuming k = 7 (as explained in Line 2) the "completely" factorized 7th row

can be used to "partially" factorize row number i = 9. For example (referring
to Figure 5.7 and Eqs. 5.16 and 5.17).

U9 ,9 (partially factorized) = K9,9 - (U;'9 + ug\) (5.20)

U9,10 (partially factorized) = K9,IO - (U7,9 * U7,IO + Ug,9 * ug,lo) (5.21)

U9,11 (partially factorized) = K9•11 - (U7,9 * u7,11 + Ug,9 * US,II) (5.22)

Thus, the index j of the 3rd loop should be j = column 9 - column 11, or to be more
general:

j = i - k + row length of row k (5.23)

Expression given in Eq. 5.23 for the indexj is valid, since in this example, i = 9, k = 7,
and row length of row 7 = 4 (hence j = 9 - 7 + 4 , or j = 9 - 11)
Lines 7-9: Calculate the numerator ofEq. 5.17
Line lO: End of the 2nd nested do-loop
Lines 11-12: Calculate the final value of the diagonal term u;.;
Line 13: Explanation of this "comment" statement will be postponed until

Section 5.8
Lines 14-15:

Lines 16-18:

Since division is more time consuming than multiplication, the

operation xinv = ~ is done outside of loop 4 (with the index j)
Uji

The numerator ofEq. 5.17 is divided by u;,; (or multiplied by xinv) to
get the complete, final answer for the factorized off-diagonal term U;"j

www.manaraa.com

Due T. Nguyen 101

Line 19: End of the }"I nested do-loop

5.4 Vectorized Choleski Code with Loop Unrolling

For a single processor with vector capability, the loop-unrolling technique (suitable for
SAXPY operations) can be exploited to significantly improve performance. The SAXPY
operation is one of the most efficient computations on vector computers since vector
operations are performed in parallel on separate add and mUltiply functional units.

In Figure 5.5, for example, once the first four rows of the factored matrix, [U],
have been completely updated, row 5 can be updated according to the numerator of Eq.
5.17

U5j = k5j - Ul5 * u1j

- U25 * u2j

- U35 * u~i
(5.24)

- U45 * u4j

where j = 5 - N (say = 9).
In Eq. 5.24, u lS, u2S, U 3S, and U4S are multiplier constants. Thus, u lS (or U]j, U3S,

u4S), u1j (or u2j' u3j, u4j) and kSj play the role of the terms a, x and y, respectively, in
SAXPY operations. The SAXPY operations in Eq. 5.24 are also loop unrolled to level
4 since operations on four rows are stacked together into one FORTRAN arithmetic
statement. This loop unrolling is possible since "partial" updated values of row 5 can be
computed when any of the first four rows are completed. .

In a previous chapter (using the column-oriented Choleski method) once the
first four columns of the factored matrix, [U], were completely updated, all terms of
column 5 were updated. For example, referring to Figure 5.5, u2S was computed by Eq.
5.17 as

_ k2S - (UI2 * u1S)
u2S -

u22
(5.25)

The term u2S in Eq. 5.25 was computed directly as the "final" updated value, and could
not be expressed in terms of "partial" updates as is the case in Eq. 5.24. Therefore, the
loop unrolling technique could not be used in this case. Instead, a vector unrolling
strategy was used (see Chapter 4) to improve the vector performance in Eq. 5.17.

However, in the present chapter, the sequential Choleski skeleton in FORTRAN
code in Table 5.1 can be modified to include loop-unrolling, say to level 4 as is shown
in Table 5.2

Table 5.2 Vectorized Choleski factorization code (with level 4 loop unrolling)

2

3
4 c

DO 1

D02

D03

i = row#l, row#N
k = top row# of ilh column, i-I, 4
j = i, k + row length of row k

www.manaraa.com

102

5

3

7 2

8 c

9 c

10

I
II
12

13

14

15

4

Parallel-Vector Equation Solvers for Finite Element Engineering Applications

U(i,j) = K(i,j) - U(k,i) * U(k,j)

Continue

Continue

- U(k+ I,i) * U(k+ I,j)
- U(k+2,i) * U(k+2,j)
- U(k+3,i) * U(k+3,j)

repeat loop 2 to update ith row by extra k values

for DO 2 k = 1, 10,4, extra k values are 9, 10

U(i,i) = SQRT (U(i,i»

xinv = llU(i,i)

DO 4 j = i+I, i + row length of row i

U(ij) = U(ij) * xinv

Continue

Continue

Detailed explanations of Table 5.2 are given in the following paragraphs:
Line 1: In a row-by-row fashion, the first loop, with the index i, will scan all rows from

1 to N (say i = 5th row in Figure 5.5)
Line 2: Since the ith = 5th row is being factorized, it implies that all the previous rows

(rows 1 through 4) have already been completely factorized. Thus, if the matrix
is assumed to be full (only to simplify the discussions) as shown in Figure 5.5,
then the information required to factorize ith = 5th row are rows k = 1 through
4, or to be more general, the index k of the second loop should be k = top row
number of the ith column, i-I.

However, we can improve the vector speed in the next (or third) nested
do-loop by packing every 4 rows of the matrix together. Thus, the index
k of the second loop should be modified as
k = top row number of the ith column, i-I, 4

Line 3: Explanations have been given earlier (see line 6 of Table 5.1)
Lines 4-5: Calculations for, say Eq. 5.24, or calculations for the numerator of Eq.

5.17. The index k of the second loop will "jump" from row k = 1 to row
k = 5, because of the increment 4, as explained in Line 2, and therefore,
rows k = 2, 3, and 4 will be skipped. The contributions of the "already
completely factorized" rows 2,3, and 4, however, are included in line
5, in the following forms

Lines 6-7:
Lines 8-9:

- U(k+l, i) * U(k+l,j)
- U(k+2, i) * U(k+2,j)
- U(k+3, i) * U(k+3,j)

The third and second loops are ended, respectively.
Suppose the index i, in the first loop, has the value i = II, then the
index k, in the second loop, is supposed to have the values k = I
through 10. However, because of the increment 4 (or loop unrolling

www.manaraa.com

Due T. Nguyen

Lines 10-15:

103

level 4) the index k will only reach the value of k = 8. Thus, the
"equivalent" ofloop 2 needs to be executed for two more times, to take
care ofk = 9 and 10.
These lines have the same meaning as lines 12 and 15 through 19 in
Table 5.1.

Using the loop-unrolling technique (see Lines 2 and 5 of Table 5.2), the total
number of load and store instructions and operations between the main memory and the
vector registers is reduced significantly for nested DO-loops. The modified outer loop
(DO 2 in Table 5.2), has an increment equal to the level of unrolling, while the innermost
loop (DO 3 in Table 5.2) contains more arithmetic computations in a single FORTRAN
statement than the basic code. For vector supercomputers, such as Cray, SAXPY
operations are known to be faster than dot-product operations used in the skyline method.
The use of a variable-band is preferred to the skyline storage scheme since it permits the
SAXPY operations in Eq. 5.24.

In addition to vector capability, modem high-performance computers also have
multiple processors which can operate in parallel. Considerably more work is required
by engineers to achieve parallel performance gains than to achieve vector performance
gains, since code must be restructured for processor synchronization and load balancing.
The parallel-vector Choleski method was coded (in the Force parallel FORTRAN
language) as the computer program pvs. PVS will be described in Section 5.11 after a
brief synopsis of Force in Section 5.5.

5.5 More on Force: A Portable, Parallel FORTRAN Language(s.4(

Force is a preprocessor which produces executable parallel code from a combination of
FORTRAN and a set of simple, yet portable, parallel extensions tailored to run
efficiently on parallel computers. The parallel extensions used in pvs are Prescheduled
DO, Shared and Private variables, Produce and Copy. Prescheduled DO causes all
processors to execute the same DO-loop statements in parallel simultaneously with each
processor using a different DO-loop index. Variables can be either Shared between all
processors or Private (each processor has its own value for the same variable name).
Care should be taken to avoid large Private arrays, as they are stored in different
memory locations for each processor. Therefore, Shared arrays are preferred to Private
arrays. Copy and Produce are used to synchronize tasks. Copy X into Y stores X in Y
only if X is "full" (Le., a signal to all processors to resume their computations), otherwise
the processor waits. Produce X = K assigns K to X and marks X as "full". If X if "full",
Produce waits until X is "empty" (Le., a signal for processors to wait) before assigning
K to X. Force permits algorithms to be independent of both the computer and the number
of processors, as the number of processors is not specified until run time. Other parallel
FORTRAN software, such as PVM [4.10] and MPI [4.11] can also be employed.

5.6 Parallel-Vector Choleski Factorization

In Choleski-based methods, a symmetric, positive definite stiffness matrix, [K], can be
decomposed as shown in Eqs. 5.16 and 5.17. For example, U57 can be computed from Eq.

www.manaraa.com

104 Parallel-Vector Equation Solvers for Finite Element Engineering Applications

5.17as:

(5.26)

The calculations in Eq. 5.26 for the term U S7 (of row 5) only involve columns 5 and 7.
Furthermore, the "final value" ofus7 cannot be computed until the final, updated values
of the first four rows have been completed. Assuming that only the first two rows of the
factored matrix, [U], have been completed, one still can compute the second partially
updated value ofus7 as designated by superscript (2):

(2) k
U57 = 57 - U l5 U l7 - U25 U27 (5.27)

If row 3 has also been completely updated, then the third partially-updated value of U S7

can be calculated as:

(5.28)

This observation suggests an efficient way to perform Choleski factorization in parallel
on NP processors. For example, each row of the coefficient stiffness matrix, [K], is
assigned to a separate processor.

From Eq. 5.26, assuming NP = 4, it is seen that row 5 cannot be completely
updated until row 4 has been completely updated. In general, in order to "completely"
factorize the ilh row, the previous (i-I) rows must already have been updated. For the
above reasons, any NP consecutive rows of the coefficient stiffness matrix, [K], will be
processed by NP separate processors. As a consequence, while row 5 is being processed
by a particular processor, say processor I, then the first (5-NP) rows have already been
completely updated. Thus, if the ilh row is being processed by the plh processor, there is
no need to check every row (from row I to row i-I) to make sure they have been
completed. It is safe to assume that the first (i-NP) rows have already been completed as
shown in the triangular cross-hatched region of Figure 5.8.

www.manaraa.com

Due T. Nguyen

Completely Updated
Not completely updated

Rowi-NP

Rowi

Figure 5.8 Infonnation required to update row i

105

Synchronization checks are required only for the rows between (i-NP+ 1) and
(i-I) as shown in the rectangular solid region of Figure 5.8. Since the first (i-NP) rows
have already been completely factored, the ith row can be "partially" processed by the pth
processor as shown in Eqs. 5.27 and 5.28.

To simplify the discussions and to better understand the developments of
Parallel-Vector Variable Bandwidth Choleski Factorization, a full and symmetrical
(stiffness) matrix with 24 Degree-of-Freedom (DO F, or unknowns) and three processors
(NP = 3)PI, P2 and PJ are shown in Figure 5.9.

Since factorization will be done in a row-wise fashion, the three processors PI'
P2 and PJ will be systematically assigned to different rows, as shown in Figure 5.9.

To make the discussions more general, let's assume that a particular processor
(say P2) is currently trying to factorize a certain row (say row no. 17). Since processor
P2 is currently at row no. 17, it implies that at least the first fourteen rows (rows 1
through 14) have already been "completely" factorized. Since row no. 14 also belongs
to processor P2, therefore P2 willjump to work on row no. 17 only ifrow no. 14 has been
completely factorized, which also implies that all previous rows (rows no. 1 through 13)
have also been completely factorized!

Furthennore, if P 2 is currently at row no. 17, then the other two processors (P I
and PJ) MUST BE at either "right above" row no. 17 (if rows 15 and 16 have not been
completely factorized yet!), or "right below" row no. 17 (if rows 15 and 16 have already
been completely factorized)!

For example, ifP2 is at row no. 17 (i = 17), then PI can NOT be at row no. 1,
or no. 4, or no. 7, or no. 10, or no. 13 because we have already proved that the previous
(i - NP) rows (or 17 - 3 = 14 rows) must have been completely factorized. In practice, it
is safer to assume that if P 2 is at the ith row, then its neighboring processors (P I' P J, etc .
. . .) will be right above it. Referring to Figure 5.9, one can see that processors PI' P2,

and P J can do a significant amount of parallel computations in trying to factorize rows
no. 16, no. 17, and no. 15, respectively. Processor PI' for example, will have a lot of

www.manaraa.com

106 Parallel-Vector Equation Solvers for Finite Element Engineering Applications

work to do, since the "majority" of information required to factorize row no. 16 has
already been available as shown by the rectangular region MFCD.

Thus, processor PI can use the available information (in the rectangular region
MFCD) to "partially" factorize (or update) row no. 16. Processor PI' however, will get
the "completely" (or final) factorized row no. 16 only if its neighboring processor PJ

completely factorizes its own row (row no. 15).
While PI is working on row No. 16, at the same moment, processors P2 and PJ

are simultaneously working on the "partially" factorized rows no. 17 and no. 15,
respectively (using the available information in the rectangular regions, NICD and
ABCD, respectively).

The black region shown in Figure 5.8 will correspond to rows 15 - 17 in Figure
5.9, where i = 17 and NP = 3.

The vectorized Choleski code in Table 5.2 has been modified for parallel
processing. The resulting skeleton factorization part of the full pvs code is shown in
Table 5.3 with parallel (Force) statements in boldface type.

2

3
4

5

I

24

I 2 3 4 5 6 7 8 9H III I I 1111 I II I 2~ 212 2 24
"11 x X "'4 X X X X X X X X X X x F I x x x x x X ~,'" P

1)(, x 2
3
I
2
3
I
2
3
I
2
3
I
2
3
1
2
3
I
2
3
1
2
3

1"-
1"-

"-
"-

1"- p.
1"- P

1"- p.
p.
P

M N P D p.
x QX RX x x x x x X p.

x x X X X X X P
X X X X X x L p,

"- P
5 Y MM E T R I CAL M A T R I X 1"- P

1"- p.
I'x. x x x p

x x P
'!\. x P

'x..P

Figure 5.9 A full, symmetrical (stiffness) matrix with
24 DOF and NP = 3 processors (PI' P2, PJ)

Table 5.3 Parallel-vector Choleski skeleton code with level 4 loop unrolling

c

c
c

Shared K(21 090396)

Private ij,k,temp,xinv

{X} vector used to indicate when a row is completely factorized

[U] overwrites [K] in actual code to reduce storage

calculate U(1,1) in E~. 5.16 on one~rocessor

www.manaraa.com

Due T. Nguyen 107

6 U(1,I) = SQRT(K(I,I»

7 c

8

9

10

11

12

13

14

15

16

17

18

19

20
21

22

23

24

25

26
27

28
29
30

31

32

33

34

35

36

37

38

39

40

41

c

c

c

c

c

c

c

c

declare row# 1 finished

Produce X(1) = U(1,1)

start all available processors (for parallel computation)

Presched DO 1 i = row#2, row#N

lock processor if row# (i-NP) is not completed

release lock when row is completely factorized

IF (i-NP.GT.O) then

Copy X(i-NP) into temp

End if

DO 2 k = top row# of the ith column, i-NP, 4

skip DO 3 if all multipliers are zero: zero checking

DO 3 j = i, k + row length of row k

U(i,j) = K(i,j) - U(k,i) * U(k,j)

3 continue

2 continue

- U (k + 1 , i) * U (k + 1 ,j)
- U(k+2,i) * U(k+2,j)
- U(k+3,i) * U(k+3,j)

lock the processor if row# (i-I) not finished

release the lock when row#(i-I) is finished

Copy X(i-I) into temp

DO 4 k=max(top row# ofith column, i-NP+l), i-I

DO 5 j=i, k + rowlength of row k

U(ij) = U(ij) - U(k,i) * U(kj)

5 continue

4 continue

U(i,i) = SQRT(U(i,i»

xinv = IIU(i,i)

DO 6 j = i+ 1, i + row length of row i

U(ij) = U(ij) * xinv

6 continue

broadcast to all processors that row i is finished

Produce XCi) = U(i,i)

End Presched DO

Explanations of Table 5.3 will be given in the following paragraphs:
Line 1: Stiffness matrix, stored in a one-dimensional real array, is declared as a

"shared" variable. Thus, this array can be accessed by any processor.

www.manaraa.com

108 Parallel-Vector Equation Solvers for Finite Element Engineering Applications

Line 2: Some "private" variables are declared
Lines 3-10: These statements, with comment cards, are self-explained
Line 11: The outermost do-loop (with the index i) is executed in parallel (row-by-row

fashion) by NP processors as described in Fig. 5.9.
Lines 12-13: Self-explained from comment cards
Lines 14-16: Check (synchronization) to make sure that the first (i - NP) rows have

already been completely factorized? Ifthe answer is YES, then proceed
to the next statement. If the answer is NO, then processor(s) will wait
in here!!

Lines 17-25: These statements play the same roles as lines 2 through 7 of Table 5.2.
The major difference between Table 5.3 and Table 5.2 is that the
second loop in Figure 5.9 is broken into two separated loops in Table
5.3 (see loop 2 in line 17 and loop 4 in line 29 of Table 5.3). In these
statements, all processors are simultaneously trying to "partially"
factorize its own row (using available information in rectangular
regions ABCD, MFCD and NICD shown in Figure 5.9).

Lines 26-28: Check (synchronization) to see if any rows, within the sequential, black
region shown in Figure 5.8, has been completely factorized?? If the
answer if YES, then proceed to the next statement. If the answer if NO,
then processor(s) will wait in here!!

Lines 29-33: These statements continue to play the same roles as the ones in lines 17
through 25. The key difference is "sequenti=ll" factorization will be
done in here (see the black regions in Figure 5.8).

Lines 34-38: These statements play the same roles as the ones in lines 10 through 14
of Table 5.2.

Line 41: Self-explained from the comment card. The end of the first (parallel)
nested do-loop, with the index i.

5.7 Solution of Triangular Systems

The forwardlbackward solution can be made parallel in the outermost loop by using
synchronization statements, and can result in excellent computation speed-up for an
increasing number of processors on computers where synchronization time is fast
compared to computation time. However, on Cray computers, the computations for the
forwardlbackward solution time are so fast that for better performance in subroutine pvs,
they are done on one processor with long vectors rather than introducing synchronization
overhead on multiple processors. A further time reduction for one processor is obtained
by using loop unrolling in the forward elimination and vector unrolling (another form of
loop unrolling) in the backward substitution.

It is interesting to notice that in Chapter 4, since the colurnn-by-colurnn storage
scheme is used, vector unrolling has been used in the forward solution and loop unrolling
has been used in the backward solution! The readers are asked to recall that vector
unrolling is associated with "dot-product" operations and it will lead to "fmal" answer.
On the other hand, loop unrolling is associated with "SAXPY" operations, and it will
lead to "partial" (or "incomplete") answer.

www.manaraa.com

Due T. Nguyen 109

5.7.1 Forward solution
To simplify the discussions, let us refer to Eq. 5.29 for the forward solution of the six
simultaneous equations. In Eq. 5.29, the upper triangular matrix [U] which have already
been factorized in earlier sections is also assumed to be a "full" upper triangular matrix.

In actual computer coding, the factorized matrix [U]T will be stored in a row-by
row fashion in a one-dimensional array. Thus, the numbers in each column of[U] (shown
in Eq. 5.29) are stored next to each others, and therefore the "stride" (see Chapter One)
between any two consecutive numbers within a column is equal to 1.

Ull Yl Fl
u l2 u 22 F2
ul3 U23 U33 F3 (5.29)
Ul4 U24 U34 U44 F4
u lS u 2S u 3S u 4S u ss Fs

u l6 U26 u 36 u 46 US6 u 66 F6

The explicit forward solution to obtain the unknown vector {y} in Eq. 5.29 can
be given as

YS

Yl
Fl

ull

Y2
F2 - (U I2 Y l)

u22

Y3
F3 - (U 13 Yl + U23 Y 2)

U33

Y4
F4 - (U 14 Y 1 + U24 Y2 + U34 Y 3)

U44

Fs - (U1SYI + U2s Y2 + U3S Y3 + U4sY4)

uss

(5.30)

(5.31)

(5.32)

(5.33)

(5.34)

(5.35)

Observing Eqs. 5.30 through 5.35 carefully, one will recognize that it is
definitely possible to get the "final" (or "complete") solution for any unknowns (say, Ys)
by using the appropriate equation (say Eq. 5.34). It is NOT desirable, however, to get the
"fmal" solution for Ys directly (from Eq. 5.34), due to the following two reasons:

www.manaraa.com

110 Parallel-Vector Equation Solvers for Finite Element Engineering Applications

(a) The values ofuls, U2S, u3S and u4S are NOT stored consecutively (next to
each others) in the one-dimensional array. Thus the "stride" between any
of the above numbers is much larger than I, hence, it will lead to poor
vector performance (see Chapter One).

(b) Directly obtain the "rmal" answer for Ys will require "dot-product"
operations, which is known to offer much less vector speed on many
shared memory computers, such as the Cray-YMP, Cray-C90, etc ,
as compared to the "SAXPY" operations.

For better vector performance, say, on Cray-type computers, and to fully utilize
the SAXPY operations with "loop-unrolling" technique, the forward solution can be
summarized by the following "key" strategies
Step 0: Let i = 1
Step 1: Solve "completely" for the "final" solution ofYi.
Thus,

Step 2: Solve "partially" for the "incomplete" solutions ofYi+I' Yi+2 YN.
Thus,

Y2 (incomplete) = F2 - (u I2 Y1)

Y3 (incomplete) = F3 - (U I3 Yl)

Y4 (incomplete) = F4 - (U I4Yl)

Ys (incomplete) = Fs - (uISYl)

Y6 (incomplete) = F6 - (UI6Yl)

Step 3: Let i = i + 1, and go back to step 1

(5.36)

(5.37)

(5.38)

(5.39)

(5.40)

(5.41)

Using the above strategies, the values ofu l2, Un, •... , U l6 (required in Eqs. 5.37
through 5.41) are stored right next to each other (in the one-dimensional array U) and
therefore their strides are all equal to 1. Furthermore, since the obtained forward solution
vector {y} is "incomplete", SAXPY operations with loop-unrolling enhancements can
be utilized!

The basic skeleton FORTRAN code to implement the strategies given by Eqs.
5.36 through 5.41 is now given in Table 5.4.

www.manaraa.com

Due T. Nguyen

Table 5.4 Basic forward solution for row-by-row storage scheme

c Initialize the unknown solution vector {y} to its corresponding

c right-hand-side vector {F}

DO 1 J = 1, N

Y(J) = F(J)

c Considering all unknowns

DO 2 J = 1, N, 1

c Obtaining the complete, "final"solution for the Jlh unknown

c see Eq. 5.36

y(J) = y(J)
U(J,J)

c Obtaining the partially, "incomplete" solutions for the other

c (J + lYh, (J + 2Yh, ,(Nyh unknowns

c See Eqs. 5.37 through 5.41

DO 3 1= J + 1, N
y(l) = y(1) - U(J,I) * y(J)

3 continue

2 continue

111

The operations involved inside loop 3 of Table 5.4 is called SAXPY operations,
because it basically involves

vector Yi = vector Yi ± a constant Yj * vector U i

In the above operations, since the indexj does NOT change within the loop 3, therefore
Yj is considered as a constant and Uji is considered as a vector.

Loop unrolling technique can be used to improve the vector performance of the
algorithm shown in Table 5.4. To simplify the discussions, assuming loop-unrolling level
2 (or NUNROL = 2) is used, and the improved algorithm is self-explaining in Table 5.5
(only a skeleton of FORTRAN code is given).

Table 5.5 Loop-unrolling forward solution for row-by-row storage scheme

I
I c Initialize

I DO 1 J = 1, N
I Y(J) = F(J)

I
c Considering all unknowns, but with increment NUNROL (say = 2)

DO 2 J = 1, N, NUNROL

I cc. ___ --'O_b_t_aie-n_in-"g=--t-'>-h"-'eC.l:c--"-o=m""p=le""t-'=e,c::.:''_'fi--'In=a''-'I''_' _SO_I_llt--,io_n_fo_r_a.L'_'fi_ew"
_ unknowns (depending on value of NUNROL)

www.manaraa.com

112 Parallel-Vector Equation Solvers for Finite Element Engineering Applications

Y(J) = y(J)
U(J,J)

y(J+ 1) y(J+l) - U(J,J+l) * y(J)
U(J+l,J+l)

c Obtaining the partially, "incomplete" solutions for other unknowns

DO 3 I = J + NUNROL, N

y(l) = y(l) - U(J,I) * y(J)

3 continue

2 continue

- U(J+l, I) * y(J+l)

In actual computer code implementation, loop-unrolling level 8, or level 9
(NUNROL = 8, or 9) has been used. Furthermore, the factorized matrix U has been
actually stored in a one-dimensional array (using the diagonal pointer array MAXA, as
explained in Eqs. 5.8 through 5.10). Finally, variable bandwidths (see array IROWL, as
explained in Eq. 5.4) have also been employed to save both computer storage as well as
to reduce the number of operations.

5.7.2 Backward solution
To simplify the discussions, let us refer to Eq. 5.42 for the backward solution of the same
six simultaneous equations considered in Section 5.7.1.

U 11 u l2 uI3 uI4 u1S U I6 ZI

u22 U23 U24 u2S U26 Z2
U33 U34 u3S u36 Z3

U44 u4S U46 Z4
(5.42)

uss US6 Zs
u66 Z6

The explicit backward solution to obtain the unknown vector {Z} in Eq. 5.42 can be
given as

(5.43)

(5.44)

www.manaraa.com

Due T. Nguyen

YI - (u 12 Z2 + U l3 Z3 + U l4 Z4 + U l5 Z5 + U l6 Z6)
ull

113

(5.45)

Observing Eqs. 5.43 through 5.45 carefully, with special attention to Eq. 5.45,
one will recognize that the "final", or "completed" solution for the unknowns, say ZI' can
be (and should be) obtained directly from Eq. 5.45. This strategy is preferred here, since
the known quantities such as u12, UIJ' ... , U l6 have already been stored in a consecutive
(right next to each other) fashion (thus, the optimum stride 1 can be achieved). Since the
final, complete solution for the unknowns can be obtained directly, vector-unrolling
(NOT loop-unrolling) can also be used in conjunction with DOT-PRODUCT operations
to enhance the vector speed.

The basic backward solution for row-by-row storage scheme is presented (in the
form of a skeleton FORTRAN code) in Table 5.6 (assuming the factorized, upper
triangular matrix is fully populated to simplify the discussions) and explanations are
given in the following paragraphs.
Line 1: The first nested do-loop (with the index J) will cover from the last unknown

to the first unknown (with the index increment of -1).
Line 2: The Jth unknown is first initialized to have the same value as the right-hand

side vector y(J)
Line 3: The second nested do-loop (with the index I) will scan from the value J + 1

to N to make sure that all terms inside the parenthesis (see the nominators of
Eqs. 5.44 and 5.45) are included.

It should be noted here that most (if not all) FORTRAN compilers will automatically
skip do-loop #2 if J + 1 is greater than N.
Line 4: The nominator ofEq. 5.44, or Eq. 5.45 etc , is computed.
Line 5: Do-loop #2 is ended
Line 6: The final, complete solution for the Jth unknown is computed
Line 7: Do-loop #1 is ended.

The algorithm for backward solution presented in Table 5.6 can be modified to
enhance its vector speed by utilizing the "vector unrolling" technique. Referring to Eq.
5.42, and assuming several rows (say every two rows, thus the level of unrolling is
NUNROL = 2) are grouped together. The key strategies used by the algorithm presented
in Table 5.7 can be summarized as follows (please also refer to Eq. 5.42, for a "specific"
example):
Step 1: Solve completely for the last NUNROL (say, 2) unknowns ZN' ZN.' (for

example Z6 and Z5) and letj = N - NUNROL
Step 2: Compute Zj (incomplete) = Z4 (incomplete) = Y4 - (U45 Z5 + U46 Z6)

Compute Zj., (incomplete) = Z3 (incomplete) = Y3 - (U35 Z5 + U36 Z6)
Note: The effects of the triangular region of the coefficient matrix (see rows 3 and 4

ofEq. 5.42) have not yet been included in the calculations. It will, however, be
incorporated in Step 3!

Step 3: Compute Z4 (complete)

Compute Z3 (complete)

www.manaraa.com

114 Parallel-Vector Equation Solvers for Finite Element Engineering Applications

Step 4: Letj = j - NUNROL, and return back to Step 1, for the remaining unknowns
With the above four-step procedure in mind, explanations for Table 5.7 can now

be given:
Line 1:

Lines 2-3:

Line 4:

Lines 5-6:

Lines 7-10:

Select the level of unrolling. Here, we select NUNROL = 2 (or
grouping every two rows together)
Solve for the last NUNROL unknowns (see Step 1 of the above key
strategies)
This first nested do-loop (with index J) will consider all remaining
unknowns (with the loop increment - NUNROL).
Initialize the next NUNROL unknowns to be equal to their
corresponding right-hand-sides
This second nested do-loop (with index I) will "partially" compute the
nominator (ofEqs. 5.43 through 5.45) of the next NUNRO L unknowns
(see Step 2 of the above key strategies)

Note: Because the increment of index J in the first loop (see line 4) has been set
to "-NUNROL" (or -2), hence, there is a need to insert an EXTRA statement

(see line 9) to compensate the larger increment of the index J.
Lines 11-12: Compute the final, complete unknowns (see Step 3 of the above key

strategies, and also refer to the triangular regions in rows 3 and 4, and
rows 1 and 2 in Eq. 5.42).

Line 13: Do-loop #1 is ended.

Table 5.6 Basic backward solution for row-by-row storage scheme

DO 1 J=N,l,-l

2 Z(J) = Y(J)

3 D02 I=J+1,N

4 Z(J) = Z(J) - U(J, I) * Z(I)

I! 2 CONTINUE

Z(J) = Z(J)
!

17

3

4

U(J,J)

CONTINUE

Table 5.7 Vector unrolling backward solution for row-by-row storage scheme

NUNROL=2

Z(N) = Y(N)
U(N,N)

Z(N-1) = Y(N-1) - U(N-1,N) * Z(N)
U(N -l,N -1)

DO 1 J = N - NUNROL, 1, -NUNROL

www.manaraa.com

Due T. Nguyen

I!
7
8

9

10 2

11

12

13

Z(J) = Y(J)
Z(J-I) = Y(J-I)

DO 2 1=]+1, N
Z(J) = Z(J) - U(J, I) * Z(I)

Z(J - 1) = Z(J-I) - U(J-I, I) * Z(I)
CONTINUE

Z(J) = Z(J)
U(J,J)

Z(J-I) = [Z(1-I) - U(J-I,J) * Z(J)]
U(J-I,J-I)

CONTINUE

5.8 Relations Amongst the Choleski, Gauss and LDLT Factorizations

115

The row-oriented, sequential versions of the Choleski, Gauss and LDLT methods are
presented together to illustrate how their basic operations are closely related and readily
identified. To simplify the discussion, the following system of equations is used
throughout this section:

where

and

[K]{Z} = {F}

-1
2
-I

{F) ·lH
The solution of Eqs. 5.46 through 5.48 is:

{z) ·m

(5.46)

(5.47)

(5.48)

(5.49)

The basic ideas in the Choleski, Gauss and LDLT elimination methods is to
reduce the given coefficient matrix, [K], to an upper triangular matrix [U]. This process
can be accomplished with appropriate row operations. The unknown vector, {Z}, can be
solved by the familiar forward and backward substitution.

5.8.1 Choleski (UTU) factorization
The stiffness matrix [K} of equation 5.47 can be converted into a Choleski upper-

www.manaraa.com

116 Parallel-Vector Equation Solvers for Finite Element Engineering Applications

triangular matrix, [U}, by appropriate "row operations":

Ii -I Ii - 1
2- 0 -

Ii Ii
-[K2] =

0 3 -I - [K3] = 0 .f3
2 Ii 0 -I 0 -I

Ii - 1 Ii -I - 0 2-
Ii Ii

-[K4] = 0 .f3 _Ii -[K5] = 0 .f3
Ii .f3 Ii

0 0 1
3

where

Row 1 of[K2] = Row 1 of[K]
JKI{I,I)

0 0

0

_Ii
.f3
1

0

_Ii
.f3
1

-

.f3

Row 2 of [K2] = Row 1 of [K2] + Row 2 of [K 1]
{2

Row 2 of[K3] = Row 2 of[K2]
J K2(2,2)

Row 3 of[K4] = Row 2 of[K3] * J1 + Row 3 of[K3]

Row 3 of [K 5] = Row 3 of [K 4]
JK4(3,3)

(5.50)

(5.51)

(5.52)

The multiplier constants, m ij, used in the forward substitution (or updating the right-hand
side vector of Eq. 5.46) are the same as terms in the factorized upper-triangular matrix
such that:

m -u -- 1 m -u -0 m -u __ Ii 12 - 12 - - , 13 - 13 - , 23 - 23 - -

Ii .f3
(5.53)

Another way to view this Choleski factorization process is to express Eq. 5.47
as

www.manaraa.com

Due T. Nguyen 117

[K]=[UV[U] (5.54)

For the data shown in Eq. 5.47, and the direct applications of Eqs. 5.16 and 5.17, Eq.
5.54 can be expressed as

Ii Ii -1 0 0 0 2 -

[~I -1 ~I I 1 .f3 Ii
- 0 .f3_1i

2 Ii Ii * 0 (5.55)
-1 -Ii Ii .f3

0 1
.f3 .f3 0 0 -

.f3
The second matrix on the right-hand side ofEq. 5.55 can be identified as the

matrix [K5] presented in Eq. 5.52.
The forward solution (or updating the right-hand side vector F ofEq. 5.46) can

be obtained by solving Eq. 4.4, from Chapter Four:

[UV{y}={F}
for the vector {y} (or, the "updating" right-hand-side vector {F}). The multipliers shown
in Eq. 5.53 tum our to be the same as the off-diagonal terms of the matrix [U]T in Eq.
5.55.

5.8.2 Gauss (with diagonal terms L jj = 1) LV factorization
As in the Choleski method just described, the stiffness matrix, [K], ofEq. 5.47 can also
be converted into a Gauss upper-triangular matrix by appropriate row operations.

[KI] = [K] = [~I -1 ~l 1 2
-1

(5.56)

2 -1 0
2 -1 0 3

3 0 -1
- [K2] 0 -1 - [K3] 2

2
(5.57)

0 -1 0 0
3

In this version of Gauss elimination, the multipliers mij can be obtained from the factored
matrix, [U], as:

mI2

U l2

U 11 2
(5.58)

un 0 0 mn
U 11 2

(5.59)

www.manaraa.com

118 Parallel-Vector Equation Solvers for Finite Element Engineering Applications

U23 -1 2
U22 3 3 (5.60)

2
Another way to view this Gauss factorization process is to express Eq. 5.56 as

or

[
2 -1
-1 2
o -1

[K]=[L][U]

o I [1 0 0 1 [UII -1 = L21 1 0 0
1 L31 L32 1 0

U12 ul3
u22 u23
o U33

(5.61)

(5.62)

The three unknowns in the lower triangular matrix [L], and the six unknowns in the
upper triangular matrix [U] of Eq. 5.62 can be obtained simply by enforcing the nine
equality conditions (on both sides ofEq. 5.62). Thus, Eq. 5.62 can be expressed as:

[2 -1 0 I -1 2 -1 =
o -1 1

1
1

2

o

o 0
o

2

3

2 -1 0
o 3 -1

* 2
o 0

3

(5.63)

The second matrix on the right-hand-side of Eq. 5.63 can be identified as the
matrix [K3] presented in Eq. 5.57.

The forward solution can be obtained by solving

[L]{Y} = {F}
for the vector {y} (or, the "updating" right-hand-side vector {F}). The multipliers shown
in Eqs. 5.58 through 5.60 tum out to be the same as the off-diagonal terms of the lower
triangular matrix [L] in Eq. 5.63.

5.8.3 Gauss (LV) factorization with diagonal terms Vii = 1
An alternative version of Gauss elimination where the final diagonal elements become
1 follows:

[2 -I 0 I [KI] = [K] = -I 2 -I
o -I 1

1 - 0

- [K2] = 0
2

3
2

o -I

-I

1

-[K3] = 0

0

(5.64)

- 0
2

1
2 (5.65)

3
-I 1

www.manaraa.com

Due T. Nguyen 119

I - 0 I
2 I - - 0

2 2
- [K4] 0 - [K5] 2

3 0
I 3

0 0 0 0 I
3

(5.66)

Since the final diagonal terms become one, in the computer code, the main
diagonal of the factored matrix is used to store the diagonal terms before scaling.

For example,

3 ul1 = 2 ; u22 = - ; and U33
2

1

3
(5.67)

The multiplier mij is obtained from the factored matrix, [U], as:
I

m 12 = U12 * un = - - * 2 = - I
2

(5.68)

(5.69)

2 3 -- *
3 2

-I (5.70)

Another way to view this Gauss factorization process is to express Eq. 5.64 as

[K]=[L][U]
or

(5.71)

The six unknowns in lower triangular matrix [L], and the three unknowns in the upper
triangular matrix [U] ofEq. 5.71 can be obtained simply by enforcing the nine equality
conditions on both sides ofEq. 5.71.

Thus, Eq. 5.71 can be expressed as

2 0 0
I

I
0 3

- -
-I 0 2

2 * 0
2
-

(5.72)

0 -I 3
3 0 0 I

The second matrix on the right-hand-side ofEq. 5.72 can be readily identified

www.manaraa.com

120 Parallel-Vector Equation Solvers for Finite Element Engineering Applications

as the matrix [K5] in Eq. 5.66.
The forward solution can be obtained by solving

[L]{y} = {F}

for the vector {y}. The diagonal terms (before scaling to the value 1) shown in Eq. 5.67
appear on the diagonals of the matrix [L] in Eq. 5.72. The multipliers shown in Eqs. 5.68
through 5.70 turn out to be the same as the off-diagonal terms of the lower triangular
matrix [L] in Eq. 5.72.

5.8.4 LDLT factorization with diagonal terms L jj = 1
It is also possible to express Eq. 5.47 into the following form

[K] = [L][D][LV (5.73)

In Eq. 5.73, [L] is a lower triangular matrix with unit values for its diagonals, and [D] is
a diagonal matrix. Using the numerical data shown in Eq. 5.47, one can express Eq. 5.73
as:

[_21 -21 -011=[L~1 ~ gl[~1 ~2 ~ [~L11 ~~:l
o - I 1 L31 L32 1 0 0 D3 0 0 I

(5.74)

Solving the above system of six simultaneous equations for the unknowns L21 , LJ1 , LJ2,
D1, D2 and DJ (by expressing the six equality conditions for the upper triangular portions
of the matrix on both sides ofEq. 5.74) one obtains

1 0 0 2 0 0
1 0

[~I -:1 1 =

1 3 -
- I 1 0 0 0 2
2 2 2

0
2 (5.75)

-1 2
0 - 0 0 3

3 2 0 0 I

The product [P] of the first two matrices on the right-hand-side ofEq. 5.75 turns out to
be

2

-1
[p] =

o
3
2

o -1

o
o

3

(5.76)

It is interesting to see that matrix [P] in Eq. 5.76 is the same as the first matrix
in Eq. 5.72 of Section 5.8.3. Furthermore, the last matrix ofEq. 5.75 is identical to the

last matrix in Eq. 5.72. Thus, LDU strategy is essentially equivalent to i iJ strategy

(with Vii = 1, as discussed in Section 5.8.3), where i ;: L * D and iJ ;: LT.
The diagonal matrix D can be obtained as diagonal terms of the factored matrix

(ofLDU procedure, shown in Table 5.8). The multipliers (for the LDU algorithm) can

www.manaraa.com

Due T. Nguyen 121

also be obtained directly from LD L T matrix (= off-diagonal terms of the factored matrix
U, in Table 5.8).

To simplify the discussions, assuming the matrix [K] (shown in Eq. 5.47) is
fully populated, the "skeleton" LDLT code is given in Table 5.8.

DO 11 1= 1, N

DO 22 K = 1,1-1

Table 5.8 LDU factorization

xmult = ~ = u (K,/)
D(I) u(K,K)

DO 33 J = I,N (or I + Irowlength)

c lrowlength = row length (or bandwidth) of the Jlh row

u(I,J) = u(I,J) - xmult * u(K,J)

33 CONTINUE

u(K, I) = xmult

22 CONTINUE

11 CONTINUE

Implementation of the algorithm given in Table 5.8 with the numerical data
shown in Eq. 5.47 will lead to the following results

Loop 33:

For I = 1, hence (temporarily) no change in 151 row
Forl=2,henceK= 1-1
xmult = U (l ,2) = .:..!.

ull 2

u2 ,2 = u2,2 - (xmult) (U 1,2) = 2 - (~1) (-1) ~

U2 ,3 = u2 ,3 - (xm~l~) (u 1,3) = -1 - (-~) (0) = -1

u(l, 2) = xmult = 2

For I = 3, hence K = 1 - 2

NowK= L(l 3) 0
xmult = ' = - = 0

U1,l 2

{ U3 ,3 = u3,3 - (xmult = 0) * (U 1,3 = 0) = 1

www.manaraa.com

122 Parallel-Vector Equation Solvers for Finite Element Engineering Applications

u(l,3) = 0

Now K= :(2 3)
xmult = '

u2,2

-1

(%)
-2
3

Loop 33:

{ U3,3 = u3,3 - (xmult 2) (u2 3
1

3 3 ' -1)
-2

u(2,3) = xmult = 3

Hence:

2 - 0
2

U=
3 2
2 3

1
-
3

From the above results, one can identify:

2 0 0 1 0 3
-

0 0 2
[D 1 2 [LF = 0

2
1 and -

0 0 - 3
3 0 0 1

5.S.5 Similarities of Choleski and Gauss methods
1) The Choleski and Gauss solution procedures are quite similar since both methods

can be expressed in terms of row operations which differ only by the scale-factors
as explained above.

2) For both methods, the multipliers, mij' used in the forward substitution (to update
the right-hand-side vector ofEq. 5.46) can always be recovered conveniently from
the factored, upper triangular matrix, [U].

3) The methods can be modified to solve unsymrnetric systems of linear equations.
The basic procedure is essentially the same as that outlined above except that the
computer storage increases since the lower triangular matrix of the factored matrix
is used to store the multipliers, mij' In some applications, partial pivoting may be
useful.

4) Since the multipliers of the Choleski method are identical to its factored, upper
triangular matrix, [U], the Choleski method is slightly more efficient than the Gauss
method. However, the Gauss method can also be used to solve non-positive-

www.manaraa.com

Due T. Nguyen 123

definite systems of equations.

To use the Gauss solution method (i.e., for non-positive-definite systems of
equations), only two FORTRAN statements, labeled cgauss in Table 5.1 need to be
changed.

The multiplier constants, xmult, and the column height information are utilized
in the DO 2 loop in Table 5.1 to avoid operations with zeros outside the column height
(or skyline). The parameter, k, of the DO 2 loop is illustrated in Table 5.1. For i= 6 (in
DO 1 of Table 5.1) the index k (in DO 2) has the values from 2 to 5 as shown in Table
5.1.

Although [K] and [U] are two-dimensional arrays in Table 5.1, in the actual
Choleski factorization code, both are stored in a one-dimensional array.

S.9 Factorization Based Upon "Look Backward" Versus "Look Forward"
Strategies

The parallel-vector factorization (for row-by-row storage scheme) which has been
discussed in Section 5.5 is based on the "look backward" strategy. This strategy is due
to the fact that if we want to factorize the ith (say the 17th) row of a matrix (shown in
Figure 5.9) then we need to "look backward" to utilize all previously factorized rows (say
rows 1 through 14, according to the example shown in Figure 5.9).

The discussions on the "look forward" strategies can be started with a given
symmetric, positive definite (stiffness) matrix [K]. We now are looking for a lower
triangular matrix [L.], and a symmetric positive definite matrix [K.], such that

(S.77)

Similarly, we then are looking for another lower triangular matrix [L2], and a
symmetric positive definite matrix [K2], such that

(S.78)

The above process will be repeated

(S.79)

until

(S.80)

If the matrix [KN], shown in Eq. 5.80, converges to an identity matrix [I N], then it can
be easily shown that

[K] = [L] * [LV (S.81)

where [L] is a lower triangular matrix with the same dimension as [K]. The proof ofEq.
5.81 can be easily shown, simply by substituting Eqs. 5.78 through 5.80 into Eq. 5.77,
to obtain

www.manaraa.com

124 Parallel-Vector Equation Solvers for Finite Element Engineering Applications

[K] = [L,] [L2] [L N] [K N] [L N] T [L N _ ,] .••. [L,] T (5.82)

Since [KN] is an identity matrix, Eq. 5.82 can be expressed as

(5.83)

Equation 5.83 has the same form as Eq. 5.81, where

(5.84)

Starting from the given matrix [K]NxN = [Ko] = [Ho], we can make the following
partitions

The dimensions for various sub-matrices in Eq. 5.85 are given as
is a I x I submatrix (or scalar)
is a (N-I) x (1) submatrix (or a column vector)
is a (I) x (N-I) submatrix (or a row vector)
is a (N-I) x (N-I) submatrix

(5.85)

It will be proved shortly that the original, given matrix [K] can be expressed in
the form of Eq. 5.77 if matrices [LJ and [K)] are defined according to the following
formulas:

go
(5.86)

where IN.) is a square, identity matrix with the dimension N-I

I 0

[K,] = 0 (5.87)

With the above definition for matrices [L)] and [K)], the readers can verify (as
a short exercise) easily the following equality

(5.88)

The repeated applications ofEqs. 5.86 and 5.87 in Eqs. 5.78 through 5.80 will

www.manaraa.com

Due T. Nguyen 125

eventually lead to Eq. 5.82, and therefore Eq. 5.84 can be obtained. The following simple
numerical example will clarify all the detailed steps discussed in Eqs. 5.77 through 5.88.
Step 1: Given

2 -1 0 ° [K] = -1 2 -1 0
0 -1 2 -1 (5.89)

0 0 -1 1
Hence:

T ={-I,O,O} VI (5.90)

- tl -1 ~ll HI 2
-1

(5.91)

d l = 2 (5.92)

Step 2: Compute (using Eqs. 5.86 and 5.87)

fi 0 0 0
-1

0 0
[LI 1 = fi (5.93)

° 0 1 0
0 0 0 1

1 0 0 0

[KIl =
0 1.5 -1 0 (5.94)
0 - 1 2 - 1
0 0 - 1 1

Hence:
T ={-I,O} (5.95) v2

-
= [_21 -11] H2 (5.96)

dz = 1.5 (5.97)

Step 3: Compute (using Eqs. 5.86 and 5.87, again)

0 0 0
0 fG ° 0

[Lzl = 0
- I

0 (5.98) --
fG

° 0 0

www.manaraa.com

126 Parallel-Vector Equation Solvers for Finite Element Engineering Applications

Hence:

Step 4:

Hence:

[K2] =

1 0 0 0
o 1 0 0

o 0 4 -1
3

o 0 -1

4

3

Compute (using Eqs. 5.86 and 5.87, again)

I 0 0 0
0 1 0 0

0 0 2
0 [L3] =

-
.[3

0 0
-.[3

2

1 0 0 0
0 1 0 0

[K3] = 0 0 1 0

0 0 0
1
4

T
= {O} v4

-
H4 = [0 1

4

(5.99)

(5.100)

(5.101)

(5.102)

(5.103)

(5.104)

(5.105)

(5.106)

(5.107)

www.manaraa.com

Due T. Nguyen 127

Step S: Compute
1 0 0 0
0 1 0 0

[L4] = 0 0 1 0 (S.108)
1 0 0 0 -

2

1 0 0 0

[K4] = 0 1 0 0 (S.109)
0 0 1 0
0 0 0 1

The computation loop is ended in here.

Using Eq. 5.84, one has

[L 1 = [L\] [L2] [L3] [L4] (S.110)

Substituting Eqs. 5.93, 5.98, 5.103, and 5.108 into Eq. 5.110, one obtains

Ii 0 0 0
-1 !f3 0 0 -

Ii
[L 1 0

- 1 2 0 (S.I11) -- -

!f3 (3

0 0
-(3

2 2

Again, it can be left as a small exercise for the readers to verify that Eq. 5.81
will be satisfied, when the numerical data for Eqs. 5.111, and 5.89 are used.

Observing Eq. 5.111 carefully, one will notice that each column of the lower
triangular matrix [L] can be obtained successively from the 1 st, 2nd , 3rd and 4th columns
of the matrices [L)], [L2], [L)], and [L4] (from steps 2 through 5) respectively.

This entire process (to obtain the final [L] matrix in Eq. 5.111) can be best
summarized in Figs. 5.10 through 5.13

[L 1
v x x x
V * * *
V * * *
V * * *

Figure 5.10 1 st column done initially (see V terms), "look forward"
updating the 3x3 submatrix (see * terms)

www.manaraa.com

128 Parallel-Vector Equation Solvers for Finite Element Engineering Applications

[L]
x x x x
x V x x
x V * *
x V * *

Figure 5.11 2nd column done (see V tenns), "look forward"
updating the 2x2 submatrix (see*tenns)

[L]
x x x x
x x x x
x x V x
x x V *

Figure 5.12 3rd column done (see V tenns), "look forward" updating the lxl
submatrix (see * tenn)

[L]
x x x x
x x x x
x x x x
x x x V

Figure 5.13 4th (or last) column done (see V tenn)

The key differences between "Look Backward" and "Look Forward" parallel
strategies for Choleski factorization are also summarized in Figures 5.14 and 5.15.

o already factorized, no longer needed

bd already factorized, needed for calculation

: } rJ current parallel factorizing rows
, NP-l

~-I'--",,---LO~"'i. rows which will be factorized

Figure 5.14 Look backward parallel factorization

www.manaraa.com

Due T. Nguyen

IZI already factorized, no longer needed

~ parallel factorizing

Figure 5.15 Look forward (outer product fonn) parallel factorization

5.10 Evaluation of Methods for Structural Analyses

129

To test the effectiveness ofthe parallel-vector solver, described in Sections 5.6 and 5.7,
two large-scale structural analyses have been perfonned on the Cray Y -MP
supercomputer at NASA Ames Research Center. These analyses involved calculating the
static displacements resulting from initial loadings for finite element models of a high
speed research aircraft and the space shuttle solid rocket booster (SRB). The aircraft and
SRB models were selected as they were large, available finite-element models of interest
to NASA. The Cray Y -MP was selected as it is a high-perfonnance supercomputer with
parallel-vector capability. To verify the accuracy of the displacements as calculated from
the equilibrium equation (i.e. [K] {Z} = {F}), the residual vector,

{R} = [K] {Z} - {F} (5.112)

is calculated, and the absolute error nonn,

(5.113)

and the strain energy error nonn,

e .. = {zV [K] {Z} - {Z}T {F} (5.114)

are evaluated. If no computer roundoff error occurs, all components in the residual
vector, {R} are zero. However, perfonning billions of operations during equation
solution introduces roundoff which, for accurate solutions, result in small values for {R},
e. and es in Eqs. 5.112 through 5.114.

The solution times using pvs code (see Section 5.11) for the SRB application
were also obtained on Cray 2 supercomputers at NASA Ames and NASA Langley and
compared with solution time for the skyline algorithm in a previously published paper[551.

In the following applications, code is inserted in pvs to calculate the elapsed
time and number of operations taken by each processor for equation solution. The Cray

www.manaraa.com

130 Parallel-Vector Equation Solvers for Finite Element Engineering Applications

timing and perfonnance utilities (timer, hpm, ja and second) are used to measure the
time, operations and speed of the equation solution on each processor. For each problem,
the number of Million FLoating point OPerations is divided by the solution time, in
Seconds, to detennine the overall perfonnance rate of the solver in MFLOPS. The
timings obtained are conservative, since they were made with other users on the systems.
In every case, times would be less and MFLOP rates more ifpvs were run in a dedicated
computer environment.

5.10.1 High speed research aircraft
To evaluate the perfonnance ofthe and parallel-vector Choleski solver, a structural static
analysis has been perfonned on a 16,146 degree-of-freedom finite-element model of a
high-speed aircraft concept[561, shown in the upper right of Figure 5.16

1 2 4 8
NunberofCray Y -MP PmoessOl5

Figure 5.16 Effect of more processors on analysis time
(high speed research aircrafts)

Since the structure is symmetric, a wing-fuselage half model is used to
investigate the overall deflection distribution of the aircraft. The finite element model of
the aircraft is generated using the CSM Testbed[57] finite element code. The half model
contains 2851 nodes, 4329 4-node quadrilateral shell elements, 5189 2-node beam
elements and 114 3-node triangular elements. The stiffness matrix for this model has a
maximum semi-bandwidth of 600 and an average bandwidth of 321. The initial number
of non-zero in the stiffness matrix is 499,505. The number of non-zeros after
factorization, including fills-in, increases to 5,579,839. The half-model is constrained
along the plane of the fuselage centerline and subjected to upward loads at the wing tip
and the resulting wing and fuselage deflections are calculated.

The numerical accuracy of the static displacements calculated is indicated by
the small absolute and strain energy error nonns of 0.000009 and 0.000005, respectively,
computed from Eqs. 5.113 and 5.114. These residuals are identical no matter how many
processors are used. The small values of the residuals indicates that the solution satisfies
the original force-displacement equation. The residuals are independent of the number
of processors indicating no error is introduced by synchronizing the calculations on
multiple processors.

www.manaraa.com

Due T. Nguyen 131

The time taken for a typical finite element code to generate the mesh, form and
factor the stiffness matrix is 134 seconds on a Cray Y -MP (802 seconds on a Convex
220) of which the matrix factorization is 51 seconds. Using pvs, the factorization for this
aircraft application requires 2 billion operations which reduces to 1.4 billion when
operations with zeros are eliminated. Although CPU time is less for one processor,
elapsed time is reported as it is the only meaningful measure of parallel performance.
Factoring [K] with no zero checking takes 8.68 and 1.54 elapsed seconds (at a rate of228
and 1284 MFLOPS) on one and eight Cray Y -MP processors, respectively, as shown in
Table 5.9.

Table 5.9 Matrix decomposition time (MFLOPS) for aircraft on Cray Y-MP

Processors
I

Sec (MFLOPS) Sec (MFLOPS)

(MFLOPS) with zero-checking

1 8.68 (228) 6.81 (203)

2 4.50 (441) 3.46 (399)

4 2.41 (822) 1.89 (730)

8 1.54 (1284) l.29 (1071)

Eliminating operations with zeros within the variable bandwidth (zero checking,
see line 18 of Table 5.3) further reduces the solution time to 6.81 and l.29 seconds,
respectively, on one and eight processors. However, the reduced time with zero checking
is accompanied by a reduction in computation rate (MFLOPS), since the added IF
statements also reduce the number of operations. The reduction in computation time
(nearly proportional to the number of processors) and the portion oftime saved by zero
checking are shown in Figure 5.16. The number above the bars (in MFLOPS) in Figure
5.16 show the increased computation rate as the number of processors increases.

5.10.2 Space shuttle solid rocket booster (SRB)
In addition to the high-speed aircraft, the static displacements of a two-dimensional shell
model of the space shuttle SRB have been calculated.

www.manaraa.com

132 Parallel-Vector Equation Solvers for Finite Element Engineering Applications

Figure 5.17 Effect of more processors on analysis time (space shuttle SRB)

This SRB model is used to investigate the overall deflection distribution for the
SRB when subjected to mechanical loads corresponding to selected times during the
launch sequence[581• The model contains 9205 nodes, 9156 4-node quadrilateral shell
elements, 1273 2-node beam elements and 90 3-node triangular elements, with a total of
54,870 degrees-of-freedom. The stiffness matrix for this application has a maximum
semi-bandwidth of 900 and an average bandwidth of 383. The initial number of non
zeros in the stiffness matrix is 1,310,973. The number of non-zeros after factorization,
including fills-in, increases to 21,090,396. A detailed description and analysis of this
problem is given in references [5.8 and 5.9].

The calculated absolute and strain energy residuals for the static displacements
are 0.00014 and 0.0017, respectively, from Eqs. 5.113 and 5.114. This accuracy indicates
that roundoff error in the displacement calculations is insignificant despite the 9.2 billion
floating point operations performed.

The time for a typical finite element code to generate the mesh, form and factor
the stiffness matrix is 391 seconds on the Cray Y -MP (15 hours on a VAX 11/785) of
which the matrix factorization is 233 seconds (51,185 seconds on VAX). Using pvs, the
factorization for this SRB problem, requires 40.26 and 6.04 seconds on one and eight
Cray Y -MP processors, respectively, as shown in Table 5.10. Eliminating more than one
billion operations on zeros further reduces the solution time to 5.79 seconds on eight
processors but reduces the computation rate to 1444MFLOPS. The CPU times are
approximately 10 percent less than the elapsed times quoted on one processor.

www.manaraa.com

Due T. Nguyen 133

Table 5.10 Matrix decomposition time (MFLOPS) (shuttle SRB on Cray Y -MP)

sec (MFLOPS)
Processors sec (MFLOPS) with zero-checking

1 40.26 (22S) 40.97 (224)

2 20.27 (452) 19.32 (425)

4 10.50 (S72) 10.00 (S21)

S 6.04(1517) 5.79 (1444)

A reduction in matrix decomposition time by a factor of 7.0S on eight
processors compared to one processor (for zero checking) is shown in Figure 5.17. The
corresponding computation rate for this matrix factorization, using eight processors on
the Cray Y -MP is 1,517 MFLOPS. The previous recorded time to solve this problem on
the Cray Y -MP using a sparse solver was 23 seconds on one processor and 9 seconds on
eight processors for a speedup factor of2.5[51O.51IJ.

For structural analysis problems with a larger average column height, and
bandwidth than the aircraft or SRB discussed, one can expect pvs to perform
computations at even higher MFLOPS rates since the majority of the vector operations
are performed on long vectors. For example, a rate of 17S4 MFLOPS has been achieved
by pvs for a structural matrix with an average bandwidth of 699 on the eight-processor
Cray Y_MP[5 12·5 I3J.

The decomposition time for the Shuttle SRB matrix using pvs, is compared to
the skyline aigorithm[55J in Figure 5.IS (discussed in Chapter 4) for 1,2 and 4 Cray 2
processors.

EJ SIt»Iim.Jlmes Crty2 D prsolre.Jlmes Crv2 DZI pvsolJt.LmgiyCrty2S I
l~~------------------~

,~.
,': 41l.

;,-
.'.'

2 4
N1ll!1ber ofCr"ll2 Prcxessors

Figure 5.1S SRB decomposition time comparison

www.manaraa.com

134 Parallel-Vector Equation Solvers for Finite Element Engineering Applications

A reduction in decomposition time by a factor of2 is shown for pvs in the figure for the
Cray 2 at NASA Ames. An additional reduction in decomposition time of approximately
50 percent is shown for pvs on the newer Cray 2S at NASA Langley with faster memory
access using static RAM compared to dynamic RAM on the Cray 2 at NASA Ames. The
decomposition time for pvs using eight processors on the Cray Y -MP (six seconds in
Figure 5.17) is a reduction by factors of23 and 6 when compared to the skyline solution
on 1 and 4 Cray-2 processors, respectively, shown in Figure 5.1S.

The above results have been obtained using loop unrolling to level 9 (see
Section 5.4). On the Cray Y -MP supercomputer, the performance continues to increase
until loop unrolling level 9, after which further performance gains are not significant
compared to the complex coding required. The pvs code performed best with an odd
number for loop unrolling, because both data paths to memory are used simultaneously
at all times. The vector being modified plus the 9 unrolling vectors make ten total
vectors, an even number, which keeps both data paths busy.

5.11 Descriptions of Parallel-Vector Subroutine PVS

The input data and arguments required to call the equation solver, pvs, together with a
simple 21-equation example are given in this section. The user should have a limited
knowledge of parallel computing and the parallel FORTRAN language Force[5.4] Pvs
contains a Force subroutine, PVS, which may be called by general purpose codes. It
should be emphasized that parallel FORTRAN language FORCE is used here, however,
others such as PVM, MPI etc ... could also be used with minimum changes to the code.
The information required by PVS to solve systems of simultaneous equations (Le., [K]
{Z} = {F}) is transferred via arguments in the call statement:

where:
a

b

maxa

irowl

icolh

neq
nterms

iif

Forcecall PVS (a,b,maxa,irowl,icolh,neq,nterms,iif,opf)

a real vector, dimensioned nterms, containing the coefficients of the
stiffness matrix [K].
a real vector, dimensional neq, containing the load vector, {F}. Upon
return from subroutine PVS, b contains the displacement solution, {Z}.
an integer vector, dimensioned neq, containing the location ofthe diagonal
terms of [K] in vector {a}, notice that maxa (neq) is equal to the total
number of coefficients (including fill-ins, after factorization) of [K].
an integer vector, dimensioned neq, containing the row lengths (Le., half
bandwidth of each row excluding the diagonal term) of [K].
an integer vector, dimensioned neq, containing the column heights
(excluding the diagonal term) of each column of the stiffness matrix, [K].
number of equations to be solved (= degree of freedom).
the dimension of the vector, {a}, [= maxa(neq)], refer also to Eqs. 5.S
through 5.11, in Section 5.2.
1 factor system of equations without internal zero check
2 factor system of equations with internal zero check
4 perform forwardlbackward substitution
5 perform forwardlbackward substitution and error check

www.manaraa.com

Due T. Nguyen 135

opf,ops = an integer vector, dimensioned to the number of processors (8 for Cray Y
MP), containing the number of operations performed by each processor
during factorization and forwardlbackward substitution, respectively

For example, the values of these input variables to solve a system of21 equations, whose
right-hand-side is the vector of real numbers from 1. to 21., and [K] is the symmetric,
positive-definite matrix in Figure 5.19 are given in Table 5.11.

The line in Figure 5.19 represents the skyline defmed by the column heights
which extend up to the last nonzero in each column. The "extra zeros" outside the skyline
are required to achieve level 9 loop unrolling. The DO 2 loop in Table 5.2 (see line 2)
illustrates this for level 4 loop unrolling. The vector {a}, {b}, {maxa}, {icolh}, and

114 liS IIIIIt1I1il
110 "1'0 'II -n

R I;I. _____________ _'I~ .. I!O
'l'IiW

"M

Figure 5.19 Example [K] matrix with 21 equations

{irowl} which are read by pvs are given in Table 5.11 (where neq=21 and nterms = 141)

Table 5.11 PVS input to solve [K] * {Z} = {F} (example with 21 equations)

i a(i) b(i) maxa(i) icolh(i) irowl(i)
1 1. 1. 1 0 11
2 2 2. 13 1 10
3 0 3. 24 1 9
4 4 4. 34 3 8
5 0 5. 43 3 7
6 0 6. 51 4 6
7 0 7. 58 2 5
8 0 8. 64 1 4
9 0 9. 69 5 3
10 0 10. 73 1 10

www.manaraa.com

136 Parallel-Vector Equation Solvers for Finite Element Engineering Applications

11 0 11. 84 2 9
12 0 12. 94 3 8
13 5. 13. 103 3 7
14 6 14. 111 4 6
15 7 15. 118 5 5
16 8 16. 124 3 4
17 9 17. 129 3 3
18 0 18. 133 2 2
19 0 19. 136 3 2
20 0 20. 139 4
21 0 21. 141 0
22 0
23 0
24 10.
25 11

26-33 0
34 14.
35 15
36 16

37-38 0
39 19

135 0
136 76.
137 77
138 0
139 78.
140 79
141 80

The Force subroutine PVS should be called twice; first to factor the matrix (iif= 2), and
second to perform the forwardlbackward solution for displacements with error checking
(iif= 5).

5.12 Parallel-Vector Equation Solver Subroutine PVS

For the complete listing of the FORTRAN source codes, instructions in how to
incorporate this equation solver package into any existing application software (on any
specific computer platform), and/or the complete consulting service in conjunction with
this equation solver etc ... the readers should contact:

www.manaraa.com

Due T. Nguyen

Prof. Due T. Nguyen
Director, Multidisciplinary Parallel-Vector Computation Center
Civil and Environmental Engineering Department
Old Dominion University
Room 135, Kaufman Building
Norfolk, VA 23529 (USA)
Tel = (757) 683-3761, Fax = (757) 683-5354
Email = dnguyen@odu.edu

5.13 Summary

137

A parallel-vector Choleski method for the solution of large-scale structural analysis
problems has been developed and tested on Cray supercomputers. The method exploits
both the parallel and vector capabilities of modem high-performance computers. To
minimize computation time, the method performs parallel computation at the outermost
DO-loop of the matrix factorization, the most time-consuming part of the equation
solution. In addition, the most intensive computations ofthe factorization, the innermost
DO-loop has been vectorized using a SAXPY -based scheme. This scheme allows the use
of the loop-unrolling technique which minimizes computation time. The forward and
backward solution phases have been found to be more effective to perform sequentially
with loop-unrolling and vector-unrolling, respectively.

The parallel-vector Choleski method has been used to calculate the static
displacements for two large-scale structural analysis problems; a high-speed aircraft and
the space shuttle solid rocket booster. For both structural analyses, the static
displacements are calculated with a high degree of accuracy as indicated by the small
values of the absolute and strain energy error norms. The total equation solution time is
small for one processor and is further reduced in proportion to the number of processors.
The option to avoid operations with zeros inside the stiffness matrix further reduces both
the number of operations and the computation time for both applications.

Factoring the stiffness matrix for the space shuttle solid rocket booster, which
formerly required hours on most computers and minutes on supercomputers by other
methods, has been reduced to seconds using the parallel-vector variable-band Choleski
method. The speed ofpvs should give engineers and designers the opportunity to include
more design variables and constraints during structural optimization and to use more
refined finite-element meshes to obtain an improved understanding of the complex
behavior of aerospace structures leading to better, safer designs. Since the algorithm is
independent of the number of processors, it is not only attractive for current
supercomputers, but also for the next generation of shared-memory supercomputers,
where the number of processors is expected to increase significantly.

www.manaraa.com

138 Parallel-Vector Equation Solvers for Finite Element Engineering Applications

5.14 Exercises

5.1 Verify Eq. 5.88
5.2 Given the following coefficient (stiffness) matrix [K]:

3838. o. 4. 41. 42. 43. o. o.
4444. 45. 46. o. o. o. o.

4747. 48. 49. o. o. o.
[K] 5050. 51. 52. 53. o.

5454. o. 56. 57.
SYM. 5858. o. 59.

6060. 61.
6565.

Assuming "loop-unrolling" level 3 is used
(a) Construct the one-dimensional arrays a(-), maxa(-), icolh(-), and irowl(-),

similar to the ones presented in Table 5.1I?
(b) How many "real" words of computer memory are required by the array a(-)

for this example?
5.3 Given the following coefficient (stiffness) matrix [K], and load (or right-hand-
side) vector {F}:

2 -1 0 0

[K] -1 8 -1 0
0 -1 2 -1
0 0 -1 4

{ F} =m
(a) Find the factorized matrix [U] using a row-by-row Choleski algorithm?
(b) Find the "forward solution" of the system [K] {Z} = {F}?
(c) Find the "backward solution" of the system [K] {Z} = {F}?

5.4 Repeat problem 5.3, but using the row-by-row LDLT algorithm?
5.5 For the data shown in problem 5.3, assuming the Choleski factorized matrix [U]
has already been obtained (in problem 5.3a):

(a) Using (and modifying, if necessary) Table 5.4, write a computer FO R TRAN
program to obtain the "forward solution"?

(b) Using (and modifying, if necessary) Table 5.6, write a computer FORTRAN
program to obtain the "backward solution"

5.6 For the data shown in problem 5.3, assuming the Choleski factorized matrix [U]
has already been obtained (in problem 5.3a):

(a) Using (and modifying, ifnecessary) Table 5.5, write a computer FORTRAN
program to obtain the "forward solution" with "loop-unrolling" level 2?

(b) Using (and modifying, ifnecessary) Table 5.7, write a computer FORTRAN
program to obtain the "backward solution" with "vector-unrolling" level 2

5.7 Modifying the FORTRAN program(s) in problem 5.6, so that one-dimensional

www.manaraa.com

Due T. Nguyen 139

(instead of two-dimensional) array can be used to store the factorized matrix [U].
Hints: You also need to use integer array MAXA(-) for diagonal locations,

ICOLH(-) for column heights, IROWL(-) for variable row lengths,
etc

5.8 For the data shown in Problem 5.3, using (and modifying, if necessary) the LDLT
algorithm presented in Table 5.8, find the factorized matrix [U]?
5.9 Assuming the factorized matrix [U] has already been obtained (say, either by hand
calculator, or by a computer program as have been done in Problem 5.8) from LDLT
algorithm (see Table 5.8)

(a) Write a FORTRAN subroutine to perform "forward solution"
(b) Write a FORTRAN subroutine to perform "backward solution"

5.10 For the coefficient (stiffness) matrix [K] data shown in Problem 4.1, assuming 3
processor (PI' P2, and P3) are used in this example, and according to the following
information

Processor Number "Rows" of matrix (K)
Which Belong to a Processor

PI 1,2,3,10,11,12,19,20,21

P2 4,5,6,13, 14, 15
----------------~

P3 7,8,9,16,17,18

Without any actual computation, and assuming the first eight rows of the factorized
matrix [U] have already been completely factorized, identify which terms (if any) Uij of
the matrix [U] can be factorized

by processor PI?
by processor P 2?
by processor P 3 ?

5.11 For the parallel-vector Choleski factorization algorithm presented in Section 5.6,
what do you think will happen (say, in terms of parallel speed) when the number
of processors (=NP) becomes very large?
(Hint: see Figure 5.8)

5.15 References

5.1 Agarwal, T.K., 0.0. Storaasli and D.T. Nguyen, "A Parallel-Vector Algorithm for Rapid Structural
Analysis on High-Performance Computers", Proceedings of the AIAAIASMEI ASCEIAHS 31" SDM
Conference, Long Beach, CA, A1AA paper No. 90-1149, April 2-4, 1990.

5.2 Bathe, KJ., Finite Element Procedures, Prentice-Hall, Inc., New York, (1996).
5.3 George, A. and J. W-H Liu, Computer Solution of Large Sparse Positive Definite Systems, Prentice

Hall, Inc., Englewood Cliffs, NJ, 1981.
5.4 Jordan, H.F., M.S. Benton, N.S. Arenstorf, and A.V. Ramann, "Force User's Manual: A Portable

Parallel FORTRAN", NASA CR 4265, January, 1990.
5.5 Storaasli, 0.0., D.T. Nguyen, and T.K. Agarwal, "The Parallel Solution of Large-Scale Structural

Analysis Problems on Supercomputers", Proceedings of the AIAAIASMEIASCEI HAS 30th
Structures, Structural Dynamics and Materials Conference, Mobile, AL, April 3-5, 1989, pp.859-
867, Paper No. 89-1259 (also appeared in A1AA Journal, September, 1990)

www.manaraa.com

140 Parallel-Vector Equation Solvers for Finite Element Engineering Applications

5.6 Robins, W.A. et aI., "Concept Development ofa Mach 3.0 High-Speed Civil Transport", NASA TM
4058, September, 1988.

5.7 Stewart, c.s. (compiler), 'The Computational Structural Mechanics Testbed User's Manual", NASA
TM-100644, October, 1989.

5.8 Knight, N.F., S.L. McCleary, S.C. Macy, and M.A. Aminpour, "Large Scale Structural Analysis: The
Structural Analyst, The CSM Testbed, and the NAS System", NASA TM-100643, March, 1989.

5.9 Knight, N.F., R.E. Gillian, and M.P. Nemeth, "Preliminary 2-D Shell Analysis of the Space Shuttle
Solid Rocket Booster", NASA TM-100515, 1987.

5.10 Ashcraft, C.C., R.G. Grimes, J.G. Lewis, B.W. Peyton, and H.D. Simon, "Progress in Sparse Matrix
Methods for Large Linear Systems on Vector Supercomputers", The International Journal of
Supercomputer Applications, Vol. I, No.4, Winter 1987, pp.IO-30.

5.11 Simon, H., P. Vu, and C. Yang, "Performance ofa Supernodal General Sparse Solver on the Cray
Y -MP: 1.68 GFLOPS with Autotasking", Scientific and Computing Analysis Division Report SCA
TR-117, Boeing Computer Services, Seattle, WA, March, 1989.

5.12 Storaasli, 0.0., D.T. Nguyen, and T.K. Agarwal, "Force on the Cray Y-MP", /u/nas/news The
NumericalAerodynamic Simulation Program Newsletter, NASA Ames Research Center, Vol. 4, No.
7, July, 1989, pp.I-4.

5.13 Storaasli, 0.0., "New Equation Solver for Supercomputers", /u/nas/news The Numerical
Aerodynamic Simulation Program Newsletter, NASA Ames Research Center, Vol. 5, No. I, January,
1990, pp.l-3.

www.manaraa.com

6.1 Introduction

6 Parallel-Vector
Variable Bandwidth

Out-of-Core Equation Solver

For large-scale fmite element based structural analysis, an out-of-core equation solver
is often required since the in-core memory of a computer is very limited. For example,
the Cray Y -MP has only 256 mega words incore memory compared to its 90 gigabytes
of disk storage. Furthermore, in a multi-user environment, each user can only have 10
mega words of main memory, while 200 mega words of disk storage is available. A
typical aircraft structure (High Speed Civil Transport Aircraft) needs 90 million (or
mega) words of incore memory to store the stiffness matrix, which is not usually
available in a multi-user environment.

This chapter presents vector and parallel out-of-core equation solution
strategies which exploit features of the Cray type computers. For out-or-core solution
strategies, considerable amount of input/output (I/O) is usually required. The
input/output (I/O) time can be reduced by using a synchronous BUFFER IN and
BUFFER OUT, which can be executed simultaneously with the CPU instructions. The
parallel and vector capability provided by the supercomputers is also exploited to
enhance the performance.

6.2 Out-of-Core ParallelNector Equation Solver (version 1)

To solve the following systems of linear equations

Ax = b (6.1)

where A is a n x n symmetric, positive definite matrix, one first factorizes the matrix A
into the product of two triangular matrices

A=U~ ~~

where U is the upper triangular matrix. Then, the solution vector x can be obtained
through the standard forwardlbackward elimination

U Ty = b (solve for y) (6.3)

Ux = y (solve for x) (6.4)

141

www.manaraa.com

142 Parallel-Vector Equation Solvers for Finite Element Engineering Applications

6.2.1 Memory usage and record length
The matrix A is stored in a one-dimensional array with row-oriented storage scheme
[6.1-6.2], and each 8 rows of the matrix A have the same last column number (loop
unrolling level 8, or loop = 8), as has been described in Figure 5.26 of Chapter 5.
Assuming A is written in a file on the disk, the file contains m records (each record
contains one or more block-rows of A, here one block-row has 8 rows). The required
in-core memory is assigned in the variable "mtot" and the maximum half bandwidth of
A is "maxbw." To reduce the input/output (I/O) time during the solution procedure, one
hopes to reduce the number of records "m," while the available in-core memory "istorv"
should be capable to hold at least 3 records at any moment. When "istorv" and
"maxbw" are given, the procedure (given in Table 6.1) is used to determine the record
length and the number of records stay simultaneously in the main memory. In this
parallel-vector out-of-core (version 1) strategy, the total required incore memories is (6*
neq) + 1.1 (maxbw)2 where neq is the number of equations, or the number of unknowns
in Eq. 6.1, and maxbw is the maximum half-bandwidth.

Table 6.1 Procedure to find record length and number of records

I.C Definitions:

2. C istorv

3. C mtot

4. C loop

5. C maxbw

6. C icstore

7. C nloop

8.

9.

10. C *****

11.

12. C*****

13.

14. C

15. 100 continue

16. C

17. C*****

18.

119. C****

!20.

l~L ____ _

in-core memory available.

in-core memory required.

loop-unrolling level, here: loop = 8

maximum half-bandwidth.

number of records stay in the memory at any time.

number of "blocks" in a record, one block = 8 rows.

nloop = maxbw / (4 + loop)

if (nloop.le.l) nloop = 1 _ j
Find out the number of records required to be kept in the memOl YI

icstore = 2 + max (1, maxbw / (nloop*loop) + 1) I

Find out the in-core memory required: mtot I

mtot = loop*nloop*maxbw*icstore I

I
Check if the available in-core memory IS enough or not i

if (mtot.lt.istorv) then

more blocks can be included in one record ***************

idelt = (istorv-mtot) / (Ioop*icstore*maxbw)

nloop = nloop + idelt

www.manaraa.com

Due T. Nguyen

22.

23.

24.

25.

26.
27.

28.
29.

30.

31.
32. C*****

33.

34.
35.

36.
37.

if (nloop.le.O) nloop = I

icstore = 2 + max (1, maxbw/(nloop*loop) + I)

mtot = loop*nloop*maxbw*icstore
idelt = (istorv - mtot) / (loop*icstore*maxbw)

nloop = nloop + idelt
if (nloop.le.O) nloop = I

icstore = 2 + max (I, maxbw/ (nloop*loop) + I)

mtot = loop*nloop*maxbw*icstore
idelt = (istorv - mtot) / (loop*icstore*maxbw)
else

Too many blocks in one record, take some out!********

idelt = (istorv - mtot - 1) / (loop*maxbw) - 1

idelt = idelt / nloop - 1
endif
nloop = nloop + idelt
if (nloop.le. 0) nloop = 1

143

38. C*****

39.

Check again ifmtot < istorv or not ********************

icstore = 2 + max (1, maxbw / (nloop*loop) + 1)
40. mtot = loop*nloop*maxbw*icstore

41. mloop = nloop * loop

42. IF (MTOT.LT.lSTORV) go to 200

43·1 if (nloop.eq.l) then
44. write (*, *)' * * Please increase the in -core memory to: ',mtot+ 1
45. stop
46. endif

47. go to 100
48. C******************* End of looking for nloop, icstore *******

i
,49. 200 continue I

--!

The above procedure will adjust the number of blocks in a record
automatically, and give the optimal values for "nloop" and "icstore." It will also
determine the minimum incore memory required (=mtot+ 1) for a given "maxbw" (mtot
is close to maxbw*maxbw). .

The following numerical data will help the readers to clarify the procedure
given in Table 6.1.
Assuming the maximum half-bandwidth maxbw = 600, and the incore memory available
is istorv = 900,000, then from Table 6.1, one has
from line 8: nloop = 50 blocks
from line 11: icstore = 4 records
from line 13: mtot = 960,000 words of required memory
from line 18: because of this IF statement, the algorithm will jump to line 33
from line 33: idelt = (900,000-960,000-1)/(8*600)-1 =-13

www.manaraa.com

144

from line 34:
from line 36:
from line 39:
from line 40:
from line 41 :
from line 42:

from line 33:
from line 34:
from line 36:
from line 39:
from line 40:
etc ... etc ... :

Parallel-Vector Equation Solvers for Finite Element Engineering Applications

idelt = -13/50 -1 =-1
nloop=49
icstore = 4
mtot = 940,800
mloop = 392
because of this IF statement, the algorithm willjump back to line
15, 18 and 33
ide It = (900,000-940,800-1)/(8*600)-1 =-9
idelt = -1
nloop = 48
icstore = 4
mtot = 921,600
the value ofmtot will keep gradually decreasing, until it reaches
mtot ::; 900,000, then the algorithm will stop.

It is a helpful exercise to consider another data case, where maxbw = 600 and istorv =
980,000

6.2.2 A synchronous input/output on Cray computers
Considerable input/output (I/O) work is required for an out-of-core equation solver
during the solution, which undoubtedly increases the solution time. Fortunately, the
Cray computers offer BUFFER IN and BUFFER OUT [6.3] as an extension of the
regular Fortran READ and WRITE statements. BUFFER IN and BUFFER OUT can
perfonn several 110 operations concurrently, and 110 operations can be executed
concurrently with CPU instructions. It is required that the files should be declared as
unblocked.

A typical use of BUFFER IN and BUFFER OUT statements can be written as
shown in Table 6.2

Table 6.2 Fonnats of BUFFER IN and BUFFER OUT statements

IC****** To read a record from file (or unit number) id *********

I call setpos (id, ilocate)

I
buffer in (id, m) (a(start), a (start+length-l))

IF [unit (id). NE. -1.0] Go TO 99

iC****** Calculation can be perfonned (with care!) during Buffer-In, by

!C****** removing the above IF statement
iC****** To write a record on file (or unit number) id ***********

call setpos (id, ilocate)
buffer out (id, m) (a(start), a (start+length-l))

IF [unit (id). NE. -1.0] GO TO 99

: C* * * * * Calculation can be perfonned (with care!) during Buffer-Out, by removing the

iC***** above IF statement
I

199 Write (6, *) 'error encountered during buffer In/Out'

www.manaraa.com

Due T. Nguyen 145

C***** where I

'I

'CC********** mid is a unit identified (or a file name) number II

: C * * * * * ilocate is the beginning location of the record.

is a mode identifier (m=1 in this chapter).

I
c***** a is an array (in-core memory) to hold the record. I
C***** start is the start location of the record in array a.

Ic***** length -------- is the length of the record. I
I C***** Note: in the above code, an IF check can be used to be sure that the code

I
c***** will go to the next statement only when Buffer-In/Out are "normally" I

C***** completed, or else the program will either wait or print error I
[message.

6.2.3 Brief summary for parallel-vector incore equation solver on the Cray Y
MP [6.1]

In order to facilitate the discussion of the out-of-core version of the equation solver in
the next section, the parallel-vector incore version [6.1] is summarized here.

Since the major portion of the total solution time for solving systems of linear
equations occurs during the factorization phase (A=UTU). Parallel-vector (incore)
factorization is summarized here. Using the Choleski method, the factorized upper
triangular matrix U can be computed as

;-1

A;; -L Uk; Uk}
k=1

2) 1/2
Uk;

As an example, for i=5 andj=7, one has:

for i * j (6.5)

for i = j (6.6)

(6.7)

From the above formula, one can see that to update the term U S7 (of row 5),
one only needs information from columns 5 and 7. Therefore, to update the entire row#
i, one needs the complete updated information (right above row i) as shown in Figure
6.1 (where the matrix A is assumed to be banded to simplify the discussion). Also from
the above formula, one can see that if only rows 1 and 2 have been completed (even
though rows 3 and 4 have not been completed), the term US7 (or the entire row 5) can
be partially completed.

For example
U S7 (incomplete) = AS7 - U1SU 17 - U2S U27 (6.8)

www.manaraa.com

146 Parallel-Vector Equation Solvers for Finite Element Engineering Applications

The above observation will immediately suggest the parallel procedure for
obtaining the factorized matrix U. Each processor will handle the updating of one row.
Furthermore, to exploit the vector capability of Cray type computers, loop-unrolling
technique [6.1] is used. In the above formula for US?, assuming loop-unrolling level 2
is employed, what it means is that every 2 rows are grouped and processed by a
processor. In the real computer code implementation, loop-unrolling level 8 is used to
optimize the vector speed.

r:J Completely Updated

fill Not completely updated

Rowi-NP
Rowi

Figure 6.1 Information required to update row i (incore version)

6.2.4 Parallel-vector out-or-core equation solver on the Cray Y -MP
For an in-core solver, during the factorization of A, the rows of A will be updated
(which now becomes the rows.ofU) and stored in the same locations of A (from row
1, row 2, ... , to row N). For an out-of-core solver, however, since only a small part of A
is currently stored in the memory, it is necessary to write (BUFFER OUT) the rows of
U on the disk file, and to read (BUFFER IN) the other rows of A into the memory. In
this proposed out-of-core solver, a record will be BUFFER OUT when it is completely
updated, and a new record will be BUFFER IN as soon as the first row of a record is
begun to be updated (see Figure 6.2). This can also be shown in Table 6.3 (to simplify
the discussion, assuming NP = 1 processor).

www.manaraa.com

Due T. Nguyen 147

File #10 c::..:.:c=-=...J...:.::==-=-_--'=;:-::.-'==-'-'-_--'-'=~

Rec.7

Rcc.9

Figure 6.2 Parallel-vector out-of-core Choleski

In Figure 6.2, assuming the inc ore memory available is enough to hold only, say 7
records, the first two "unmarked" records are used to store some temporary working
spaces. Information related to the descriptions of the (stiffness) matrix, such as: column
heights, variable row-lengths (or variable row bandwidths), diagonal pointers, right
hand-side (or load) vector etc ... (recall Eqs. 5.3, 5.4 & 5.7, in Chapter 5) will require an
additional (6*neq) words of incore memory. The remaining incore memories will be
used to hold, say 5 records at a time (=records 1,2 ... ,5) of the stiffness matrix. The
parallel-vector out-of-core factorization can be summarized in the following key steps
(please also refer to Fig. 6.2):

Step 1:

Step 2:

Step 3:
Step 4:

Step 5:
Step 6:

Step 7:
Step 8:

The first record (=record 1) can be completely factorized (according to the
parallel factorized algorithm described in Section 5.6 of Chapter 5)
The "completely factorized" record 1 is used to "partially factorized" records
2, 3 ... , 5 (recalled that 5 records can be resided in the core memory, at any
moment)
Buffer-out (or write) record 1 into auxiliary storage files
Buffer-in (or read) record 6 into the core memory (overwrite the incore
memory of record 1)
Record 2 will be completely factorized (similar to step 1)
The "completely factorized" record 2 is used to "partially factorized" records
3,4, ... , 6 (similar to step 2)
Buffer-out record 2 (similar to step 3)
Buffer-in record 7 into the core memory (overwrite the inc ore memory of
record 2, similar to step 4)

The above 4-step cycle will be repeated until all records are completely
factorized.

www.manaraa.com

148

I.
2. C ...

3.
4.

5.

6.
7.c ...

8.
9.

Parallel-Vector Equation Solvers for Finite Element Engineering Applications

Table 6.3 Typical use of BUFFER IN and BUFFER OUT statements

DO 1000 I = I, n

determine if "buffer in" is required

if(l- ((1- I) / (nloop*loop» * (nloop*loop). eq. NP) then

call setpos (id, ilocate)

call buffer in (a(start), a(start + length-I)

endif

update the loth row of A

10. c... The I-th row of A has been updated

I
II.c ...

12.

113.
1 14.
1 15.

determine if "buffer out" is required

if (1- ((I -I) / (nloop*loop» * (nloop*loop). eq.NP) then

call setpos (id, ilocate I)

call buffer out (a(startl), a(startl + lengthl-I)

endif

lI6. 1000 continue

In Table 6.3, assuming 1 = 64th row, NP = I processor, loop = 8 rows per
block, and nloop = I block, then according to the algorithm in Tables 6.3 (with I = 64th
row, or the last row of the record), one has
from line I: 1=64
from line 3:
from line 7:

from line 12:

from line I:
from line 3:
from lines 4-6:
from lines 7-10:

from lines 11-12:
from lines 13-15:

from line 16:

Because of this IF statement, the algorithm will jump to line 7
row #64 (=Iast row of the current record) is being updated (or

factorized)
Because of this IF statement, the algorithm will jump to line 16,
and go back to line I
1= 65 (=beginning row ofthe next record)
This IF statement will lead to line 4
Buffer-in (or read) a new record into the core memory
row #65 (=beginning row of the new record) is being updated
(or factorized)
This IF statement will lead to line 13
Buffer-out (or write) the previous (completely factorized) record
into auxiliary disk storage files
the next row, 1=66, will be processed. The process will then be
repeated.

In actual computer code implementation, the addresses such as ilocate, start,
length, ilocateI, startl and length! should be properly defined to ensure a correct
solution. In a parallel computer environment, only one processor will be assigned to
deal with the 110, while other processors will directly (and simultaneously) do the
calculations. A similar 110 pattern is used in the forwardlbackward elimination phases.

www.manaraa.com

Due T. Nguyen 149

Loop-unrolling level 8 is adopted in this work to enhance the vector
performance of the solver. A parallel Fortran Language Force (Fortran Concurrent
Execution [6.4] is used here to develop a parallel version of the out-of-core solver. For
a reference on the parallel/vector aspects of the in-core solver, see Ref. [6.1].
Algorithms discussed in this chapter can also be implemented in the PVM, or MPI
environments [see sections 4.5, and 5.5 of Chapters 4, and 5, respectively].

6.3 Out-or-Core Vector Equation Solver (version 2)

6.3.1 Memory usage
The matrix A is stored in a one-dimensional array using a row-oriented storage scheme
[6.1], and each 8 rows of the matrix have the same last column number (loop-unrolling
level 8). It has been concluded in Refs. [6.1-6.3] that for Cray-type supercomputers,
"saxpy" operations is faster than "dot product" operations, hence a row-oriented scheme
is a more preferred choice as compared to skyline scheme. Assuming A is written in a
file on disk, with [can be either "regular" disk, or...§.olid §.tate gisk (ssd)], the file
containing say, 10 records (or nblk = 10), and each record containing blocks of 8 rows.
The last record contains the remaining data for the coefficient stiffness matrix [A] (see
Figure 6.3). To simplify the discussion, it is further assumed the user wishes to declare
the available incore memory is (1M) words, and 4 blocks of data for the coefficient
stiffness matrix A can be brought into the core memory (or ntblk = 4) as shown in
Figure 6.3. Some important information on the incore and out-of-core memory
management schemes are defined in Table 6.4. It should also be emphasized here that
this out-of-core strategy has the flexibility to use as little incore memory as (6 *
neq)+(l6* maxbw), or as much incore memory as specified by the user through the
input data variable 1M [see Table 6.4].

This kind of flexibility in using the incore memory will enhance the performance ofthe
proposed out-of-core solve since the Input/Output (or 110) time can be reduced when
more incore memory are specified.

6.3.2 Vector out-or-core equation solver on the Cray Y-MP
For an in-core solver, during the factorization of A, the rows of A will be updated
(which now becomes the rows ofU) and stored in the same locations of A (from row
1, row 2, ... , to row neq). For an out-or-core solver, however, since only a small part of
A is currently stored in the memory, it is necessary to write (BUFFER OUT) the rows
of U on the disk file, and to read (BUFFER IN) the other rows of A into the memory
(see Figure 6.3). In this proposed out-of-core solver, a record will be BUFFER OUT
when it is completely updated, and a new record will be BUFFER IN as soon as the first
row of a record is begun to be updated (see Figure 6.3). This can also be shown (with
key out-of-core strategies) in Table 6.5 (to simplify the discussion, assuming NP = 1
processor).

www.manaraa.com

150

(a)

(b)

(c)

(d)

(e)

(t)

(g)

(h)

I (i)

1m
I(k)
I

Parallel-Vector Equation Solvers for Finite Element Engineering Applications

Table 6.4 Definition of important variables used
in the memory management scheme

nbkl (say = 10) = total number of records to write (and read) on (and from) the
disk.

Each record contains multiple of 8 rows of data for the coefficient matrix [A].
The last record, however, contains the remaining data for [A].

ntblk (input data, say = 4) = number of blocks of data of the coefficient matrix
[A] that can be brought into the core memory.

Each block has enough incore-memory (multiple of 8 rows, plus a small,
unused or left over incore memory) to hold the largest record of data [see
record number 7 in Figure 6.3].

1M = user's input data for total available incore memory [see Figure 6.3].

1M for [A] = available incore memory (in words) to store ntblk blocks of the
coefficient stiffness matrix [A]

neqbk = 1M for [A] = number of words per block
ntblk

max (nblk) = (neq) = maximum possible number of records
neqbk * 8

maxbw * 8

neq = total number of equations

maxbw = maximum bandwidth

neqq = IMfor[A] = number of equations (based on available incore memory for [AD
maxbw

ntbll«J = neqq = number of block-rows of equations (based on 1M for [AD
8

i(l)
--~

www.manaraa.com

Due T. Nguyen 151

Table 6.5 Ma'or sketches of the vectorized out-of-core factorization

1. C"''''''''''''' ntblk = 4 (say, user input data)
2. C"''''''''''''' Loop through all records

3. DO 1 N = 1, nblk (say = 10 records, and currently N = 7)

4. KNM=N -ntblk+ 1 (=7-4+1=4)

5. C"''''''''''''' To factorize current record N, one needs information on all previous
records.

6. C"''''''''''''' Hence, loop 2 is required

7. C"''''''''''''' SRN = Starting Record Number (=known, or already computed value)

8. DO 2 M = SRN, N-l (currently, say SRN = 1)

9. C"''''''''''''' Find the (incore) block number nb that can be temporary used for
BUFFER-IN

10. C"''''''''''''' information

11. C"''''''''''''' Note: nb~ 1 and nb :;; ntblk

12. C"''''''''''''' If current updated (or factorized) block is block #3, then nb = 4 (always

C"''''''''''''' = top block # of the current 4 blocks residing in the incore memory).

13. C"''''''''''''' If current updated (or factorized) block is block #2, then nb = 3

14. C"''''''''''''' If current updated (or factorized) block is block # 1, Then nb = 2

I 15. C"''''''''''''' If current updated (or factorized) block is block #4, then nb = 1

16. C"''''''''''''' Some required info. Still stay in SSD (or in regular disk).

I 17. C"''''''''''''' Thus, if check is used to see if BUFFER-IN is required

18. IF (M.LE.KNM) THEN I
19 C"''''''''''''' Read (or Buffer-IN) one record into the appropriate incore block # (say I

nb). Thus, I

20. C"''''''''''''' Buffer-In data i
21. C"''''''''''''' Will be stored in the coefficient matrix array A (1, nb) I

I

1
22.

ELSE I
I

23. C"''''''''''''' some required information are already stayed in the incore memory I

!
24. ENDIF 1
25. C"''''''''''''' "Partially"factorize current record #N using loop-unrolling technique I

I
[6.1-6.2]

I
126. 2 Continue ;

1 27. C"''''''''''''' Calculate the "Final" factorized terms in the current record #N, then

1

28
C"''''''''''''' BUFFER-OUT

29. C"''''''''''''' Since "partially" factorization has already been done using the previous i

I record

1
30. C"''''''''''''' information, at this stage, we only need information from the current

131.
record #N

Continue ._---~--~---------~---.. ------.. --- ._--_ -_._-

www.manaraa.com

152 Parallel-Vector Equation Solvers for Finite Element Engineering Applications

[Record 11 Rec. 21 3 I 4 I 5 I 6 I 7 I 8 I 9 110 I

Block2,Rec. 2

Block3, Rec. -----------Block4,Rec. 4

Blockl,Rec. 5

Block2,Rec. 6

Block3,Rec. 7

Block4,Rec. 8

------J These 4 blocks are
currently residing in
the incore-memory

(Currently Update)

neqxmaxbw

Figure 6.3 Out-of-core Choleski factorization (version 2)

Let's try to take a closer look at Table 6.5 and Figure 6.3, at the same time. In Fig.
6.3, we assume that records 4,5,6, & 7 are currently residing in the core memory, and
record 7 is currently being factorized (also, refer to line 3 of Table 6.5). The formula
shown in line 4 (KNM=4, in Table 3) will be used later on, in line 18 (of Table 6.5), to
determine which records have already been resided in the core memory (thus, to avoid
wasteful time to buffer-in these same records into the core memory). Since record N=7
is currently being factorized, previous completely factorized records (such as records
I, 2, 6) may be required, or to be more general, previous records SRN, SRN + I,
SRN +2, , N-I may be required (where SRN is the starting record number, which can
be either record I, or 2, or 4 depending on the problems). Statements on lines 9-15 are
basically used to describe the rule to select the incore block number to be used as
temporary incore storage space to hold those previously (& completely) factorized
records. Line 18 stated that if the previous record #M (which is needed in order to
factorize the current record N=7) is less than KNM (=4), then we need to buffer-in (or
read) from the auxiliary storage disk space. On the other hand, if M is greater than
KNM (=4), such as M = 5 or 6, then there is no need to buffer-in records #5 & 6 into
the core memory (since these records #5 & 6 have already been resided in the core
memory!) We just simply used the available records #5 & 6 to partially factorize record
N = 7. By the time we have completed loop 2 (from line 8 to line 26), all previous
records have been used to partially factorize record N = 7. Hence, in line 27, the
"completely factorized" record N can be obtained by using the information from the
current record #N itself.

www.manaraa.com

Due T. Nguyen 153

The Solid State Disk (SSD) storage available on the Cray-YMP can further
significantly reduce the 110 time. For convenience, Table 6.6 summarizes the step-by
step procedure to run the developed out-of-core solver (where outof is the name of
executable code, in is the name of the input data file, outputt is the name of output data
file, the original coefficient stiffness matrix [A] is generated and stored in the file fort.
11, and the factorized of [A] is computed and stored in fort. 22).

Table 6.6 Procedure to execute out-of-core solver (version 2)

On Fast Cray-YMP SSD ~I
(Note: ">" is the computer prompt sign)

'

Step 1 >'1srfs'1-r'1I5mw'1$FASTDIR I

Step 2 > v cp v outof v $ F ASTDIR III

'

Step 3 > v cp v in v $ F ASTDIR

Step 4 >'1 cd v $ F ASTDIR

'

Step 5 > v assign v -s v unblocked v u: 11

Step 6 > v assign v -s v unblocked v u:22

'

Step 7 > v outof v < in v >outputt

Step 8 (to release fast SSD to other users)

, > v srfs '1-r v Omw v $FASTDIR (by specifying zero million words required.)

>'1 srfs v -i v $FASTDIR

iL ___ >~'1~s~rf=s~'1~-u~ __ .~

Version 2 of the out-of-core solver has been coded in a user's friendly, modular
form as shown in Table 6.7.

Table 6.7 How to call the present out-of-core (version 2) subroutine "solve"??

c .. .
Subroutine solve (b, a, maxa, kbin, neq, neqr, nblk, ntblk, neqbk, ihu)

implicit real * 8 (a-h, o-z)

c .. .
C****

C****(a)

C****(b)

C

C

dimension b(neq), a(neqbk, ntblk), maxa(neq+ 1), kbin(5, nblk), ihu(neq)

notes:

neqr =unused information (for future development)

kbin(l, nblk) = lowest equation (global) number in a block

kbin(2, nblk) = highest equation (global) number in a block

kbin(3, nblk) = (local) number of terms in a block

C kbin(4, nblk) = (global) lowest coupled equation number (for every I
record) I

C kbin(5, nblk) = lowest coupled block number

I C****(c) ihu(neq) = same as kbin (4, nblk), but for every row

iC****(d) b(neg)= vector of known right hand side
I
I

www.manaraa.com

154

I
c****(e)
C****(f)
C****(g)

C****(h)

Parallel-Vector Equation Solvers for Finite Element Engineering Applications

a(neqbk, ntblk) = a 2-D array to store coefficient matrix in blocks
maxa(neq+ 1) = locations of diagonal pointers for the coefficient matrix

neq = number of equations
ntblk = number of blocks (for inc ore memory) of the coefficient matrix

[a]
er block

The objective ofthe following section is to find the mapping (or, the corresponding
location) of a general term of global stiffness matrix, such as Kij' in a local stiffness
matrix which is resided in four in-core memory blocks.

1 t!i~MI 1 R •. 21 3141 S 16171819110 1

Blode I, Ree. I
Blode 2, Ree. 2

Blode 3, Ree.3 mth row
~ ------,-------------------------------- -----------.

1000 loadICIII Bloc 4, R.e. 4 1208~ loadian lh_ • Wede ••• 1
Blode I, Ree. 5 f M • .o1Iy .. ~ .. I.

1200~ loarIiaa -- Blode 2, Ree. 6 X \.,J} "'iIK·_V

Blode 3, Ree. 7 _ • .oIIy
--BI~k-4;Rec~a------------- -----------.

Block I, R.e. 9
Blode 2, Ree. 10

neqxmax 1M
IbN m .. bllllin rwt' of the first block Idepends on where the current update block isl
Locate 1 • malla iii + j - i - 16.91
Locate 2 .. locate 1 - mallalm! + 1 16.101
Local N = locate 2 16.111

Figure 6.4 Mapping between global (Kjj) location and local (N) location (version 2)

In the above formulas (Eqs. 6.9-6.11), assuming mth row = 100th row, Kjj = K120,12g,

MAXA(i)= Maxa(l20) = 1200, MAXA(m) = MAXA(lOO)= 1000, then
Locate 1 = Maxa(i) + j -i = Maxa(l20) + 128 - 120 = 1208
Locate 2 = 1208 - Maxa(lOO) + 1 = 209
Local N = 209

www.manaraa.com

I

Due T. Nguyen 155

Thus, the stiffness matrix term K120.128 is located at the 1208th global location.
Its corresponding local location is the 209th location.

A step-by-step procedure to generate and assemble element stiffness matrices
(of structural applications) in an out-of-core fashion (version 2) is shown in Table 6.8.

Table 6.8 A step-by-step procedure to generate and assemble element stiffness
matrices of real structures in an out-of-core (version 2) fashion

Step 1: Knowing element connectivities and the global DOF associated with each
element, we can find the so-called MAXA(-) array (diagonal pointer locations)

Step 2: Knowing MAXA(-) array, we can find maximum and average bandwidth (say
max bandwidth = 120, ave. bandwidth = 80 and neq = 88000)

I Step 3: Knowing Incore Memory (= 1M) available for [K], and knowing the number I
of blocks (=ntblk = 4, usually) that the user wishes to partition the 1M for [K],
we can find the number of words per block (= neqbk)

I

neb k = I Mfor [K]
q ntblk

Step 4: Based on the known max. bandwidth and neqbk, we can find how many block
rows (each block row = 8 due to loop-unrolling) a record (on regular disk or
SSD disk) can hold

N B I k row s = ___ n_e----!q_b_k __ _

Step 5:
(max. bandwidth *8)

Find how many rows (must be a multiple of 8 due to loop-unrolling) a record
(on regular disk or SSD disk) can hold

Nr 0 w s = Nbl k row s *8 (Say Nrows = 1000)

Step 6: Find the maximum record length (on regular disk or SSD disk) we can have i
Record Length = Nrows * maximum bandwidth (say record length = 120,000)

Step 7: Find how many records (on regular or SSD disk) can we have.

Step 8:

Nrecords=(neq*max. bandwidth)lrecord length (say=88000* 1201120,000=88)

Thus in this example, each record (on regular or SSD disk) can hold Nrows
(=1000 rows). There are a total ofNrecords (=88) on the regular or SSD disk.
Hence, record I will store information from row I to row 1000; record 2 will
store information from row 100 I to row 2000; record 87 will store information
from. 8?,00 I to row 87,000; (last) record 88 will store information from I'

remammg rows

I Step 9: Assuming a particular 9 x 9 element global stiffness is associated with the I
Global DOF {IOI, 102, 103, 104, 105, 106,2078,2079, and2080}. Then, the!
element will be generated, assembled and "partially" stored in Record I
I (correspond to global DOF #101 - 106) and also "partially" stored in Recordi
3 (correspond to global DOF 2078 - 2080). I

I

I

6.4 Out-or-Core Vector Equation Solver (version 3)

The solution strategies used in this section is quite similar to the one discussed in the

www.manaraa.com

156 Parallel-Vector Equation Solvers for Finite Element Engineering Applications

previous section. However, this proposed out-of-core, vectorized equation solver
strategy is believed to be more efficient than the previous one, as it will be explained
in the following paragraphs.

There are a total of 10 records of the global stiffness matrix to be stored in the
Solid State Disk (SSD), as shown in Fig. 6.5. A small fraction of the total Incore
Memory available (=IM words) is used to store certain information about the stiffness
matrix (such as column heights, variable row lengths, diagonal location pointers etc).
The remaining incore memory will be partitioned into 3 blocks (instead of 4 blocks as
discussed in the previous section), as indicated in Figure 6.5. The key out-of-core
equation solution strategies can be explained by referring to Fig. 6.6. To make the
discussion more general, we assume that records 5, 6 and 7 are currently residing in the
core memory, and record 7 is being factorized according to the following step-by-step
procedure:

Step 1: Use record 5 to partially factorize record 7
Step 2: Use record 6 to partially factorize record 7, and simultaneously buffer-in (or

read) record 1 into the core memory (and overwrite memory spaces previously
occupied by record 5)

Step 3: Use record 1 to partially factorize record 7, and simultaneously buffer-in
record 2 (and overwrite memory spaces previously occupied by record 6)

Step 4: Use record 2 to partially factorize record 7, and simultaneously buffer-in
record 3 (and overwrite memory spaces previously occupied by record 5).

The above steps are repeated until all previous records have been used to factorize the
current record 7.

www.manaraa.com

Duc T. Nguyen 157

(a) Solid State Disk (SSD) Storage for the Coefficient Matrix [A]

t
(6 • neq) words to store column
heights, diagonal locations etc ...

Block 1 Block 2

i
f

(6 • neq) words

Each block can hold
(1M) words 1 largest record, say

record 7, and may have (1M for [A]) words
some small left-over,
unused memory

Block 3

(b) Incore Memory Storage Management (assumed to be partitioned into 3 blocks)

Figure 6.5 Out-of-core memory management scheme (version 3)

Block 3. record 9

Block I. record 10

Figure 6.6 Out-of-core Choleski factorization

6.5 Application

6.5.1 Version 1 performance

ncqxmaxbw

To test the effectiveness of the proposed out-of-core parallel-vector equation solver

www.manaraa.com

158 Parallel-Vector Equation Solvers for Finite Element Engineering Applications

(pvsolve-ooc), described in Section 6.2, three large-scale structural analyses have been
performed on the Cray Y -MP supercomputer at NASA Ames Research Center. These
analyses involved calculating the static displacements resulting from initial loadings for
finite element models of a High Speed Civil Transport aircraft (HSCT) and the space
shuttle Solid Rocket Booster (SRB). The aircraft and SRB models are selected as they
were large, available finite-element models of interest to NASA. The characteristics of
the stiffness matrix for each of the above practical finite element models is shown in
Table 6.9.

Table 6.9 Characteristics of finite element models

HSCT Refined HSCT SRB

Max Bandwidth 600 1272 900

A ve. Bandwidth 321 772 383

Matrix Terms 5,207,547 12,492,284 21,090,396

Non-zero Terms 499,505 373,752 1,310,973

No. Operations 171,425,520 9.2 x 109

No. Equations 16,146 16,152 54,870

In the following applications, code is inserted in pvsolve-ooc to calculate the
CPU time for equation solution. The Cray timing (TSECND) is used to measure the
time.

Example 1: High Speed Civil Transport Aircraft (HSCT) Application
To evaluate the performance ofthe parallel-vector out-of-core Choleski solver,

a structural static analysis has been performed on a 16,146 degree-of-freedom finite
element model of a high-speed aircraft concept [6.5]. Since the structure is symmetric,
a wing-fuselage half model is used to investigate the overall deflection distribution of
the aircraft. The half model contains 2851 nodes, 4329 4-node quadrilateral shell
elements, 5189 2-node beam elements and 114 3-node triangular elements. The stiffness
matrix for this model has a maximum semi-bandwidth of 600 and an average bandwidth
of 321. The half-model is constrained along the plane of the fuselage centerline and
subjected to upward loads at the wingtip and the resulting wing and fuselage deflections
are calculated.

The time taken for a typical finite element code to generate the mesh, form the
stiffness matrix and factor the matrix is 325 seconds on a Cray 2 (802 seconds on a
CONVEX 220) of which the matrix factorization is the dominant part. Using pvsolve
ooc, the factorization for this aircraft application requires 6.98 and 1.01 seconds on one
and eight Cray Y -MP processors, respectively, as shown in Table 6.10.

www.manaraa.com

Due T. Nguyen 159

Table 6.10 Perfonnance of pvsolve-ooc on Cray Y -MP

No of Processors HSCT Refined HSCT SRB

1 6.98 (sec.) 43.87 (sec.) 31.26 (sec.)

2 3.50 20.00 15.53

4 1.85 10.00 7.80

8 1.01 5.71 4.21

Example 2: Refined Model for HSCT problem
More details and more realistic model of the HSCT structure than the crude

model (in Example 1) is used. The characteristics of the resulted stiffness matrix is
shown in Table 6.9. The numerical perfonnance of the proposed parallel-vector out-of
core solver for this example is presented in Table 6.10.

Example 3: Space Shuttle Solid Rocket Booster (SRB) Application [6.6-6.7]
In addition to the high-speed aircraft, the static displacements of a two

dimensional shell model of the space shuttle SRB have been calculated.
This SRB model is used to investigate the overall deflection distribution for

the SRB when subjected to mechanical loads corresponding to selected times during the
launch sequence. The model contains 9205 nodes, 9156 4-node quadrilateral shell
elements, 1273 2-node beam elements and 90 3-node triangular elements, with a total
of 54,870 degrees of freedom. The stiffness matrix for this application has a maximum
bandwidth of900 and an average bandwidth of383. A detailed description and analysis
of this problem is given in references [6.6-6.7]. The times required for a typical finite
element code to generate the mesh, fonn the stiffness matrix and factor the matrix are
about one-half hour on the Cray 2 (I5 hours on a V AX 11/785) of which the matrix
factorization is the dominant part. Using pvsolve-ooc, the factorization for this SRB
problem requires 31.26 and 4.21 seconds on one and eight Cray Y -MP processors,
respectively, (as shown in Table 6.10).

6.5.2 Version 2 performance
To evaluate the perfonnance of the vector out-of-core Choleski solver discussed in
Section III, a "simulated" structural static analysis has been perfonned on a 16,146
degree-of-freedom finite-element model of a high-speed aircraft concept [6.5]. Since
the structure is symmetric, a wing-fuselage half model is used to investigate the overall
deflection distribution ofthe aircraft. The half model contains 2851 nodes, 4329 4-node
quadrilateral shell elements, 5189 2-node beam elements and 114 3-node triangular
elements. The stiffness matrix for this model has a maximum semi-bandwidth of 600
and an average bandwidth of 321. The half-model is constrained along the plane of the
fuselage centerline and subjected to upward loads at the wingtip and the resulting wing
and fuselage deflections are calculated.

www.manaraa.com

160 Parallel-Vector Equation Solvers for Finite Element Engineering Applications

Since this is only a "simulated" high-speed aircraft model, the input data can
be easily prepared with only a few defined variables: neq, (number of equation), avebw
(average bandwidth), 1M (Incore Memory Available), ntblk (number of incore memory
blocks).

In the following numerical examples, the variables neq, avebw, and ntblk are
setto be 16146,321, and 5. However, the input parameter 1M (specified Incore Memory
available) will be varied in order to see how the solution time varies with the specified
incore memory available. For this "simulated" aircraft model, 3 numerical cases will be
studied. Since this is a simulated problem, maxbw= avebw = 321.
Case 1: 1M = (6* neq) +(16 * maxbw)
Case 2: 1M = (6 * neq) + (1.1 * maxbw2)

Case 3: 1M = (6 * neq) + (neq * avebw)
Thus, Case 1 uses the minimum incore memory, Case 2 uses the same minimum inc ore
memory as in Section 6.2, and Case 3 uses complete incore memory. The performance
of this simulated aircraft model in all 3 cases are summarized in Table 6.11. All results
are accurate as compared to known solutions.

From the results presented in Table 6.11, one can see that there is no general
trend on the wall clock time (wct). This es expected, since the wct is heavily depended
on how busy the system is at the time the code was executed. The CPU time, however,
is more stable and reliable. It shows that case 1 [where only a minimum (16 * maxbw)
words of incore memory was used to store the coefficient matrix] requires the most
CPU times during the factorization, forward and backward phases. Case 3 [where the
equation solution is completely solved by incore memory] requires the least CPU time.

The incore memory used in Case 2 [where (1.1 * maxbw2) words was used to
store the coefficient matrix] is the same as used in Section 6.2. Thus, the trend in CPU
time behaves as can be expected: more incore memory used will lead to less CPU
solution time.

Table 6.11 CPU (and wall clock) Cray-YMP time (in seconds) performance
of the "simulated" high speed civil transport aircraft model

CASE 1 CASE 2 CASE 3

CPU Time 14.29 8.38 8.31
Factorization

WCTTime 164.31 34.25 23.40

CPU Time 0.22 0.14 7.15*10.2

Forward
WCTTime 0.88 0.54 7.15* 10-2

CPU Time 0.27 0.17 9.29* 10-2

Backward
WCTTime 1.67 0.49 9.37*10-2

6.5.3 Version 3 performance
The 16,146 degree-of-freedom HSCT model will be used to evaluate the numerical

www.manaraa.com

Due T. Nguyen 161

performance of version 3 out-of-core strategies.
Two cases have been considered in version 3 of the computer codes.

Case 1: The income memory provided is large enough to hold "all" arrays inside the
core memory. Thus, in this case, only I block is used, with a total (integer and
real) memory requirement is 5,304,434 words.

The factorization, forward and backward times (for a single Cray-YMP
computer) are shown in Table 6.12 as 6.8985 seconds, 0.0433 seconds and
0.0743 seconds, respectively. The total CPU time (including "everything")
is 7.0164 seconds, and the total wall-clock-time is 39.6494 seconds.

Case 2: The incore memory provided is less than half of the required incore memory.
Thus, in this case, 13 blocks are used, with a total (integer and real) memory
provided is only 1,999,988 words.

The factorization, forward and backward times (for a single Cray-YMP
computer) are shown in Table 6.13 as 6.9577'"", 0.0436'·<, and 0.0748'"",
respectively. The total CPU time (including "everything") is 7.0764'"", and
the total wall-clock-time is 40.7307 seconds.

Comparing the performances in the above 2 cases, one can see that the
proposed out-of-core strategies are quite efficient, since the penalties for the overhead
time (when out-of-core strategies are used) is quite small.

Table 6.12 Performance of (version 3) out-of-core solver on HSCT application
(incore memory used = 5,304,434)

No. Equations 16,146

Non-zero Terms 499,505

Factorization (CPU) Time 6.90 seconds (Cray-YMP)

Forward (CPU) Time 0.0433 seconds

Backward (CPU) Time 0.0743 seconds

Total (CPU) Time 7.01636 seconds

No. Blocks Used 1

Incore Memory Used 5,304,434 real words

www.manaraa.com

162 Parallel-Vector Equation Solvers for Finite Element Engineering Applications

Table 6.l3 Performance of (version 3) out-of-core solver on HSCT
application (incore memory used = 1,999,988)

No. Equations 16,146

Non-zero Terms 499,505

Factorization (CPU) Time 6.96 seconds (Cray-YMP)

Forward (CPU) Time 0.0436 seconds

Backward (CPU) Time 0.0748 seconds

Total (CPU) Time 7.07636 seconds

No. Blocks Used 13

Incore Memory Used 1,999,988 real words

6.6 Summary

A parallel-vector out-of-core Choleski method (pvsolve-ooc) for the solution of large
scale structural analysis problems has been developed (see Section 6.2) and tested on
Cray supercomputers. The method exploits both the parallel and vector capabilities of
modem high- performance computers. To minimize computation time and memory
requirement, BUFFER IN and BUFFER OUT statements are used for effective 110
operations. In this version (see Section 6.2) the total incore memory requirements is
(6*neq) + (1.1 * maxbw2). The method performs parallel computation at the outermost
DO-loop of the matrix factorization, the most time-consuming part of the equation
solution. In addition, the most intensive computations of the factorization, the innermost
DO-loop has been vectorized using a SAXPY -based scheme. This scheme allows the
use of the loop-unrolling technique which minimizes computation time. The forward
and backward solution phase have been found to be more effective to perform
sequentially with loop unrolling and vector-unrolling, respectively.

The proposed parallel-vector Choleski method has been used to calculate the
static displacements for three large-scale structural analysis problems; a high-speed air
craft and the space shuttle solid rocket booster. The total equation solution time is small
for one processor and is further reduced in proportion to the number of processors.

Factoring the stiffness matrix for the space shuttle solid rocket booster, which
formerly required hours on most computers and minutes on supercomputers by other
methods, has been reduced to seconds using the parallel-vector variable-band Choleski
method. The speed and low inc ore memory requirement of pvsolve-ooc should give
engineers and designers the opportunity to include more design variables and
constraints during structural optimization and to use more refined finite-element meshes
to obtain an improved understanding of the complex behavior of aerospace structures

www.manaraa.com

Duc T. Nguyen 163

leading to better, and safer designs.
The single-processor, vectorized out-of-core strategies developed in Sections

6.3 and 6.4, and the corresponding incore memory requirements are (6*neq) +
(l6*maxbw), and (6*neq) + (24*maxbw), respectively. In both proposed vectorized,
out-of-core strategies, the required incore memory is significantly less than Version 1
(of Section 6.2). Version 3 (of Section 6.4) is more preferable than Version 2 (of
Section 6.3), since with a little more inc ore memory requirement (24*maxbw, as
compared to 16*maxbw), Version 3 is significantly faster than Version 2
(approximately 7 seconds CPU time as compared to approximately 14 seconds CPU
time).

6.7 Exercises

6.1 Following the algorithms presented in Table 6.1, and using the data
maxbw=600 and istorv=980,OOO, find the value of "mtot" after 4 iterations??

6.2 Given the following system of equations [A] {x} = {b}
where [A] is symmetrical, positive definite matrix and is given as

2 -1
-1 4 -1

[A]
-1 6 -1

-1 8 -1
-1 10 -1

-1 12

1
2
4
6 {b}
8
11

Assuming each record in Fig. 6.5 (a) can only hold 1 row of [A], each of the
(3) block shown in Fig. 6.5 (b) can only store 1 row of [A], and the first 3 rows of[A]
are currently residing in the incore memory:
(a) Use the out-of-core strategies, shown in Fig. 6.6, to factorize [A]. Please also

clearly indicate how and where to Buffer IN/Out the information
(b) Find the out-of-core forward solution
(c) Find the out-of-core backward solution

6.8 References

6.1 Agarwal, T.K., Storaasli, 0.0. and Nguyen, D.T., "A Parallel-Vector Algorithm for Rapid Structural
Analysis on High Perfonnance Computers," Proceedings ofthe AlAAJ ASMEI ASCEI AHS 31 st SDM
Conference, Long Beach, CA, April 2-4, 1990, AlAA paper #90-1149.

6.2 Qin, J., Agarwal, T.K., Nguyen, D.T., Storaasli, 0.0. and Baddourah, M.A., "Parallel-Vector Out-of
Core Equation Solver For Computational Mechanics," presented at the 2nd Symposium on Parallel
Computational Methods/or Large Scale Structural Analysis and Design, Marriott Hotel, Norfolk,
VA, sponsored by NASA Langley Research Center, Hampton, VA (February 24-25, 1993).

www.manaraa.com

164 Parallel-Vector Equation Solvers for Finite Element Engineering Applications

6.3 NAS User Guide, Version 6.0, NASA Ames Research Center, MotTett Field, CA, 1991.
6.4 Jordan, H.F., Benten, M.S., Arenstorf, N.S., and Ramann, A.V., "Force User's Manual: A Portable

Parallel FORTRAN," NASA CR 4265, January, 1990.
6.5 Robins, W.A., et al., "Concept Development ofa Mach 3.0 High-Speed Civil Transport," NASA TM

4058, September 1988.
6.6 Knight, N.F., Gillian, R.E., and Nemeth, M.P., "Preliminary 2-D Shell Analysis of the Space Shuttle

Solid Rocket Boosters," NASA TM-100515, 1987.
6.7 Knight, N.F., McCleary, S.L., Macy, S.C., and Aminpour, M.A., "Large Scale Structural Analysis: The

Structural Analyst, The CSM Testbed, and the NAS System," NASA TM-I 00643, March 1989.

www.manaraa.com

7 A Parallel-Vector
Skyline Equation Solver for

Distributed-Memory Computers

7.1 Introduction

It is now generally acknowledged that the most feasible and economical means of
solving extremely large computational problems in the future will be with massively
parallel computers and distributed memory. Though the relatively rapid growth in
microprocessor technology over the last decade has lead to the development of
massively parallel architectures capable of performing Giga arithmetic operations in a
single second, the software required to efficiently solve large-scale problems remains
a challenge to scientists and engineers today. A lot of effort has been made to develop
efficient equation solvers on parallel computers [7.1], but most of them are either
designed for computers with shared memory [7.2-7.6], or for special form of matrices
[7.7-7.9], such as tridiagonal matrix, triangular matrix or banded matrix. Since in most
scientific and engineering applications, the final systems of equations to be solved are
large, symmetrical matrices with variable bandwidths, it is desirable to develop an
efficient equation solver that can exploit such special features of the coefficient matrix.

In this chapter, an equation solver for symmetrical matrices with variable
bandwidths is developed to solve large-scale problems on massively parallel computers
and distributed memory, such as the Intel iPSC/860 hypercube, the IBM-SP2, or Meiko
parallel computers [7.10-7.11].

7.2 Parallel-Vector Symmetrical Equation Solver 17.10)

7.2.1 Basic symmetrical equation solver
Systems of linear, symmetrical equations can be represented as

Ax=b (7.1)

One way to solve Eq. (7.1) is first to decompose the coefficient matrix A into the
product of two triangular matrices

(7.2)

165

www.manaraa.com

166 Parallel-Vector Equation Solvers for Finite Element Engineering Applications

where U is an upper-triangular matrix which can be obtained by
i-I

aij - L Uki Ukj
k=1 .

(i '" j)

(i=j)

(7.3)

(7.4)

Then the unknown vector x can be solved through the forwardlbackward elimination,
such as to solve

UTy=b (7.5)
for y, with

]-1

b. - L uij Y i J
i=1

Y j
UJj

(7.6)

and to solve

Ux=y (7.7)
for x, with

n

Y j
- L Uji Xi

Xj =
i=j+ I

U ..

"

(7.8)

Since the number of operations involved in the factorization phase is much more
than that in the forwardlbackward elimination phase, more efforts will be focused on
developing an efficient parallel-vector algorithm for matrix factorization.

7.2.2 Parallel-vector performance improvement in decomposition
The efficiency of an equation solver on massively parallel computers with distributed
memory is dependent on both of its vector performance and its communication
performance. Since for the Intei/iPSC860 hypercube, the dot product performance is
better than its saxpy performance, we have decided to adopt a skyline column storage
scheme (column-by-column, from the diagonal term and up ofa stiffness matrix[A]) to
exploit dot product operations. Moreover, the skyline column storage scheme [7.6,7.10-
7.11] requires less memory than the row-storage scheme [7.5, 7.lO). To enhance its
vector speed through vector-unrolling, the symmetrical matrix A is stored in a block
skyline scheme with block size equal to 4 (thus, each block consists of 4 columns).
Figure 7.1 shows this storage scheme for multiprocessors (assuming NP = 3 processors
are used). Thus, processor 1 stores column 9-12, 21-25 of the matrix A, while columns
13-16,25-28 and columns 17-20 are held by processors 2 and 3, respectively (recalled
Section 3.6 of Chapter 3).

www.manaraa.com

Due T. Nguyen 167

9 13 17 11 15 19

~
row 9

PI

P1

P3

'"
PI

p]

Figure 7.1 Block column storage scheme for matrix [A] (in a one-dimensional array)

The decomposition (or factorization) is processed for i=l, 5,9, ... , n, where for
each i the corresponding rows (from i to i+3) can be updated concurrently, by
multiprocessors in a row-by-row fashion. Thus, for i= 1, rows 1 through 4 (or rows i
through i+3) will be factorized by multiple processors. Similarly, for i=5, rows 5
through 8 will be factorized by multiple processors. Assuming the first eight rows of the
matrix A (see Figure 7.1) have already been updated by mUltiple processors, and row
9 is currently being updated. Thus according to Figure 7.1, terms such as U99",U9 12and
U9,21",U9,24are processed by processor 1. Similarly, terms such as U9,:3",U9:16and
U925",U92Sare handled by processor 2, while terms such as U917"",U920 are executed
by processor 3. ' ,

As soon as processor 1 completely updated column 9 (or more precisely, updated
the diagonal term U9,9, since the terms U 19, U29, ",U89 have already been factorized
earlier, it will send the entire column 9 (including its diagonal term) to all other
processors. Then processor 1 will continue to update its other terms of row 9. At the
same time, as soon as processors 2 and 3 receive column 9 (from processor 1), these
processors will immediately update its own terms of row 9. In addition to the above
parallel computation strategy, more vector speed can be obtained through the concept
of "vector unrolling" which has been introduced in Ref. [7.6] for shared memory
computers (such as the Cray-2 and Cray Y -MP). Referring to Figure 7.1 and Eqs 7.3
and 7.4, one can see that having completed column 9, updating the remaining terms of
row 9 (such as U9. 10' U9,11 •.•• U9.n) involve with the dot product between 2 columns
(column 9 and columns 10, 11, ... , n).

Since column 9 in this example is used repeatedly in the dot product operations,
it is desirable to keep column 9 to stay longer in the CPU (or fast memory). Thus, vector
unrolling level 4 is used to enhance the vector speed. For example, the following dot
product operations
SUM] = SUM] + (column 9) . (column 9)
SUM2 = SUM2 + (column 9) . (column]0)

www.manaraa.com

168 Parallel-Vector Equation Solvers for Finite Element Engineering Applications

SUM3 = SUM3 + (column 9) . (column 11)
SUM4 = SUM4 + (column 9) . (column 12)
are executed by processor 1, while the following dot product operation
SUMI = SUMI + (column 9) . (column 13)
SUM2 = SUM2 + (column 9) . (column 14)
SUM3 = SUM3 + (column 9) . (column 15)
SUM4 = SUM4 + (column 9) . (column 16)
are processed by processor 2 etc

A skeleton pseudo-code of the above parallel-vector Choleski factorization is
shown in Table 7.1

It is also noticed that ifthe increment 4 in loop 100 (see Table 7.1) is changed into
1, then no vector unrolling is used.

To further improve the computational efficiencies, block-wise updating strategies
are also employed. A block-wise updating (see Figure 7.2) means there are four rows
being concurrently up-dated by multiprocessors. A block-wise updating also means that
having completed all 4 columns (say 9, 10, 11, and 12 in Figure 7.1), processors 1 will
send all these 4 columns to all other processors.

9 '1 13 '2 17 '3 21 '1 2S '2 29 '3

~ f-

,--: f- " ~
~ CT.

N L1r

"" 1\
V

t\"
:"r-. r-

~t\
t\"

i\t\

t\"
~t\

"t\
t\"

roo..

row 9
row 10
row II
row 12

Figure 7.2 Block-wise (rows) factorization for matrix A (in a I-D array)

In block-wise updating (for factorizing) strategies, each processor will
independently factorize its appropriate terms in 4 (or more) consecutive rows. Assuming
the first 8 rows of the matrix A (shown in Fig. 7.2) have already been completely
factorized, then processor PI (which is the owner of columns 9-12) will factorize the
following terms.

www.manaraa.com

Due T. Nguyen

U9,9 U9 10 U 9,11 U9,12

UI~,IO U IO,II U 10,12

UII,II U II ,12

U 12,12

169

and send its 4 completely factorized columns (9 through 12) to all other processors,
before continuing to factorize other tenns (of the 4 consecutive rows 9-12), such as

U9,21 U9,22 U9,23 U9,24

U IO,21 UIO,22 UIO,23 UIO,24

U II ,21 UII ,22 UII ,23 U II ,24

U I2,21 UI2,22 UI2,23 U12,24

At the same moment, processor P2 (and processor P3 etc ...) will receive the 4 columns
9-12 (from PI) and will factorize the following tenns

U9,13 U9,I4 U9,I5 U9,I6 U9,25 U9,26 U9,27 U9,28

U IO,I3 U IO,I4 U IO,I5 U IO,I6 and I I by P2
U II ,I3 UII ,14 U II ,I5 U II ,16 1 1
U 12,13 U I2,I4 U I2,I5 U 12,16 UI2,25------+UI2,28

and

U9,I7 U9,I8 U9,I9 U9,20 U9,29 U9,30 U9,31 U9,32

I I and I I by P 3
1 1 1 1

U I2,I7 ------> UI2,20 UI2,29 --~ UI2,32

A skeleton pseudo-code for this block-wise updating is similar to the one
discussed in Table 7.1, with few "minor" modifications, such as:
(a) Deleting the 2nd do-loop in Table 7.1 (thus, lines 5, 6 and 23 need be deleted)
(b) A new, different fonnula for index II need be defined before entering DO 400

loop (on line 7)
(c) Inside do 500 loop, sixteen (16) dot product operation need be done (instead of

just 4 dot product operations as shown in Table 7.1)
(d) Lines 16, 18 and 20 (in Table 7.1) need be expanded for calculating 16 tenns

(instead of only 4 tenns)
(e) Line 17 (of Table 7.1) needs be modified in order to send 4 columns (instead of

sending just 1 column) to all other processors
(f) Line 26 (of Table 7.1) should be changed into: receive columns II, 11+ 1, 11+2,

and 11+3
(g) Line 27 (of Table 7.1) should be changed into: update the appropriate processor's

tenns ofrows II, 11+1, II + 2 and II + 3

Still another strategy can be employed to further enhance the perfonnance of

www.manaraa.com

170 Parallel-Vector Equation Solvers for Finite Element Engineering Applications

parallel-vector skyline solver, which is illustrated in Figure 7.3. This parallel strategy
will be referred to as "Twice" Block-wise Factorization algorithm. Basically, this
additional improved strategy can be viewed as applying the previous idea of block-wise
updating twice. Having received 4 columns 9-12 from processor PI (see Figure 7.3),
processor P 2 will compute the 16 factorized terms (exactly the same ways as discussed
earlier).

~ raw'

rIM 13

rIM 17

r-"
r-,

" 'I'.
" " r-...

Figure 7.3 "Twice" block-wise (rows) factorization for matrix A (in a I-D array)

U12,13 ---+ U12,16

Processor P2 then proceeds to the next 4 more rows (rows 13-16) to factorize the
following terms

(and send the completely factorized columns 13-16 to all other processors) before
returning back to rows 9-12 to factorize its remaining terms, such as

www.manaraa.com

Duc T. Nguyen 171

This enhancement will clearly help other processors to have less additional idle time.
This so-called "Twice" Block-wise factorizing algorithm can be summarized in Figure
7.4

~ -

PIA P2A P3A PIB P2C P3B PIC P2D PJe
Ir

Block of (4) rows
P2B P3D Pm P2E P3F PIE P2F P3G

P3E P IF P2G P3H PIH Pm P31
PIG Block (of 4) rows

- -

Figure 7.4 Flows of "twice" block-wise (rows) factorization algorithm

In Figure 7.4, the first subscript of P represents the processor number, and the
second subscript ofP represents the computation order. For example P2E represents 16
factorized terms computed by processors P2, will be followed by P2F which represents
the next 16 terms to be factorized by processor P 2' The convention we adopt in Fig. 7.4
is A is computed first, then B is computed next, then C, then D, then E etc ...

To further improve the vector performance of the equation solver, we use a library
subroutine DDOT as the kernel for dot product operations. Table 7.2 shows the vector
performance for different options.

www.manaraa.com

172 Parallel-Vector Equation Solvers for Finite Element Engineering Applications

Table 7.1 A skeleton pseudo-code for parallel-vector Choleski factorization

Loop = 4
2 ~ Parallel DO 100 ith row = 1, n, 4 (Say i = 9)
3 c. .. me = processor number; NP = Number of Processors
4 If ("me" have the jlh column) then
5 ~ DO 200 j = 0, 3 (this loop is required due to skipping occurs in

the first loop)
6 II = (Global row #) = i + j
7 ~ DO 400 column # 11 = II, n, NP*Loop (The values of JJ maybe skipped.

depending on the value of "me")
8 SUMl=SUM2=SUM3=SUM4=0

9j-->DO 500 r~w k=I,2,II-1
10 SUM] - SUM] + Uk.!1 * Uk,ij
II SUM2 = SUM2 + Uk.!1 * Uk,ij+,
12 SUM3 = SUM3 + Uk.!1 * Uk,ii+2
13 SUM4 = SUM4 + Uk.!1 * Uk,ij+)
14 500 Continue

15 If (II.Eq.JJ) then
16 u .. = (A ... - SUMlf' lI,n 1I,.u
17 send column jj to all other processors

18 U = Ah.ii+,-SUM2 .
ii,jj+1 '

Vii,;;

_ Ah,jj+2 -SUM3. U = AU,jj') - SUM4
UO,j}+2 - U.. .. 'ii,jj+3 U

11,11 lI,n

19 else A .. -SUMl
20 u." = ",J] U Ah,jj.,-SUM2 . U

11,11 U.. .. ~ ii,jj+l; U.. 'ii,)j+2
11,1' "

21 Endif
22 400 Continue
23 200 Continue
24 Else
25 C ... all other processors do the following
26 • receive column # II (from processor "me")
27 • update the appropriate, processor's terms of row ii
28 End if
29 100 continue

Additional explanations about Table 7.1 will be given in the following paragraphs
Line 1: Assuming unrolling level 4 is used, thus, every 4 columns are grouped

together
Line 2: The increment of 4 for this do-loop is required, since every 4 columns

are grouped together
Line 4: The processor (say processor "me") which owns the ith column will

www.manaraa.com

Due T. Nguyen 173

execute statements in lines 5 through 23. All other processors will
execute statements in lines 25 through 27

Line 5: This loop is required in order to compensate the increment 4, used for
the index i (on line 2)

Line 6: Global row number II is defined
Line 7: This do-loop (with the index JJ) is required to cover all terms in row II.

Special care need be done to have appropriate starting point, ending
point and increment value for the index JJ.
Assuming II = 9 (thus row 9 is being factorized), then JJ = (9, 10, 11,
12), (21, 22, 23, 24) etc ... for processor PI' JJ = (13, 14, 15, 16), (25, 26,
27,28) etc ... for processor P2 and JJ = (17, 18, 19,20), (29, 30, 31, 32)
etc ... for P3

However, if 11= 1 0 (or row 10 is being factorized), then JJ = (10, 11,
12), (21, 22, 23, 24) etc ... for PI
Thus, in actual computer coding, the "real" formulas (or algorithm) for
the index JJ is more complicated than the "pseudo-formula" given on
line 7 for the index JJ.

Lines 8-14: Four dot-product operations are required (for unrolling level 4), such as
column II • column JJ
column II. column (JJ+l)
column II • column (JJ+2)
column II • column (JJ +3)

Lines 15-18: If column #JJ has the same value as row # II, then we know the diagonal
term (and its adjacent 3 off - diagonal terms) are being"factorized (for
example: U9.9, U9. 10' U9.11 and U9.12 are being factorized).

Lines 19-21: If column #JJ has different value with row #11, then we know we are
dealing with all off-diagonal terms of row II (for example: U9.2I> U9.22,

U9•23, and U9• 24)

Lines 22-26: self -explained!
Line 27: All other processors (except processor "me") will factorized their

appropriate (off-diagonal) terms of row #II. For example
Processor 2 will factorize (U9.13",U9.16), (U9.25",U9.28) etc .. .
Processor 3 will factorize (U9. 17"'U9.20), (U9.29",U9.32) etc .. .

Lines 28-29: self explained

Table 7.2 Vector performance with different options

Options Time (seconds)

No vector-unrolling 44.8

Vector-unrolling level 4 35.8

Vector-unrolling + block-wise updating 22.2

DDOT + vector-unrolling + block-wise updating 20.2

DDOT + vector-unrolling without block-wise updating 14.5
Note: Decomposition of a 1000 x 1000 matriX on one processor (InteIIPSC/860)

www.manaraa.com

174

1

2

3
4

5

6

7

8

9

10

11

12

13

14

Parallel-Vector Equation Solvers for Finite Element Engineering Applications

Table 7.3 Communication schemes

Single-send scheme Double-send scheme

1 DO 100 i = 1, n,4

DO 100 i = 1, n, 4 2 IF ("me" have the ith column) THEN

If ("me" have the ith column) 3 DO 200j = 0,3

DO 200j = 0,3 4 update the (i+j)th column

update the (i + j)th column 5.1 send the (i + j)th column to the

send the (i + j)th column to next processor

all other processors (fan-out) 5.2 send the (i + j)'h column to all

update portions of (i + j)th row other processors

200 continue 6 update portions of (i + j)th row

ELSE 7 200 continue

DO 300j =0, 3 8 ELSE

receive the (i + j)th column 9 DO 300j = 0,3

update portions of (i + j)th row 10 receive the (i + j)th column

300 continue 11 update portions of(i + j)th row

ENDIF 12 300 continue

100 continue 13 ENDIF
14 100 continue

Table 7.4 Communication performance

Options Time (seconds)

Single -send (with CSEND, CRECV) 231

Single-send (with ISEND, IRECV) 192

Single-send (DDOT + ISEND, IRECV) 120

Double-send (DDOT + ISEND, IRECV) 108

Sequential-send (DDOT + CSEND, CRECV) 104

Note: Decomposition of a 4000 x 4000 matrix on 16 processors (Intel iPSC/860)

www.manaraa.com

I

Due T. Nguyen

Table 7.5 Sequential send (or RING) scheme

DO 100 i = 1, n, 4

2 IF ("ME" have the ith column) Then

3 DO 200 J = 0, 3

4 i. Update the (i + j)th column
5 • send (i + j)th column to next processor
6 • update portions of (i + j)th row

7 200 continue

8 ELSE

9 DO 300 J = 0, 3

10 *Every processor receives info. from previous processor

11 * If (ME * processor which owns column # [i - 1]) Then

12 • send info. to next processor which owns column # (i + 4)

I
113

• with exception: last processor will send information to processor 0

Endif

1

14

15

I ~~

* update portions of (i + jyh row

300 continue

Endif

100 continue

PNP .,

send

send

i'" column belongs to processor PME = Po
no sen'!-.___-.·-----*-· --. send

(i+4)'" column EO PME +, = P,

send

Figure 7.5 Sequential (or ring) sending message

175

www.manaraa.com

176 Parallel-Vector Equation Solvers for Finite Element Engineering Applications

7.2.3 Communication performance-improvement in factorization
On the Intel iPSC/860 hypercube, the maximum communication rate (massage-passing
rate) between two nodes is only 0.35 MWORDS (in practice, it is onlyO.l MWORDS),
which is much slower than its maximum arithmetic operation rate 60 MFLOPS (in
practice, it is only 25 MFLOPS). The communication rate is even slower when more
nodes are involved.

In general, a skyline (column storage scheme) equation solver on distributed
memory computers needs to transfer the current updated column (say, stored in node
i) to all other nodes, which is called fan-out. This fan-out becomes slower if the number
of nodes increases. As these communication routines (for fan-out) are designed by the
computer manufacturer, it is not practical for the users to make any changes in them.
However, we have tried to overcome this difficulty by introducing the so-called double
send scheme. Table 7.3 shows both single fan-out scheme and the double-send scheme
for factorization. Another simple scheme is called sequential-send (please refer to Table
7.5) which means each node (say, node i) only receive information from its preceding
node (node i-I) and only send information to the next node (node i+ 1). Both double
send and sequential-send schemes are based on the idea that the closest node should get
the message first. Table 7.4 presents communication performance with different
message-passing techniques.

In Table 7.4, the sending and receiving messages (ISEND, lRECV) is better than
(CSEND, CRECV). In simple language, CSEND can be interpreted as a person who
drops (or sends) the mail in the mail box, he then waits in the mail box for a little while
(say until the mailman arrived at the mail box), then he leaves the mailbox. On the other
hand, ISEND can be interpreted as a person who drops (or sends) the mail in the mail
box, and he immediately leaves the mail box. Depends on the applications and the
problems at hands, proper use of the appropriated communication messages need to be
observed.

Single send and double send schemes are self-explained in Table 7.3. Sequential
(or ring) send scheme shown in Table 7.5, however, needs further explanations for
better understanding.

(a) Lines I -8 (of Table 7.5) are essentially the same as lines I - 8 (of Table 7.3,
double-send scheme), but with lines 5.2 deleted (from Table 7.3, double-send
scheme)

(b) Lines 9,10,14-17 of Table 7.5 play the same role as lines 9-14 of Table 7.3.
(c) The IF statement provided on line II of Table 7.5 will make sure that

processor "ME" (which owns the ith column) will not receive its own message
(from its previous neighbor processor) which it has sent (in a ring fashion)
to all other processors, as clearly explained in Figure 7.5

(d) Line 12 of Table 7.5 will make sure that a processor will send the message
(which it receives from the previous neighbor processor) to the next neighbor
processor. For example, PI sends message (which it receives from Po) to
processor P 2. Processor P 2 sends message to P 3, P 3 sends message to P 4·

Assuming P4 is the last processor in this process, P4 will NOT send the
message to Po (since Po is assumed to be the original processor which
supposes to be a starting processor to send the message to all other
processors!)

www.manaraa.com

Due T. Nguyen 177

7.2.4 Forward/backward elimination
In linear static applications, factorization is the most time consuming portion of a finite
element analysis. In many other applications (such as nonlinear static/dynamic,
eigenvalue, design sensitivity analysis and optimization), however, the
forwardlbackward elimination has to be done repeatedly. Thus, forwardlbackward
solution time becomes quite important for the above applications.

A. Forward Elimination
Assuming the first 8 unknowns of the solution vector y in the forward elimination phase
have already been calculated, and the forward solution forY9 through Y12 are sought. For
simplicity, assuming the factorized lower triangular matrix VT is full as shown in Figure
7.6. According to Eq. 7.6, one has:

or

i= I
Y9=-----

U9,9

(7.9)

b9 -(uI9 Yt +U29 Y2 + ... +ug9 Yg)
Y9= ' " (7.10)

U9,9

Thus, one can clearly see that processor 1 (see Figure 7.6) can easily calculate
unknowns Y9 through Y12 since YI through Ys have already been "completely" calculated.
As soon as processor 1 finishes computing Y9 through Y12' it will broadcast these
complete solutions (Y9 through YI2) to all other processors (fan out). This fan out
process is illustrated by columns 9 --+ 12 below the diagonals as shown in Figure 7.6.
Having broadcasted the solutions Y9 --+ Y12 to all other processors, processor 1 continues
to compute the "partially" updated solutions for portions of the remaining unknown
solution vector y.

For example, processor 1 (or PI) will compute:

b - (U Y + ... + U I YI)-(unknownl)
Y21 (incomplete or partially complete) = 21 21.1 I 21.2 2 (7.11)

U21 ,21

Since the factorized matrix has been stored in the upper triangular portion, Eq (7.11)
can be re-written as

b21-(U1,21Y1 + +UI2,21 YI2)-(unknownl)
Y 21 (incomplete) (7.12)

Similar expressions can also be written for Y22 (incomplete), Y23 (incomplete) and Y24
(incomplete)

In Eq (7.11), we define

www.manaraa.com

178 Parallel-Vector Equation Solvers for Finite Element Engineering Applications

unknown! =UI3 ,2I Y I3 + +U20,2I Y 20

At the same time, processor 3 (or P3) will compute:
__ hl7 -(UI,I7YI + + U I2,17) - (...)

YI7 (incomplete)

and will also compute:

(7.13)

(7.14)

Yl8 (incomplete) through Y20 (incomplete), and Y29 (incomplete) through Y32 (incomplete).

P1 P7 P3 P1 P2
;pcC ;< ,c ;oC , ,c ,r

I
I

S :

l:~~§~L i
11 I---+:"='--:''l... :
21 I-_:..=;...:..:=-r--~'
2SI---~~~--~~

291----,r~~------~

YS
Y9

Yl1

Yn

=

Figure 7.6 Parallel forward elimination

B. Backward Elimination:
Assuming the last 8 unknowns of the solution vector x in the backward elimination
phase have already been calculated, and the backward solution for xn - 8' xn - 9' xn - IO and
xn _11 are sought. To simplify the discussion, assuming n = 100 and the factorized upper
triangular matrix U is full as shown in Figure 7.7. According to Eq. (7.7), one has:

n = 100

Y92 - L U92,jXj
j = 93

X92 = ---------
U92,92

Y92 -(U92 93 X 93 +U92 94 X 94 + ... +U92 100 X 100)
X92 = ' , ,

U92,92

(7.15)

(7.16)

Thus, one can clearly see that processor 1 (see Figure 7.7) can easily calculate
unknowns X92 through X 89' since X IOO through X93 have already been "completely"
calculated.

Having completed the final solution for X92 through X 89' processor I continues to
compute the "partial" (or incomplete) solution for X88 through X 85 . Processor I then send
these partial solutions to the next processor (on its left neighbor, say processor 3) and
processor I continues to find the partial solution for X 84 through XI'

For example:

y. - (known portion) - (unknown portion)
Xi ("partial" solution) = -'-.' ---------------v..

1,1

(7.17)

www.manaraa.com

Due T. Nguyen 179

In Eq. (7.17), i = 84~1, andj = 88, the known and unknown portions are defined as

known portion = (Uij+1 xj+I+ + ui.n xn)

unknown portion = (ui• i+1 Xi+1 + ui• i+2 Xi+2 + + uij Xj)

P1 P2 P3 P1 P2 P3
///////
11,11,1

Xn-28

xn-8
xn-4

Xn

Figure 7.7 Backward elimination

Y1

= Yn-28

Yn-8
Yn-4

Yn

(7.18)

(7.19)

Meanwhile, a "if check" is performed in order to determine the workloads for the
remaining processor (not including processor 1). If a processor is adjacent to the left of
processor 1 (say processor 3), it will receive the "partial" solutions (for example, x 88

through x 85) from all other processors (fan in), say processors 1 and 2. All the other
processors (not including processor 1 and the adjacent processor 3) will send the
required information to processor 3. Therefore, processor 3 is now ready to compute the
"final" solution for X88 through X85•

The above backward solution strategies can also be conveniently cast in the
following step-by-step procedure (also refer to Figure 7.8).

www.manaraa.com

180 Parallel-Vector Equation Solvers for Finite Element Engineering Applications

~
XH~

"I

'4'" liz .~ '4 .., liz

11 ~ I~ 14

[&.' I"" ,
f"'~ IC2IC, c,
v f',.

~'"
NJ!~

IY"~~

~

a .. ww .. b
a .. wW .. b

Figure 7.8 Backward solution

=

x

Processor PI'S tasks:

Step 1 :

Step 2 :

Step 3 :
Step 4:

Solve for unknowns Xi' Xi.1 •••• Xi.7 (refer to the triangle region CI in Fig.
7.8)
PI uses 8 X 8 block AI (see Fig. 7.8) together with the corresponding
(known) portions of the x vector to compute the so called "known
portion" as indicated in Eq. (7.18)
PI sends the "known portion" to its adjacent (left) neighbor processor P4
PI continue to use (bigger) block BI (see Fig. 7.8) together with the
corresponding (known) portions of the x vector to compute the so called
"known portion" as indicated in Eq. (7.18)

The adjacent (left) neighbor processor P4's tasks:

Step 0:
Step 1:

P4 receives "known portions" from all other processors
solve for unknowns Xi_S, Xi_9' •.• , Xi_IS (refer to triangular region D4 in Fig.
7.8). Then P 4 will perform tasks similar to steps 2-4 of processor PI

Tasks to be done by each of the remaining processors (say P2, P3 •••)

Step 0:
Step 1:

P2 (and also P3 •..) will send its own "known portion" to processor P4
Waiting for its turn to compute subsequent unknowns. Then P2 (and also
P 3 •••) will perform tasks similar to steps 2-4 of processor PI

The above process is repeated until the final solution for XI is found. It should also
be noted here that each processor also holds a vector X of length n. At the end of the
backward elimination process, each processor only has its own portion of the solution
in a vector x. The system subroutine GDSUM is then used to effectively merge each
individual processor's solution to obtain the final global solution (as shown in Figure
7.9).

www.manaraa.com

Duc T. Nguyen 181

P1
P2

P3
P1

P2
P3

PI

Figure 7.9 GDSUM is used to merge partial (processor) solution for final solution

The arithmetic operations in the forward elimination and in the backward
elimination phases are essentially the same. In the forward elimination phase, the
calculations are performed in parallel and the massages are passed by "fan-out".
However, in the backward elimination phase, the calculations are mostly done in
sequential and the communications are completed by "fan-in". Table 7.6 gives key ideas
of the algorithm for forwardlbackward elimination.

Table 7.6 Algorithms for forwardlbackward elimination

Forward elimination

DO 100 i = I, n, 4
IF ("me" have the i·!!! row) THEN

C ... For I processor
update y(i),y(i+ I),y(i+2),y(i+ 3)
fan-out (or send to all)
y(i),y(i+ I),y(i+2),y(i+ 3)
partially update yU)(for i+ 3 < j < n)
for processor "me'" portion only

ELSE
C ... For all other processors

receive y(i),y(i+ I),y(i+2),y(i+ 3)
partially update y(j) (for i+ 3 < j < n)

ENDIF

100 continue

Backward elimination

DO 200 i = n, I, - 4
IF ("me" have the i·!!! column) THEN

C ... For I processor
update x(i),x(i-I),x(i-2),x(i-3)
send partially updated x(i-4),x(i-5),x(i-6)
x(i-7) to the next processor
partially update x(j) (for I < j < i-7)
ELSE

C ... For I processor (the adjacent processor
to "me")

if ("me" have the (i_4)"'h column) then fan
in (or receive) x(i-4),x(i-5),x(i-6),x(i-7)
else

C ... For all other processors
send information correspond to row (i-4),
(i-5), (i-6) and (i-7) to processor which
contains the (i_4)'h column
ENDIF
ENDIF

200 continue

7.3 Numerical Results and Discussions

Several numerical examples are run on the Intel iPSC/860 hypercube and on the
MEIKO (Ref7 .11) parallel computers with the presented equation solver. Some results

www.manaraa.com

182 Parallel-Vector Equation Solvers for Finite Element Engineering Applications

are shown in Tables 7.7 through 7.10.

Table 7.7 Timings for solving 1 OOOx 1 000 equations
on the Intel iPSC/860 (Lagrange machine)

Nodes 1 2 4 8 16 32 64 128

Deco. 14.45 8.117 5.403 3.800 2.962 2.522 2.321 2.26

Forw. 0.231 0.156 0.123 .0870 .1086 .1789 .3243 .640

Back. 0.122 .0823 .0569 .0545 .0539 .0651 .0829 .108

Total 14.80 8.355 5.583 3.942 3.125 2.766 2.718 3.01
Note: Sequential-send scheme wIth vector-unrollIng level 8.

Table 7.8 Comparison of equation solvers
(n = 16152, nbw = 328, using 32 nodes on Intel iPSC/860 Gamma)

Intel Pro-solver (SES) The present solver*

Decomposition: = 51.18 (sec) Decomposition: = 25.85 (sec)

Forward: = 9 (sec) Forward: = 0.8156 (sec)

Backward: =62 (sec) Backward: = 0.9401 (sec)

Total: = 122.18 (sec) Total: =27.607 (sec)
* Sequential-send scheme with vector-unrolling level 8.

Two real structural problems are also solved by the proposed solver in order to
evaluate its performance. The first one is a hinged-cylinder model with 1808 degrees
of freedom (or n = 1808), average half bandwidth nbw = 200, and maximum half
bandwidth maxbw = 300. It should be noted here that for this problem, the block
skyline storage scheme only needs 254644 words of memory, which is about 70% of
that required by a row storage scheme. The second one is an aircraft structure [7.5, 7.6]
with n = 16148, nbw = 324, and maxbw=604. Numerical results for these 2 practical
models are shown in Tables 7.9-7.10. Table 7.10 gives the total timing for solving the
problem on 8, 16 and 32 nodes.

Table 7.9 Hinged-cylinder structure

Note: Double-send scheme with vector-unrolling level 4.

www.manaraa.com

Due T. Nguyen 183

Table 7.10 Gamma computer timing (sec) for aircraft structures

nodes
Task

8 16 32 32*

Decomposition 35.9 30.7 28.7 26.0

Forward elimination 1.6 1.4 1.4 0.8

Backward elimination 1.4 1.5 1.7 1.0

Total 38.9 33.6 31.8 27.8

Note: Sequential send scheme WIth vector-unrollIng level 4(* = level 8).

A 2-D Truss Structure with Multiple Bays and Stories: In this example, a 750 bay
x 6 story (and a 1096 bay x 41 story) truss structure is shown in Figures 7.10. A
horizontal force F is applied at node 100. The former (750 bay x 6 story) has 18006
elements. The resulted structural stiffness matrix has 9016 degree-of-freedom (or
equations). The average bandwidth for this stiffness matrix is 1512.

The latter (1096 bay x 41 story) has 179785 elements. The resulted structural
stiffness matrix has 89960 degree-of-freedom (or equations). The average bandwidth
for this stiffness matrix is 2208.

In both the former and the latter, both the Intel Gamma Parallel Computer
(with 128 processors) and the Intel Delta Parallel Computer (with 512 processors) were
used to solve the resulted systems of simultaneous equations. It should be mentioned
here that the Delta parallel computer has more processors as well as more memory per
processor than the Gamma Computer. Due to the relatively large-size problems, at least
16 processors and 8 processors need to be used (for the 750 bay x 6 story structure) by
the Gamma and Delta computer, respectively.

At least 256 processors need to be used (for the 1096 bay x 41 story) by the
Delta computer.

The parallel-vector performance for the 750 bay x 6 story and the 1096 bay x
41 story are given in Tables 7.11 and 7.12, respectively.

www.manaraa.com

184 Parallel-Vector Equation Solvers for Finite Element Engineering Applications

750 bayJ
F

--:--~ "------.,,...----~ - - - - - - - - - - - - - - - - - - r-----~

6 J'elieJ

Figure 7.10 2-D truss structure

,
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

(I" :2
fC""""":=:WP----7i' ev

Table 7.11 Comparison of MPFEA finite element code on the Gamma and Delta
computers (750 bays, 6 stories, 18006 els., NEQ = 9016, Ave. BW = 1512)

8 16 32 64 128 256 512

Gamma fac. - 80.20 61.383 57.018 48.081 - -

forward - 0.8228 0.6241 0.7751 1.2786 - -

backward - 0.5411 0.5405 0.6015 0.7090 - -

Delta fac. 136.05 75.69 54.85 46.89 40.85 39.04 39.40

forward 1.265 0.795 0.603 0.735 0.596 0.552 0.575

backward 0.616 0.428 0.356 0.468 0.399 0.478 0.589

www.manaraa.com

Due T. Nguyen

Table 7.12 Parallel Performance of MPFEA on 256 processors
(1096 bays, 41 stories, 179785 els, NEQ=89960, Ave. BW=2208)

Task(s) CPU time Mflops
(seconds)

factorization 662.417 631.56
Forward elimination 4.9654 77.94
Backward elimination 3.1579 120.16
Others (overhead, etc.) 3.4624 -
Total 674.13 621.73

185

From the examples considered in the above sections, one can see that the
vector performance is more than doubled through the use of vector-unrolling and the
DDOT system subroutine. The communication performance is also improved by using
the so-called double-send and sequential-send schemes. The sequential-send scheme is
better than the double-send scheme when the number of processors increases. Further
improvement in the performance can be expected if the users are allowed to make
changes in the communication subroutines.

7.4 FORTRAN Call Statement to Subroutine Node

Based upon the parallel-vector algorithms discussed in the previous sections, a parallel
Fortran subroutine "Node" has been written for the Intel type computers (massively
parallel, distributed computers). The call statement to subroutine node, the meaning of
various arrays (or arguments) in the call statement, the dimension requirements for each
array and how to obtain various arguments in the subroutine are explained in the
following sections. All real arrays are declared in double precision.

Subroutine node (nodes, iam, n, nbw, imod, a, z, y, x, maxa, irow, icolg, tern, kflag)

nodes = number of processors

imo~

=mynode id#
= degree-of-freedom
= maximum bandwidth (include diagonal)

= 1 (for real problem)
a = stiffness matrix (dimension = nterms)

z = working array, Z (nbw, 8)
y = load vector, y (n)

x = displacement vector, x (n)
maxa = diagonal locations, dimension ~ {[(n-l + I)/Nodes] +2} *8
*irow = ith row length(include diagonal), diJension ~ (n -1 + 1)

8

www.manaraa.com

186

*icolg

*Notes:

tern

kflag

Parallel-Vector Equation Solvers for Finite Element Engineering Applications

= column height, dimension ~ (n -I + I)
8

(a) All processors need to have these information
(b) Only the information of row-lengths (and column heights) of the

last row (and last column) of each block is needed
= real array, dimension ~ nbw

_ f I, for factorization
-lELSE, for forward/backward

The above subroutine arguments can be better understood by referring to
Figure 7.11 and the following comments

[K]

~. H-":-7C~ 2 "cxtran colufnna/ro"".
.... added .0 that

- NEQ - 16 - multiple of"NUNROL

X-X---XXX---X XoX_XX
X X X 0 X

XXoXX ______ _
XXXX-X_X __ _

XXXXX_X __ _
XXXX_X __ _

XXX_X __ _ XXXXX __
XXXX __ XXX __

SYM. X X __ X_·
10'·.

10"

(NEQ)_-14
_ - extra :zero. Cor

unrollina purpo.e.

Figure 7.11 Massively distributed storage scheme for equation solver

Comments on Figure 7.11: In Figure 7.11, the following data is assumed

{
(NEQ) actual = 14
NUNROL =4
NP (= No. of Processors) = 2 = (processor 0 and 1)
Thus: NEQ = 16 (=multiple of NUNROL)

(a) column height: from diagonal upward (include diagonal term)
(b) row-length: include diagonal term.
(c) Since NUNROL = 4 is used in the equation (Intel) solver, each block (of 4)

columns must have same level high- Extra ZEROES (see symbols. as shown in
Figure 7.11) need be added

(d) The last column height in each block (of 4) must be a multiple ofNUNROL and
must be ~ NUNROL

(e) For the above example of [K], max NP = 4 (processors 0, 1,2,3), IfNP > 4, then
we'll have idle processors I

(f) We need GLOBAL column height - Icolh

2

[NEQ-I] I
NUNROL +

www.manaraa.com

Due T. Nguyen 187

where only global column height of the LAST column in each block (of 4 columns)
need be calculated

(g) We also need GLOBAL row-length information

IROWL

1
2

[NEQ-l] 1
NUNROL +

where only Global row-length of LAST row in each block (of 4 rows) need be
calculated.

(h) We also need LOCAL (for each Processor) MAXA information

1 1 1
2 2 2
3 3 4

4 7 MAXA = MAXA 5 - 11 For Processor 0

NEQ ~ 1~
NP 8 29

andMAXA

1
6
12
1~ for processor 1
36
46
57

For the complete listing of the FORTRAN source codes, instructions in how to
incorporate this equation solver package into any existing application software (on any
specific computer platform), andlorthe complete consulting service in conjunction with
this equation solver etc ... the readers should contact:

Prof. Duc T. Nguyen
Director, Multidisciplinary Parallel-Vector Computation Center
Civil and Environmental Engineering Department
Old Dominion University
Room 135, Kaufman Building
Norfolk, V A 23529 (USA)
Tel = (757) 683-3761, Fax = (757) 683-5354
Email = dnguyen@odu.edu

7.5 Summary

The parallel-vector Choleski equation solver on distributed memory computers has been
described and tested on several applications. Parallel, vector and communication
strategies have also been discussed. Incore memory requirements and the number of

www.manaraa.com

188 Parallel-Vector Equation Solvers for Finite Element Engineering Applications

operations are small since the skyline storage scheme is used. Furthermore, the entire
coefficient stiffness matrix is not resided in I processor. Rather, the entire coefficient
matrix is splited and distributed across all processors. Thus, as the number of processors
is increased, the incore memory requirement for each processor is decreased nearly in
proportion with the number of processors used. The vector speed is enhanced by the
vector unroIIing technique. The parallel-vector performance of the proposed solver on
several applications seems to be quite good. Furthermore, it should be emphasized here
that the forward and backward solution of the present solver are quite effective, and
therefore this solver can be nicely incorporated into other applications, such as eigen
values analysis, nonlinear analysis and structural optimization.

7.6 Exercises

7.1 Using the symmetrical coefficient (stiffness) matrix data shown in Figure 5.27 of
Chapter 5, assuming 3 processors are available (Po, PI and P2) and using unroll
level 4:
(a) Find global column height (lCOLH) information???
(b) Find global row -length (lROWL) information??
(c) Find local diagonal locations (MAXA) information
Hints: Read Section 7.4 of Chapter 7

7.2 In Fig. 7.1, one realizes that even though column-by-column fashion is used to
store the coefficient matrix, but row-by-row fashion is used to factorize the matrix.
What will be the problem(s) if we adopt the column-by-colurnn factorization
strategies???

7.3 In the algorithm presented in Table 7.1, only the "key ideas" behind the index JJ
(of loop 400) are given and explained. Explain in greater details how the index JJ
changes??

7.4 Given the size ofthe coefficient (stiffness) matrix is N (say N = 10,000 equations),
the flop rate is FR (say FR = 10 MFLOPS per processor), the number of processors
is NP (say NP =4), and the communication rate is CR (say CR = 0.1 Million Words
per second). Using the Choleski factorization algorithm, and assuming the
coefficient (stiffness) matrix is symmetrical and full.
(a) Estimate the "purely" computational time (assuming no communication)
(b) Estimate the "purely" communication time (assuming communication time will

not overlap with computational time).

7.7 References

7.1 Ortega, J.M. andVoigt, R.G. "Solution of Partial Differential Equations on Vector and Parallel
Computers" SIAM Review, Vol. 27, No.2, 1985, pp. 149-240.

7.2 Qin, J., Gray, Jr., C.E., Mei, C. and Nguyen D.T., "A parallel-vector equation solver for
unsymmetric matrices on supercomputers," Computing Systems in Engineering, Vol. 2, No. 2/3,
1991, pp. 197-201.

7.3 Henk A. van der Vorst, H.A., "Large tridiagonal and block tridiagonal linear systems on vector and
parallel computers," Parallel Computing, Vol. 5,1987, pp. 45-54.

7.4 Dongarra, J.J. and Johnson, 1., "Solving banded systems on a parallel processor," Parallel
Computing, Vol. 5,1987, pp. 219-246.

7.5 Agarwal, T.K., Storaasli, 0.0., and Nguyen, D.T., "A Parallel-Vector Algorithm For Rapid Structural
Analysis on High-Performance Computers," Proceedings of the AlAAI ASMEI ASCEI AHS 31"

www.manaraa.com

Due T. Nguyen 189

SDM Conference, Long Beach, CA, AIAA Paper No. 90-1149 (April 2-4, 1990).
7.6 Storaasli, 0.0., Nguyen, D.T. and Agarwal, T.K., "The Parallel Solution of Large-Scale Structural

Analysis Problems on Supercomputers," AIAA Journal, Vol. 28, No.7, pp. 1211-1216 (July 1990).
7.7 Krechel, A., Plum, H.J. and Stuben, K., "Parallelization and vectorization aspects ofthe solution of

tridiagonal linear systems," Parallel Computing, Vol. 14, 1990, pp. 31-49.
7.8 Heath, M.T., Romine, C.H., "Parallel solution of triangular systems on distributed-memory

multiprocessors," SIAM 1. Sci. Statist. Comput., Vol. 9, No.3, 1988, pp. 558-588.
7.9 Hajj, l.N. and Skelboe, S., "A multilevel parallel solver for block tridiagonal and banded linear

systems," Parallel Computing, Vol. 15, 1990, pp. 21-45.
7.10 Qin,1. and Nguyen, D.T., "A Parallel-Vector Equation Solver for Distributed Memory Computers,"

Proceedings of the 2nd Parallel Computational Methods for Large-Scale Structural Analysis and
Design, sponsored by NASA LaRC, Marriott Hotel, Norfolk, V A (Feb. 24-25, 1993). Also, to appear
in Computing Systems in Engineering.

7.11 Maker, B.N., Qin, J. and Nguyen, D.T., "Performance ofNlKE3D with PVSOLVE on Vector and
Parallel Computers," Computing Systems in Engineering Journal (1995).

www.manaraa.com

8.1 Introduction

8 Parallel-Vector
Unsymmetrical

Equation Solver

Unsymmetric matrices are not uncommon in large-scale structural analysis. In panel
flutter analysis, for example, one has to deal with unsymmetric equations due to the
appearance ofthe unsymmetric aerodynamic influence matrix. When large deflections
and unsteady third-order piston theory aerodynamics are considered in the flutter
analysis, it is necessary to solve the unsymmetric equations incrementally and/or to
solve the un symmetric generalized eigen-problems interactively. Thus, an efficient and
accurate un symmetric equation solver plays an important role in structural analysis.

In this chapter, an efficient and accurate equation solver for unsymmetric
matrices is presented. The proposed method exploits both parallel and vector
capabilities provided by modem, high-performance supercomputers, such as the CRA Y
2 and CRA Y Y-MP. With minor changes in the computer coding, the proposed
algorithms can also be implemented on distributed computers, such as the Intel Paragon,
the IBM-SP2 multi-processor computers.

In order to optimize the vector performance, a special storage scheme is used
to store the coefficient matrix A so that the loop-unrolling technique can be applied in
most of the calculations. A parallel FORTRAN language[SI] is adopted to develop a
parallel code in a multiple processing computer environment, such as the CRA Y 2,
CRA Y -J918, CRA Y Y -MP and CRA Y -C90.

8.2 Parallel-Vector Unsymmetrical Equation Solution Algorithms

8.2.1 Basic unsymmetric equation solver
Systems of unsymmetric linear equations can be represented as

Ax = b (8.1)

One way to solve Eq. 8.1 is first to decompose A into the product of two triangular
matrices

A = L U (8.2)

191

www.manaraa.com

192 Parallel-Vector Equation Solvers for Finite Element Engineering Applications

where V is an upper-triangular matrix and L is a lower-triangular matrix with unit
diagonal elements. For r from 1 to n, the rlh row elements of V and the rlh column
elements of L can be obtained by the following formulas:

r-I

V(r,i)=A(r,i)-L L(r,k) * V(k,i) Ci=r, ... ,n)
k=1

(ACi,r) - E L(i,k) * V(k,r)
L(l·,r) = k=1 (. 1) l=r+ , ... ,n

V(r,r)

(8.3)

(8.4)

Then the unknown vector x is determined by the forwardlbackward elimination, for
example, to solve

Ly = b
for y, with

i-I

y(i) = bCi) - L LCi,k)*y(k) (i=I, ... ,n)
k=1

and to solve

for x, with

xCi)

Vx = y

y(i) - kt.1 VCi,k) *X(k»)

V(i,i)
Ci = n, ... ,1)

(8.5)

(8.6)

(8.7)

(8.8)

Since the number of operations involved in the decomposition (or
factorization) is usually much more than that in the forwardlbackward elimination,
emphasis will be placed on developing an efficient parallel-vector algorithm for the
factorization. In the forwardlbackward elimination, however, it has been concluded in
Ref. [8.2] that it is more efficient to use one processor with long vectors rather than
introducing synchronization overhead on multiple processors.

In practice, both L and V can be stored in the same array previously used to
store A. Moreover, do-loops in Eqs. 8.3 and 8.4 need to be rearranged to adopt the loop
unrolling technique, as the decomposition procedure can be simply described as:

For I = 1,2,3, , n
step a. Find the rh row of U.
step b. Find the rh column of L.

---------1

--- __ ._-.-

www.manaraa.com

Due T. Nguyen 193

8.2.2 Detailed derivations for the [LJ and [U] matrices

In order to better understand the derived formula shown in Eqs. 8.3 and 8.4, let us try
to compute the factorized [L) and [U] matrices from the following given 3 x 3
unsymmetrical matrix [A), assuming to be a full matrix to simplify the discussion.

all a l2 a l3

[A] = a 21 a22 a23

a31 a32 a33

(8.9)

The above unsymmetrical matrix A can be factorized as indicated in Eq. 8.2, or in the
long form

all a l2 a 13

a 21 a22 an
a 31 a32 a33

(8.10)

The nine (9) unknowns, according to a special ordering U ll ' U 12' ulJ; then 121 , 131 ; then U22'

u23 ; then 132; and finally U 33 from Eq. 8.10 can be found by simultaneously solving the
following system of equations

(8.11)

Thus, from Eq. 8.11, one obtains

UII all
u I2 a l2
u I3 a l3

121

a21

UII

131 =
a31

UII (8.12)
U22 = a22 - 121 UI2

Un = a23 - 121 U13

132 =
a32 - (131 U12)

U22

U33 = a33 - (131 U13 + 132 Un)

www.manaraa.com

194 Parallel-Vector Equation Solvers for Finite Element Engineering Applications

It can be seen clearly that the nine unknowns shown in Eq. 8.12 can also be obtained
by directly using Eqs. 8.3 and 8.4.

The ordering appeared in Eq. 8.12 suggests that the factorized matrices [L] and
[V] can be found in the following systematic pattern:

step 1: The 1st row of the upper triangular matrix [V] can be solved for the
solution ofull , Ul2 and ulJ

step 2: The 151 column of the lower triangular matrix [L] can be solved for the
solution of 121 and 131

step 3: The 2nd row of [V] can be solved for the solution of U22 and U23
step 4: The 2nd column of [L] can be solved for the solution of 132
step 5: The 3rd row of [V] can be solved for the solution of U33

For the case r = 8 and i = 9, Eqs. 8.3 and 8.4 become:

Ug,9 = a g,9 - (1g,1 U1,9 + /g,2 U2 ,9 + ... + /g,7 U7,9)

a9 ,g - (/9,1 U1,g + /9,2 U2 ,g + ... + /9,7 U7,8) } (8.13)

Observing Eq. 8.13, one can see that to factorize the term U8,9 of the upper triangular
matrix [V], one only need to know the factorized row 8 of [L] and column 9 of [V].

Similarly, to factorize the term 19,8 of the lower triangular matrix [L], only need
to know the factorized row 9 of [L] and column 8 of [V].

8.2.3 Basic algorithms for decomposition of "full" bandwidths/column heights
unsymmetrical matrix

To exploit the vector capability provided by supercomputers[831, it is necessary to
arrange the data appropriately. To do this, matrix A is stored in a mixed row oriented
and column oriented fashion. This storage scheme allows the use of the loop-unrolling
technique in both steps a and b, described in section 8.2.1. Figure 8.1 shows how the
coefficient matrix A is stored in one-dimensional array. In Figure 8.1, PI' P2, P3 ...
represent processor numbers. The basic FORTRAN code corresponding to steps a and
b can be written as shown in Table 8.1.

Table 8.1 Basic algorithm for decomposition (full matrix)

for 1=1,2,3, ... ,n

Do K = 1,1-1

Scalar = a(I, K)
c do 100p2 is used to update (or factorize) the ph row of U due to the

contribution of the Klh row (refer to Eq.8.3)

{
Do 2 J = I, n
a(I, J) = a(I, J) - scalar * a(K, J)

2 Continue

www.manaraa.com

I

Due T. Nguyen 195

c do loop 3 is used to "partially" update the Ith column of L due to the
contribution of the Kh column (refer to the nominator of Eq.8.4)

Scalar = a(k, I)

I
IC

1
Do 3 J J =] + 1, n
a(JJ, 1) = a(J], 1) - scalar * a(J], K)

3 Continue

Continue

do loop 4 is used to compute the "final" update of the Jlh column of L

I

I

{ Do 4 J] =] + I, n
4 a (J] , 1) = a (Jl , 1) / A (J, 1)

Continue (for loop I)

[A] = [{row I}, {row2}, {row 31, •• .,. {row n},
{column I}, {column 71, {column n o1}]

"- I: i"-.
["-, 2

1"- 3
[\..

'" 1
2 "

."-..
i"-.

['\,.

'" ~
"

Figure 8.1 Storage scheme for unsymmetrical matrix A in a one-dimensional array

In order to better understand the basic algorithm shown in Table 8.1 for
factorization of a full and unsymmetrical matrix, a 3 x 3 matrix [A] given in Eq. 8.9 of
Section 8.2.2 will be used to verify Table 8.1.

iFor i = 1, then (please refer to Table 8.1)

! -loop 1 will be skipped

i -from loop 4

www.manaraa.com

196 Parallel-Vector Equation Solvers for Finite Element Engineering Applications

-------------------,

a(2, 1)
a(2, 1)
a(1, 1)

a(3, 1) a(3, 1)

-notice:
a(1, 1)

- 121

- 131

(refer to Eq. 8.12)

(refer to Eq. 8.13)

I
I

I

I

I

The first row of[U] (such as Ull ' Ul2 and un) are not required to calculate, because I
they are the same as the original matrix [A] (u ll = all' u l2 = a l2 and Un = an) I

For i = 2, then

-from loop 2

a(2, 2) = a(2, 2) -a(2, I)*a(1,2) : U22 (refer to Eq. 8.12)
a (2, 3) = a (2, 3) -a (2, 1) *a (1 , 3) : U23 (refer to Eq. 8.12)

-from loop 3

a(3 , 2) = a(3, 2) - a(1 , 2) * a(3, 1) '" partial solution for '32
-from loop 4

a(3, 2) = a(3, 2) '" final solution for 132 (refer to Eq. 8.14)
For i = 3 therf(2, 2) ,

-from loop 2 (with K = 1)

a(3 , 3) = a(3, 3) - a(3, 1) * a(I , 3) - partial solution for U33

-loop 3 will be skipped

-loop 4 will be skipped

-from loop 2 (with K = 2)

a(3, 3)=a(3, 3)-a(3, 2)*a(2, 3) : final solution for UJJ (refer to Eq.8.12)

-loop 3 will be skipped

-loop 4 will be skipped

Comments on Table 8.1:
(a) The operations in the innermost loops 2 and 3 are "saxpy" operations (a vector +

a scalar * another vector), thus these operations can be done quite fast on vector
computers, such as Cray-YMP, Cray-C90, Intel Paragon, or IBM-SP2 computers.

(b) In loop 2, the,P column of Ukeeps changing, thus it is important to store the upper
triangular matrix U according to a row-by-row fashion (see Figure 8.1). This will
assure to have a stride I in vector computation.

www.manaraa.com

Due T. Nguyen 197

(c) In loop 3, the JI th row of L keeps changing, thus it is important to store the lower
triangular matrix L according to a column-by-column fashion (see Figure 8.1). This
will assure to have a stride 1 in vector computation.

(d) The "scalar" defined in Table 8.1 is also referred to as "multiplier". In general, the
average upper bandwidth or UBM of [U] is different from the average lower
bandwidth or LBW of [L]. Factorizing the rh row of [U] and the rh column of [L]
can be done much more efficiently by skipping some operations when the
multiplier is zero. Figures 8.2 and 8.3 show what information is truly needed to
factorize the rh row and the rh column of the given unsymmetrical matrix [A].

-UBW-

D ~. - - - - - - information required (plus OC)

~~~J~~~~~~ to factorize the Ith row 

:--.. --- Ith row (currently factorized) 

information required (plus 00) 
to factorize the Ith corumn ~,"--_-

t Ith column (currently factorized) 

Figure 8.2 Unsymmetrical factorization (UBW > LBW, OD = OC) 

information required (plus OE) 
fo fadorize Ith column 

·-rTrM""A- - - - - .... 

information required (plus OF) 
to factorize Ith row 

Ith row (currently factorized) 

t Ith column (currently fadorized) 

Figure 8.3 Unsymmetrical factorization (UBW < LBW, OF = OE) 



www.manaraa.com

198 Parallel-Vector Equation Solvers for Finite Element Engineering Applications 

8.2.4 Basic algorithm for decomposition of "variable" bandwidths/column 
heights unsymmetrical matrix 

For many practical engineering applications, the unsymmetrical matrix is not full. 
Instead, the unsymmetrical matrix will have variable bandwidths and variable column 
heights as shown in Figure 8.4 

Ith column --+ :- length of Ith row 
---------------r-~--, , , , , , , , , , 

'K-----+1-: -;- - - - - nop = 4th row , 

, 
_________________ I 

length of Ith column { 
-- ---------------_. 

- - 'Ith row = 9th row 

Figure 8.4 Unsymmetrical matrix with variable bandwidths/column heights 

In this case, to avoid unnecessary operations with zero values, the algorithm given in 
Table 8.1 needs to be modified slightly as shown in Table 8.2. 

Table 8.2 Basic algorithm for decomposition 
(variable bandwidths and column heights) 

r------------------~----------~~-----. 

(ForI=I,2,3, ... n) i 
c ITOP is the row number of the top-most nonzero element of the ph column i 
c ITOP also represents the column number of the left-most nonzero element ofl 
the ph row 

DO 1 K = ITOP, I - 1 I 
c do-loop 2 is used to update the I'h row of U due to the contribution of the K'h 
row 

I
Da 2 J = f, K + length of the K Ih row ) 
a(I, J) = a(I, J) - a(I, K) * a(K, J) 

2 CONTINUE 
c do-loop 3 is used to update the ph column of L due to the contribution of the 
K'h column 

I
Da 3 Jf = f + 1, K + length of the Klh column 
a(JI, I) = a(JI, I) - a(K, I) * a(JI, K) 

3 CONTINUE 
Continue 



www.manaraa.com

Duc T. Nguyen 

1 
DO 4 JJ = I + 1, I + length of the Ilh column 

a(JJ, 1) = a(JJ, 1) 
a(I,1) 

4 CONTINUE 

Continue (for loop I) 

199 

Comparing the algorithms shown in Table 8.2 and Table 8.1, these two algorithms are 
quite similar, with the following key differences 
(a) The starting value for the index K in loop I of Tables 8.1 and 8.2 are 1 and ITOP, 

respectively. This change is necessary to include the effects of column height of 
the fh column of [U] and/or row length of the ph row of [L]. If the matrix is 
completely full, then ITOP = 1. 

(b) The ending value for the index J in loop 2 of Table 8.1 and 8.2 are Nand K + 
length of J<lh row, respectively. This change is necessary to include the effects of 
having "variable bandwidths". If the matrix is full, then K + length of J<lh row = 
N. 

(c) The ending value for the index Jl in loop 3 and loop 4 of Table 8.1 and 8.2 are 
Nand K + length of J<lh column, or I + length of ph column, respectively. This 
change is necessary to include the effects of "variable column heights". If the 
matrix is full, then K + length of J<lh column = N or I + length of ph column = N. 

8.2.5 Algorithms for decomposition of "variable" bandwidths/column heights 
unsymmetrical matrix with unrolling strategies 

The basic vector version of Table 8.2, with small modifications to include loop
unrolling level 6, is given in Table 8.3. It should be noted here that the compiler 
directives[83] are used to force the compiler to ignore potential vector dependencies in 
trying to vectorize the loop. 

Table 8.3 Vector algorithm for factorization 

I· (Fori=I,2,3, ... ,n) 

DO 1 K = ITOP, I - 1,6 

I 
CDIRS IVDEP 

DO 2 J = I, K + length of the Kth row 

I a(I,J) = a(I,J) - a(I,K) * a(K + I,J) 

I + - a(l,K + 2) * a(K + 2,J) - a(l,K + 3) * a(K + 3,1) 
i + - a(l,K + 4) * a(K + 4,J) - a(I,K + 5) * a(K + 5,J) 

12 Continue 

I CDIRS IVDEP 
I DO 3 J I = I + I,K + length of the Kth column 
. a(JI,I) = a(JI,I) - a(K,I) * a(Jl,K) * a(K + J,I) * a(JJ,K + 1) 

+ - a(K + 2,1) * a(JI,K ~~ - a(K +.112 * a(JI,K + lL __ .... ____i 



www.manaraa.com

200 Parallel-Vector Equation Solvers for Finite Element Engineering Applications 

+ - a(K + 4,1) * a(JI,K + 4) - a(K + 5,1) * a(JI,K + 5) 

3 Continue 

Continue 

DO 4 JI = I + 1,1 I + length of the Ith column 

a( JI,I) = a( JI,I) / a(I,I) 

4 Continue 

Continue (for loop i) 

From Table 8.2, one can clearly see that the previously factorized rows (please 
refer to loop 1) are used to partially factorize the current fh row (please refer to loop 2) 
of the upper triangular matrix U. Thus, to improve the vector performance, one should 
try to increase the work loads of the innermost loop 2. This can be done by unrolling the 
outer loop 1. For example, a block of six, instead of just one, previously factorized rows 
are used to partially factorize the current fh row (please refer to Table 8.3). 

Similarly, the previously factorized columns (please refer to loop 1) are used to 
partially factorize the current fh column (please refer to loop 3) of the lower triangular 
matrix L. A block of six instead of just one previously factorized columns are used to 
partially factorize the current fh column (please refer to inside loop 3 of Table 8.3). 

Thus, Table 8.3 can be obtained by simply making the following minor 
modifications to Table 8.2: 

(a) The increment of loop 1 is changed from 1 to 6 (to consider a block of 6 
rows/columns at a time) 

(b) Expanding the FORTRAN statement inside loop 2 to include the effects of using 
6 rows at a time to partially factorize the current fh row of [U]. 

(c) Expanding the FORTRAN statement inside loop 3 to include the effects of using 
6 columns at a time to partially factorize the current fh column of [L]. 

8.2.6 Parallel vector algorithms for factorization 
Assume the NP processors are specified during the execution. In a sequential code 
(Table 8.3), it is always known that before updating the fh row and the fh column, the 
previous (1 - 1 yh row and (1 - 1 yh column, have already been updated. In the multiple 
processors environment, however, only the previous (1- NPyh row and (1- NPyh column 
have been updated. Thus, the calculation of the contributions by rows and columns 
(from the (1- NP + l)th to the (1- I yh) should be synchronized among the NP processors. 
It should be noted here that the parallel strategy employed here is quite similar to the 
one discussed in Chapter 5 for variable bandwidths symmetrical equation solvers. 

The parallel FORTRAN language Force[81] is used in this work to develop a 
parallel code on multi-processors computer CRA Y 2 and CRAY Y-MP. In Force, 
Presched DO allows all processors to execute the same statement simultaneously with 
a different do-loop index assigned to each processor. Produce K = J assigns a value J 
to K and makes K"full". Copy K into L will store K into L only when K is "full" or else 
the processor has to wait. The combined use of Produce and Copy can provide 
communications among processors. 



www.manaraa.com

Due T. Nguyen 201 

Table 8.4 gives a parallel algorithm for the factorization phase on supercomputers 
with multiple processors, such as CRA Y 2 and CRA Y Y -MP. By comparing Tables 8.2 
through 8.4, it is helpful to identify the differences between the parallel and/or vector 
algorithm codes and the corresponding sequential one. 

Table 8.4 Parallel algorithm for decomposition 

r------------------------
I Presched DO 100 I = I, n 
I 
i DO I K = ITOP, I-NP, 6 

I CDIRS IVDEP 
I Do 2 J = I,K + length of the Kth row 

I a(I,J) = a(I,1) - a(I,K) * a(K,J) - a(I,K + I) * a(K + I,J) 

I + - a(I,K + 2) * a(K + 2,J) - a(I,K + 3) * a(K + 3,J) 
I + _ a(I,K + 4) * a(K + 4,1) - a(I,K + 5) * a(K + 5,J) 

;2 CONTINUE 

:CDIRS IVDEP 
I DO 3 JI = I + I,K + length of the Kh column 

a(JI,I) = a(JI,1) - a(K,I) * a(JI,K) - a(K + 1,1) * a(JI,K + I) 

+ - a(K + 2,1) * a(JI,K + 2) - a(K + 3,1) * a(JI,K + 3) 

+ - a(K + 4,1) * a(JI,K + 4) - a(K + 5,1) * a(JI,K + 5) 
3 CONTINUE 

CONTINUE 

DO IO K = I-NP + I, 1- I 

Copy Asyn(K) into KK 
DO 20 J = I,K + length fo the Kth row 

a(I,J) = a(I,J) - a(I,K) * a(K,J) 

20 CONTINUE 

DO 30 JI = I + I,K + length of the Kth column 

a(JI,I) = a(JI,1) - a(K,I) * a(JI,K) 
i 30 CONTINUE 

10 CONTINUE 

DO 4 JI = I + I,K + length of the rh column 

a(J 1,1) = a(J 1,1) / a(I,I) 

-4 CONTINUE 

Produce Asyn(1) = 1.0 

i 100 End Presched DO 



www.manaraa.com

202 Parallel-Vector Equation Solvers for Finite Element Engineering Applications 

A careful comparison between Table 8.3, vector algorithm for factorization, and 
Table 8.4, parallel-vector algorithm for factorization, suggests that the latter can be 
obtained from the former with the following modifications: 
(a) The outermost loop, for index], is executed in parallel, instead of sequential mode, 

by using a "Presched" parallel Fortran statement 
(b) Loop 1, for index K, in Table 8.3 is separated into 2 loops, loops 1 and 10, in Table 

8.4. In Table 8.3, the index K goes from "1TOP" to "1 - 1 ". In Table 8.4, the index 
K goes from "]TOP" to "] - NP", see loop 1, and then, from "] - NP + 1 II to "] - 1 II 
(see loop 1 0). 

(c) The "copy" parallel Fortran statement inside loop 10 of Table 8.4, will assure that 
the previous J(!h row have been completely factorized or else the processor will 
wait, and can now be safely used to partially factorize the current fh row (see loop 
20) and fh column (see loops 30 and 4). 

(d) The "Produce" parallel Fortran statement (after loop 4) is used to broadcast to all 
other processors that the fh row/column have been completely factorized now. 
It is important to recognize in here that parallel and vector factorization of the 

upper triangular matrix [U] in this chapter (unsymmetrical solver) is "quite similar" to 
the algorithms used in Chapter 5 (symmetrical, positive definite solver). 

Furthermore, parallel and vector factorization of the lower triangular matrix [L] in 
this chapter is similar to the "image" of the algorithms used in obtaining the upper 
triangular matrix [U]. 

8.2.7 Forward solution phase [L] tv} = {b} 
To simplify the discussions, let us consider a 6 x 6 full-system as shown in the 
following equation 

0 0 0 0 0 YI hI 
L21 1 0 0 0 0 Y2 h2 

L31 L32 0 0 0 Y3 h3 

L41 L42 L43 0 0 Y4 h4 

LSI LS2 LS3 LS4 0 Y s hs 

L61 L62 L63 L64 L6S Y6 h6 

The forward solution for the unknown vector {y} can be proceeded as follows: 

YI = hI 
Y2 = h2 - L 21 YI 

I-I 

YI = hI - L L/,kYk 
k=1 

(8.14) 

(8.15) 

since the lower triangular matrix has been generated and stored in a column-by-column 
fashion (please see Figure 8.1), thus column 1 of [L] has stride 1. Furthermore, to 



www.manaraa.com

Due T. Nguyen 203 

improve the vector performance, one should try to work with a long vector in the 
innermost do-loop. Thus, a good strategy is outlined in the following paragraphs: 

step 1: Solve for the unknown y, (according to Eq. 8.15) 
step 2: Use the first column of[L] and operate on the known scalar y, in order to 

update the right-hand-side vector {b}. Thus, the unknown Y2 can be 
found. 

step 3: Use the second column of[L] and operate on the known scaler {b}. Thus, 
the unknown YJ can be found. 

step 4: Continue to do "similar" operations as mentioned in steps 2 and 3, until 
all unknowns of vector {y} are found. 

The above step-by-step procedure can be simply coded as shown in Table 8.5. 

Table 8.5 Basic algorithm for forward solution 

c solve for the first unknown (N ote: Solution vector {y} will overwrite right-hand
side vector {b} to save computer memory) 

b(l) = b(l) 

c Try to solve the subsequent unknowns 

DO 1 1= 2, n, 1 

DO 2 J = I, n 

c Use the previously known solution to update the right-hand-side vector {b} 

2 b(J) = b(J) - L(J,I-1) * b(I - 1) 

c Next solution is readily found 

b(I) = b(I) 

continue 

It should be mentioned at this time that inside loop 2 of Table 8.5, one has "saxpy" 
operations (a vector {b} ± scalar b(I - 1) * another vector L), thus the innermost loop 
2 can be executed very efficiently on the vector computers, such as the CRA Y Y -MP, 
CRA Y -C90, etc .. 

However, a careful observation of the above 4-step procedure and the data 
structure shown in Eq. 8.14 suggests that even better vector performance can be 
achieved by suing the "loop-unrolling" technique, with a simple modification to Table 
8.5 

The key idea in "loop-unrolling" technique is to add a more heavy work load 
("saxpy" operations) into the innermost do-loop (see loop 2 of Table 8.5). A simple way 
to achieve this objective is to use 2 or more columns instead of just 1 column of matrix 
[L] and operate on previously known 2 (instead of just 1) solutions. Thus, a loop
unrolling algorithm for a forward solution can be shown in Table 8.6. 



www.manaraa.com

204 Parallel-Vector Equation Solvers for Finite Element Engineering Applications 

Table 8.6 Loop-unrolling (level 2) for forward solution 

.---~- .-----------"--

Ic 
Solve the first 2 unknowns 

-l 

b(l) = b(l) 

Ic 

b(2) = b(2) - L(2, 1) * b(l) 

For subsequent unknowns 
I 001 I =3,n,§ I 

I 
I 002 J = I, n 
I 
I b(J) = b(J) - L(J,I-l) * b(l-l) I 

I 
- L(J,I-2) * b(I-2) 

'2 
I 

CONTINUE 

Ic Next 2 solutions can be found 

I 
b(I) = b(I) 

b(l + 1) = b(I + 1) - L(I + 1, I) * b(l) I 
I 11 continue 1 __________ "------_ .. _------ ___ J 

Comments on Table 8.6: 
(a) In actual computer implementation, loop-unrolling level 6 or 8 can be used, instead 

of just using level 2 (see the increment 2 in loop 1 of Table 8.6). 
(b) For a general matrix with dimension n, the use of the loop-unrolling technique will 

require "special" treatments for the "left-over" columns of the matrix L. 
(c) To simplify the discussions, the matrix system of equations shown in Eq. 8.14 is 

assumed to be "full". However, in actual computer implementation, variable 
column-heights of the lower triangular matrix [L), and variable row-length or 
bandwidth of the upper triangular matrix [U] can be accommodated to avoid 
unnecessary operations (on the zeros). 

(d) In actual computer implementation, the lower and upper factorized matrices [L] 
and [U] will be stored in a 1-0 array and the original matrix, which is also stored 
in a 1-0 array, will be overwritten by [L) and [U] in order to save computer 
memory. 

8.2.8 Backward solution phase [U] {x} = tv} 
To simplify the discussions, let us consider the following 6 x 6 full system of equations 

UJI u l2 u l3 U l4 Ul5 Ul6 Xl Yl 

0 U22 un U24 U25 U26 X2 Y2 

0 0 U33 U34 U35 U36 X3 Y3 (8.16) 
0 0 0 U44 u 4S u 46 x 4 Y4 

0 0 0 0 u 5S u S6 Xs Ys 

0 0 0 0 0 U66 X6 Y6 

The backward solution for the unknown vector {x} can be proceeded as follows: 



www.manaraa.com

Due T. Nguyen 205 

(8.17) 

The operations involved in the above parenthesis are called "dot-product" 
operations. It is the dot product between the 2 vectors 

{ u23 ' U", U", u26 } . {~J 
Since the upper triangular matrix has been generated and stored in a row-by-row 

fashion (please refer to Figure 8.1), thus, each row of[ U] has stride I. However, each 
column of [U] has very undesirable stride (column stride of [U] is greater than 1). Due 
to this reason, it is not efficient, in this case, to use loop-unrolling technique (for 
example, having found the unknown x6, then using column 6 to operate on the scalar X6 

for the purpose of updating the right-hand vector {y}) as discussed in the previous 
section. The backward solution (please refer to Eq. 8.17) can be coded using "dot
product" operations, instead of"saxpy" operations as discussed in the forward solution 
phase, as shown in Table 8.7. 

c 

Table 8.7 Basic algorithm for backward solution 

Solve the last unknown 
x(N) = y(N) / U (N ,N) 

For subsequent unknowns 
DO 1 I = N -1, 1, -1 

c Performing the summation (or dot-product) operations in Eq. 8.17 

D02K=I+ I, N 
2 SUMI = SUMI + U(I,K) * x(K) 

x(l) = y(l) - SUMI / U(I,I) 
continue 

I 



www.manaraa.com

206 Parallel-Vector Equation Solvers for Finite Element Engineering Applications 

It should be mentioned here that the dot-product operations inside loop 2 of Table 
8.7 can be vectorized quite well, on vector computers, since the row vector of [U] has 
stride 1 (recall that the matrix U is stored in a row-by-row fashion). 

However, a careful observation ofEq. 8.17 and the storage scheme used for matrix 
[U] shown in Eq. 8.16 suggests that an even better vector-performance can be achieved 
by using the "vector-unrolling" technique, with simple modifications to Table 8.7. 

The key idea in "vector-unrolling" technique is to add more work loads (dot
product operations) into the innermost do-loop (see loop 2 of Table 8.7). A simple way 
to achieve this objective is to use two (or more) rows, instead of just one row of matrix 
[U] and operate on the previously known two (or more) rows, instead of just one row 
of solutions. The results "vector-unrolling" (level 2 unrolling is assumed), algorithm for 
backward solution is illustrated in Table 8.8. 

Table 8.8 Vector-unrollin al orithm for backward solution 

c Solve the last 2 (or more) unknowns 

x(N) = yeN) / U(N,N) 

x(N-1) = y(N-1) - U(N-1,N) * x(N) / U(N-1,N-1) 

c For subsequent unknowns 

DO 1 I=N-2, I,@] 

c Performing 2 (or more) dot product operations in Eq. 8.17 

D02 K=I+ 1, N 

SUMI = SUMI + U(I,K) * x(K) 

2 SUM2 = SUM2 + U(I-1,K) * x(K) 

xCI) = y(I) - SUM 1 / U(I,I) 

x(I-1) = y(I-I) - SUM2 - U(I-I,I) * xCI) / U(I-I,I-I) 

11 continue 

S.3 Numerical Evaluations 

The numerical performance of the proposed unsymmetrical solver is presented in this 
section. Both "test" problems as well as practical engineering problems are considered. 

To check the accuracy of the solution, a residual vector r is defined as 

r = Ax - b (S.IS) 

where x is the solution of Eq. 8.1 by the proposed solver. The (machine dependent) 
precision parameter E is defined as 

1.0 + E > 1.0 (8.19) 

which means E is the smallest positive number that satisfies Eq. 8.19.l84] In this work 
the partial coefficient matrix A is automatically generated as 



www.manaraa.com

Due T. Nguyen 

a (i,j) 1.0 
} 

a (i,j) 1.0 
} 

a(i,i) 

b (i) 1.0 

1.0 
+--

(i+j) 

(for) > i) 

(for) < i) 

(for 1 < i < n) 

(for 1 < i < n) 

Far INlftlll:.lllr.w,ird solution 

Present solver 
0.71 

Solver 
A = 1452 X 1452 full matrix 

Figure 8.5 Different solvers on CONVEX C220 

207 

(8.20) 

(8.21) 

(8.22) 

(8.23) 

The solution is regarded as accurate as long as all the elements of the vector r 
remain less than n * E, i.e, Ilril < n * E, where n is the largest absolute value of aU,}). 

Example 1: In the example, matrix A and vector b are automatically generated with 
n = 1452, NBWU = NBWL = n = 1452. The CPU time for solving this 
equation on the CONVEX C220 computer is given in Fig. 8.5 and is 
compared with the time given by the equation solver form the library 
subroutines installed on the CONVEX C220. The machine precision 
parameter E for the CONVEX C220 has a value of2.22024605 x 10'16. 

The computed residual norm is Ilrll~ = 1.0 x 10,15, which is less than n 
* E. 



www.manaraa.com

208 Parallel-Vector Equation Solvers for Finite Element Engineering Applications 

Example 2: In this example, A is automatically generated with n = 2000, and the 
bandwidths on the eRA Y Y -MP with 1, 2, 4 and 8 processors. The 
results are presented in Fig. 8.6 (for the eRA Y Y -MP, the precision 
parameter is E = 7.105427357601 x 10.15). 

2 -! 
i£: ..., 

o 

m.s 
MFLOPS 

2 4 
Nu_r cI processor. 

Speed up. 7.486 
H6ci8lcy II 91S7'Y. 
Matrix size = 2000 
Wf·bmdwidlh = 383 

8 

Figure 8.6 Factorization of A = LV on eRA Y Y -MP 

Exa m pie 3: The non-linear (large deflection and non-linear aerodynamics) 3 -D panel 
flutter analysis (as shown in Fig. 8.7) by the finite element method 
similar to the method proposed in Mei and Gray[8S1 for 2-D panels, is 
used to evaluate the perfonnance of the proposed parallel-vector 
unsymmetric equation solver for engineering applications on super
computers. The panel is modeled by (12 x 12) = 144 confonning 
rectangular elements. There are six degrees-of-freedom per node for 
each element. The element nodal dis-placements are: two in-plane 
displacements u and v, the transverse deflection wand its derivatives W x' 

wyand w>y at each node. Thus, there is a total of24 degrees-of-freedom 
per element. Due to the non-linear damping effects encountered in the 
non-linear aerodynamics, the configuration solution space is transfonned 
to a state solution space. This, in effect, doubles to total number of active 
degrees-of-freedom[8s1. The final coefficient matrix A is a 1452 x 1452 
unsymmetric matrix, with its upper half-band-width NBWU = 778 and 
lower half-bandwidth NBWL = 727. It is required that during the flutter 
analysis, the coefficient matrix A should be updated, decomposed and 
the unknown vector should be found repeatedly. Numerical results are 
obtained on the eRA Y Y-MP, using 1,2,4,6 and 8 processors in a non
dedicated time and are shown in Figs. 8.8 and 8.9[861. The elapsed time 
for the same size problem on the eRA Y 2 (Voyager using I, 2 and 4 
processors is also presented in Fig. 8.10 



www.manaraa.com

Due T. Nguyen 

Air flow .. 
v = velocity 
q = 1 /2Pa V2 = dynamic pressure 
M = Mach number 

Figure 8.7 Finite element panel flutter analysis 

2 4 
Number of processors 

6 

n = 1452 
NBWU = 778 

= 727 

8 

Figure 8.8 Panel flutter analysis on CRA Y Y-MP (CPU time for 
factorization and forwardlbackward elimination) 

209 



www.manaraa.com

210 Parallel-Vector Equation Solvers for Finite Element Engineering Applications 

8 

Ideal speedup 
6 

Present speedup 

6. 
:3 

"5l 
2l. 

en 

2 
.996 

0 

0 2 4 6 8 

Number of processors 

Figure 8.9 Speedup for panel flutter analysis on Cray Y -MP 

200.089 
MFLOPS n = 1452 

S NBWU= 778 

- 4 ... 
t» 

'" -t» 
.5 3 --,:s 
t» 

'" a.. 
CI 2 w:i 

2 4 
Number of processors 

Figure 8.10 Elapsed time forfactorization on the CRA Y -2 (Voyager) 

From the above numerical results it can be seen that the proposed equation solver is 
efficient both in the vector and parallel computer environment and gives accurate results 
to the machine precision. 



www.manaraa.com

Due T. Nguyen 211 

8.4 A Few Remarks on Pivoting Strategies 

During the factorization phase for obtaining the lower triangular matrix [L] (see Eqs.8.4 
and 8.12), if the diagonal term VCr, r), shown in Eq. 8.4, is close to zero, then numerical 
difficulties will occur. Pivoting strategies are, therefore, required in these cases. For the 
unsymmetrical matrix, with it supper bandwidth VBW and its lower bandwidth LBW, 
switching rows will, in the worst case, double the upper bandwidth and make the lower 
bandwidth to become full. Considering Fig. 8.11, for example, if the factorized diagonal 
term V5• 5 becomes zero, row number 5 can be switched to any row between rows 
number 6 and 9 (since we would also like to make sure that after switching rows, none 
of the diagonal terms are zero). Thus, the worst case will occur if row number 5 is 
switched with row number 9, since the upper bandwidth VB W of row number 5 will be 
increased from 4 (not including the diagonal term) to 8. Furthermore, when row number 
5 is switched to row number 9, the lower bandwidth of column number I will be 
increased from 5 to 8. At a later stage of the factorization process, the factorized 
diagonal term of the "new" row number 4 may become zero, assuming that the "new" 
row number 9 needs to be switched with row number 14, then the maximum upper 
bandwidth VBW of the "new" row number 5 still remains to be 8. However, the 
maximum lower bandwidth of column number I will become full! 

Three more remarks are in order: 
(a) when the rows of the (unsymmetrical) coefficient matrix [AJ are switched, the 

corresponding rows of the right-hand-side vector {b} (see Eq. 8.1) need to be 
switched also. 

(b) when the rows of the (unsymmetrical) coefficient matrix [AJ are switched, the row
lengths and the diagonal pointer array MAXA( -) (please refer to Chapter 5) need 
to be re-defined. 

(c) when the rows are switched, the total number of non-zero terms (including fills-in 
terms) upon completion of the factorized process can be predicted, and therefore 
memory allocations can be assigned (based on the worse situations where VBW 
can be doubled, and LBW can be full) even before performing the factorization 
phase. 



www.manaraa.com

212 

+ 
LBW 1 

Parallel-Vector Equation Solvers for Finite Element Engineering Applications 

UBW 
0( • 

1 X X X X 

X1XXXX 

XX3XXXX 

XXX4XXXX 

XXXXSXXXX 

XXXXX'XXXX 

XXXXX7XXXX 

XXXXXIXXXX 

XXXXX9XXXX 

XXXXXIOXXXX 

XXXXXIIXXX 

XXXXXIlXX 

XXXXX13X 

X X X X X 14 

] If these two rows are switched, then 
UBW of row 5 wiIl be increased 
from 4 to 8. Thus UBW can be 
double, in the worst case. 

(a) "Before" Switching rows # 5 and # 9 

UBW 

1 X X X x 
X1XXXX 

XXlXXXX 

X X X4XXXX 

X X X X X 9 X X X X 

XXXXX7XXXX 

XXXXXIXXXX 

xxxxsxxxx 
XXXXXIOXXXX 

XXXXXIIX"X 

XXXXXUXX 

XXXXX13X 

X X X X X 14 

(b) "After" Switching rows # 5 and # 9 

Figure 8. I I Effects of switching rows on UBW and LBW 

8.5 A FORTRAN Call Statement to Subroutine UNSOLVER 

Based upon the algorithms discussed in Tables 8. I through 8.3 for solving a system of 
unsymmetrical equations, a vectorized version of subroutine UNSOL VER has been 
written for general users. 

The subroutine's arguments will be explained in the following paragraphs. 
Subroutine UN SOLVER (A, N, NBWU, NBWL, ISEG, NROL, IROWLU, IROWLL, 
$ TU, MAXU, MAXL, X, Y, B) 
where: 
A 

N 
NBWU 

NBWL 

A real, One-dimensional array (with the dimension N * N) to store the 
unsymmetrical matrix, as explained in Fig. 8. I 
Number of equations 
Maximum upper-bandwidth (including diagonal term) of the 
unsymmetrical matrix 
Maximum Lower-bandwidth (excluding diagonal term) of the 
unsymmetrical matrix 



www.manaraa.com

Due T. Nguyen 

ISEG 

NROL 

IROWLU 

IROWLL 

TU 
MAXU 

MAXL 

X 
vector 
y 

B 

213 

For a certain vector computer, such as the IBM-R600/590 
Workstation, the vector performance increases with the vector length. 
However, the vector performance decreases when the vector length 
exceeds a certain threshold value, say 300, as an example. Thus, if the 
upper and/or lower bandwidth is large, say NBWU = 700, NBWL = 

800, then the user should input the value of, say 300, for ISEG. Thus, 
in this example, the vector length of 700 or 800 will be broken into 
segments 300 + 300 + 100 or 300 + 300 + 200. 
16 (unrolling level number, with dimension N, to represent the row
length, or the variable bandwidth) 
an integer, one-dimensional array, for each row including the diagonal 
term, of the upper-triangular matrix portion of the unsymmetrical 
matrix [A] 
an integer, one-dimensional array, with the dimension N, to represent 
the column-height for each column, excluding the diagonal term, of 
the lower-triangular matrix portion of the unsymmetrical matrix [A] 
A real, one-dimensional working array, with the dimension 16 * N 
An integer, one-dimensional array, with dimension N, to represent the 
starting location for each row of the upper-triangular matrix portion of 
the unsymmetrical matrix [A] 
An integer, one-dimensional array, with dimension N, to represent the 
starting location of reach column of the lower-triangular matrix 
portion of the unsymmetrical matrix [A] 
A real, one-dimensional array, with dimension N, to store the solution 

A real, one-dimensional working array, with dimension N 
A real, one-dimensional array, with dimension N, to store the right
hand-side vector of a system of unsymmetrical equations. 

Using the example shown in Figure 8.11(a), one has 
N 14 
NBWU 5 (including diagonal term) 
NBWL 5 (including diagonal term) 



www.manaraa.com

214 Parallel-Vector Equation Solvers for Finite Element Engineering Applications 

1 5 1 5 
2 5 2 5 
3 5 3 5 
4 5 4 5 
5 5 5 5 
6 5 6 5 

IROWLU 7 5 IROWLL 7 5 
8 5 8 5 
9 5 9 5 
10 5 10 4 
11 4 11 3 
12 3 12 2 
13 2 13 1 
14 1 14 0 

1 1 1 1 
2 6 2 6 
3 11 3 11 
4 16 4 16 
5 21 5 21 
6 26 6 26 

MAXU 7 31 MAXL 7 31 
8 36 8 36 
9 41 9 41 
10 46 10 46 
11 51 11 50 
12 55 12 53 
13 58 13 55 
14 60 14 55 

8.6 Summary 

A parallel-vector un symmetric equation solver for supercomputers has been developed. 
Both tested problems and practical engineering problems have been used to evaluate the 
performance of the proposed solver in a parallel and vector computer environment. 
Results obtained to date have indicated that the proposed solver is fast and accurate. 
Finally, the developed solver has been demonstrated to interface with the existing finite 
elements' computer code with minimum effort and substantially improves the solution 
performance of non-linear iterative methods. 

8.7 Exercises 

8.1 Given the following system of unsymmetrical equations 

[A] {x} = {b} 

where 



www.manaraa.com

Due T. Nguyen 

2 -1 0 0 

[A 1 -2 4 -1 0 
0 -2 4 -2 
0 0 -3 8 

(a) Using a hand calculator, find the [L] [U] factorization of [A] 
(b) Find the forward solution {y} from [L] {y} = {b} 
(c) Find the backward solution {x} from [U] {x} = {y} 

215 

8.2 Assuming the given matrix [A] in problem 8.1 is full, and using the algorithm 
shown in Table 8.1 as the basic building block, write the FORTRAN computer 
program to perform the [L] [U] factorization. Also, verifying your FORTRAN 
program by using the same matrix [A], given in Problem 8.1. 

8.3 Modifying the FORTRAN computer program in Problem 8.2, so that the effects 
ofthe upper-bandwidth (fUBW) and lower-bandwidth (fLBW) can be exploited. 
Also, verifying your program by using the same matrix [A], given in Problem 8.1 

8.4 Suppose the entire given, unsymmetrical matrix [A] is stored in a row-by-row 
fashion, as shown in Figure P8.4 

[A] 

Figure P8.4 Row-by-row storage scheme for an unsymmetrical matrix 

For "stride 1" operations, will you have SAXPY or DOT-PRODUCT operations for 
obtaining the 

(a) Lower triangular matrix [L]? 
(b) Upper-triangular matrix [U]? 
(c) Forward solution {y}? 
(d) Backward solution {x}? 

Please explain your reason(s) in great detail! 

8.5 Re-solve problem 8.4, but assuming the entire given, unsymmetrical matrix [A] 
is stored in a column-by-column fashion, as shown in figure P8.5 



www.manaraa.com

216 Parallel-Vector Equation Solvers for Finite Element Engineering Applications 

l 
[A] = 

Figure P8.5 Column-by-column storage scheme for an unsymmetrical matrix 

8.6 Re-solve problem 8.4, but assuming the entire given, unsymmetrical matrix [A] 
is stored as column-by-column fashion for the upper-triangular matrix [U] and 
row-by-row fashion for the lower-triangular matrix [L]. 

8.8 References 

8.1 Jordan, H.F., M.S. Benten, N.S. Arenstorf and A.V. Ramann, "Force User's Manual: A Portable 
Parallel FORTRAN," NASA CR-426S, January 1990. 

8.2 Agarwal, T.K., 0.0. Storaasli and D.T. Nguyen, "A Parallel-Vector Algorithm for Rapid Structural 
Analysis on High-Performance Computers," Proceedings of the 31" Structures, Structural Dynamics 
and Materials Conference, Long Beach, California, pp.662-672, April 1990. 

8.3 CRAY, "Mini Manual," CR-1, NASA, March 1989. 
8.4 Hughes, TJ.R., The Finite Element Method, Prentice-Hall, Englewood Cliffs, New Jersey, 1987. 
8.S Mei, C. and C.E. Gray, Jr., "A Finite Element Method for Large Amplitude Two-Dimensional Panel 

Flutter at Hypersonic Speeds," "Proceedings of the 30th Structures, Structural Dynamics and Materials 
Conference, Mobile, Alabama, pp.37-S1, April 1989. Also to appear in AIAA Journal (1991). 

8.6 Qin, J., C.E. Gray, Jr., C. Mei and D.T. Nguyen, "A Parallel-Vector Equation Solver for Unsymmetric 
Matrices on Super Computers," Computing Systems in Engineering, Vol. 2, No. 2/3, pp.197-201 
(1991). 



www.manaraa.com

9.1 Introduction 

9 A Tridiagonal Solver for 
Massively Parallel 

Computers 

Efficient solution of large tridiagonal systems of linear equations is important in many 
engineering applications[91.921. Many algorithms have been developed in the last two 
decades for efficiently solving large tridiagonal systems on vector and/or parallel 
computers (for a complete survey, see [93 - 95]). Among them, the cyclic reduction 
method[961 seems to be the most suitable one on vector computers[97.981. To optimize 
the performance, Madsen and Rodrigue[991 suggested to use the cyclic reduction 
combined with the standard Gaussian elimination. Recently, Fabio[9101 developed a 
tridiagonal solver using parallel cyclic reduction along with recursive Gaussian 
elimination, the maximum speedup is NP/4 (NP is the number of processors used). 
Similar work can also be found in Plum[9111 and Hajy9121. It is interesting to note that 
the maximum speedup in [9.12] is also bounded by NP/4. 

For many engineering applications, we need to solve a large tridiagonal 
systems with a lot of right-hand-side[91.921 vectors, thus it is desirable to perform LU 
factorization only once and followed by repeated forwardlbackward substitutions. In 
this chapter, we develop an efficient tridiagonal solver for solving large systems of 
equations on massively parallel (distributed) computers. 

9.2 Basic Sequential Solution Procedures for Tridiagonal Equations 

Consider a tridiagonal linear system of equations 

(9.1) 

or in the matrix form 

Tx = y (9.2) 

with 

217 



www.manaraa.com

218 Parallel-Vector Equation Solvers for Finite Element Engineering Applications 

T= (9.3) 

b l = cn = O. The standard Gaussian elimination for solving these equations is to 
decompose T into T = LU by 

(9.4) 

(9.5) 

(9.6) 

such that 

L= (9.7) 

U= (9.8) 

Then defming Ux = z and solve Lz = y by 

(9.9) 



www.manaraa.com

Due T. Nguyen 

and solve Ux = z by 

If the upper triangular matrix [U), shown in Eq. 9.8, is defined as 

U= 

Then, the factorized Eqs. 9.4 through 9.6 can be expressed 
as 

Y; ,jor i =2, 3, ... ,n 

219 

(9.10) 

(9.11) 

(9.12) 

(9.13) 

(9.16) 

However, Eqs. 9.9 and 9.10 for forward solution phase will remain to be unchanged. 
Finally, Eqs. 9.11 and 9.12 for backward solution phase will be changed into: 

Remarks: 

(Z;-C;*X;+l) 

u; 

(9.17) 

(9.18) 

(1) Factorization, forward and backward equations, as shown in Eqs. 9.14 through 



www.manaraa.com

220 Parallel-Vector Equation Solvers for Finite Element Engineering Applications 

9.16, Eqs. 9.9 - 9.10, and 9.17 - 9.18, are recursive equations. Thus, these 
computations are highly sequential in nature. 

(2) The total number of operations for factorization (see Eqs. 9.14 through 9.16), 
forward substitution (see Eqs. 9.9 and 9.10), and backward substitution (see Eqs. 
9.17 and 9.18) are 3n, 2n, and 3n + 1, respectively. Thus, total number of 
operations are approximately 8n operations. 

The following simple example is used to clarify the above derived Eqs. 9.4 through 9.6, 
9.9 - 9.10, 9.11 and 9.12: 

Given the following 3 x 3 tri-diagonal matrix and the dghl-hand-,ide veeloe ji " {f:} 
Q 1 c1 0 

T:= b2 Q2 c2 (9.19) 
o b3 Q3 

One can factorize the above 3 x 3 matrix [T] as 

or 

Q 1 c1 0 
b2 Q2 c2 

o b3 Q 3 

[T] := [L][ u] (9.20) 

(9.21) 

From Eq. 9.21, one can see that the five unknowns (Y2' YJ, d \, d 2, and d J) can be 
obtained by simultaneously solving the following five equations: 

- d- I d l 
-I 

Q 1 - 1 or := Q 1 

b2 
-I 

:= b2 d l := Y2 d l or Y2 
-I d2 := (Q2 - Y2 cIt 1 (9.22) Q2 := Y2 c 1 + d2 or 

b3 
-I 

Y3 := b3 d2 := Y3 d2 or 
-I 

d3 := (Q3 - Y 3 C2 t Q3 := Y3 C2 + d3 or 

Eq. 9.22 can be readily identified as the same one given by Eqs. 9.4 through 9.6. 
The forward solution of [L] {z} = {y} can be written as 

~ 1 {::} t:} (9.23) 



www.manaraa.com

Due T. Nguyen 

From the 1 '" 2nd then 3'd equation of Eq. 9.23, one obtains: 

Zl = Yl 

Z2 = Y2 - Y2 Zl 

Z3 = Y3 - Y3 Z2 
) 

221 

(9.24) 

It is obvious that Eq. 9.24 can also be obtained directly from Eqs. 9.9 and 9.10. 

The backward solution of [U] {x} = {z} can be written as 

o 

From the 3,d, 2nd then I't equation ofEq. 9.25, one obtains 

X3 = z3 d3 

x2 = (Z2 - c2 x3 ) d2 

xl = (ZJ -C J X2 ) dJ 
) 

Eq. 9.26 can also be obtained directly from Eqs. 9.11 and 9.12. 

(9.25) 

(9.26) 

In practice, the z and x vectors are all stored in the y vector and the y and d 
vectors are stored in b and a vectors, respectively. Thus, the storage requirement for this 
algorithm is only 4*n and the number of operations needed is 9*n (Note: only n 
divisions are needed during the LU factorization, no divisions required for 
forwardlbackward eliminations). This scheme is faster than the one in Ref. [9.1, 
pp.II5], even though only 8*n operations are needed there. Since all the above three 
equations (Eqs. 9.4 through 9.6, 9.9 - 9.10 and 9.11 - 9.12) are recursive, this algorithm 
usually can not be vectorized on most vector computers. That is why the cyclic 
reduction algorithm has been widely used[9J, 9.2, 9.5, 9.7-9.\0, 913J. 

9.3 Cyclic Reduction Algorithm 

The key idea in the cyclic reduction algorithm is, through a sequence of row operations, 
to transform the original tridiagonal system into smaller tridiagonal systems. In order 
to better understand the details of the cyclic reduction algorithm, let us try to obtain the 
solution for the following 8 x 8 tridiagonal system: 



www.manaraa.com

222 Parallel-Vector Equation Solvers for Finite Element Engineering Applications 

2 -1 xI 1 
-1 2 -1 x2 0 

-1 2 -1 X3 0 
-1 2 -1 (9.27) -1 2 -1 

-1 2 -1 
-1 2 -1 

-1 1 Xg 0 

In the cyclic reduction algorithm, one can modify the "EVEN" row number of the 
augmented matrix 

2 -1 0 0 0 0 0 0 11 
-1 2 -1 0 0 10 
0 -1 2 -1 0 10 
0 -1 2 -I 0 10 

(9.28) 
0 -1 2 -I 0 10 
0 -) 2 -) 0 10 
0 -) 2 -\ 10 
0 0 0 0 0 0 -) 10 

by the following row operations 

Step (a) 

Step (b) 

Step (c) 

Step (d) 

Multiply the "ODD" row number by a factor 0.5, this factor can be 
different for different tridiagonal systems, then the resulted odd row will 
be added to the "EVEN" row BELOW it in order to create new even rows. 
Multiply the "ODD" row number by a factor 0.5, then the resulted odd row 
will be added to the EVEN row ABOVE it in order to create new even 
rows. 
Obtain the reduced tridiagonal system from Step (b). This can be seen 
easily by extracting only EVEN rows/columns at the end of Step (b). 
Go back to Step (a) until the reduced tridiagonal system has the dimension 
I x 1. 

Detailed implementations of the above 4-Step procedure is given in the following 
sections. 

Step (a) 
0.5·· 2 -I 0 0 0 0 0 0 

I 
I I 
I 

-I 2 -I 0 0 0 0 0 I 0 
I 

0.5· 0 -I 2 -I 0 0 0 0 I 0 

0 0 -I -I 0 0 0 
I 
I 0 

0.5· 0 0 0 -I 2 -I 0 0 
I 
I 0 

0 0 0 0 -I 2 -I 0 
I 
I 0 

0.5· 0 0 0 0 0 -I -I 
I 
I 0 

0 0 0 0 0 0 -I 1 
I 
I 0 
I 



www.manaraa.com

Due T. Nguyen 223 

2.0 -1.0 0 0 0 0 0 0 1.0 

0 1.5 -1.0 0 0 0 0 0 0.5 

0.5' 0 -1.0 2.0 -1.0 0 0 0 0 0 - 0 -0.5 0 1.5 -1.0 0 0 0 0 

0.5' 0 0 0 -1.0 2.00 -1.0 0 0 0 

0 0 0 -0.5 0 1.5 -1.0 0 0 

0.5' 0 0 0 0 0 -1.0 2.0 -1.0 0 

0 0 0 0 0 -0.5 0 0.5 0 

Notes: 1. Original tridiagonal system size is 2 3 = 8 
2. Column #9 of the above matrix represents the right-hand-side vector {y} in 

Eq.9.2 

Step (b) 
I 

2 -1 0 0 0 0 0 0 1 1 
I 

0 0 -0.5 0 0 0 0 10.5 0.5' -0. 0 0 0.5 x2 
0 -1 2 -1 0 0 0 0 0 

0 -0.5 0 0 -0.5 0 0 0 -0.5 -0. 0 0 x4 
0 0 0 -I 2 -I 0 0 0 -0 0 0 -0.5 0 0 -0.5 0 0.5' 0 -0. -0.5 0 X6 

0 0 0 0 0 -I 2 -1 0 

0 0 0 0 0 -0.5 0 0.5 0 0 0 -0. 0.5 0 Xs 
Note: Reduced Tridiagonal System size is 22 = 4 

Step (c) 
-0.5 0 0 0.5 -0.50 0 0 0.5 

0 0.75 -0.50 0 0.25 0 0.5 0 -0.25 0.25 

0.5' 0 -0.5 -0.50 0 => 0 -0.50 -0.50 0 

0 -0.2 0 0.25 0 0 -0.25 0 0.25 0 

JJ, 
I 

0.5 -0.25 1 
I 

0.25 0.5' 0.5 -0.25 0.25 x4 

I 
1 
I {= 0 0.125 1 0.125 -0.25 0.25 0 

Xs 1 
Note: Reduced tridiagonal system size is 21 = 2 

Step (d) 
From the above reduced 2 x 2 system, one obtains 

0.125 * Xs = 0.125 



www.manaraa.com

224 Parallel-Vector Equation Solvers for Finite Element Engineering Applications 

Hence: 
Xg = I (9.29) 

Note: Reduced tridiagonal system size is 2° = I 

Having obtained the solution for Xg from Eq. 9.29, we can substitute the value of Xg 

back into step (c) to obtain 

X4 = 1 (9.30) 

Then, substituting the solutions for X4 and Xg back into step (b) to obtain 

and (9.31) 

Finally, substituting all "even" solutions (x2, X4, X6, and Xg) back into step (a) to obtain 

(9.32) 

A general formula for cyclic reduction of systems Tx = y with a tridiagonal 
matrix T can now be derived. Using the following elementary row operations: 

- a2i * Row ( 2 i-I) + Row ( 2 i) - ~2i * Row ( 2 i + 1 ) 

with a 2i = b2/a2i•1 and P2i = c2/a2i+ l • Then the modified tridiagonal system of equations 
becomes: 

- (b 2i - 1 a2i ) • X2i - 2 + (a2i -C2i - 1 a2i -b2i + 1 P2i) X2i -C2i + I P2I • X2i+2 

= Y2l- Uz 1Y2i-1 - P2i Y2I+I for i = 1,2, ... , 2k - 1 (9.33) 

where b l = Cn = O. In general, each step of a cyclic reduction reduces a (2* *k) * (2* *k) 
system to one of size 2**(k-l) * 2 ** (k-l), and after k steps we obtain one equation for 
the unknown. 

As an example, for i = I, then Eq. 9.33 becomes 

where: 

b2 c2 
a2 = -, and ~2 = -

at a3 

Substituting the numerical values (using the data shown in Eq. 9.28) into Eq. 9.33, one 
obtains 

(9.34) 

For i = 2, then Eq. 9.33 becomes 



www.manaraa.com

Due T. Nguyen 225 

where: 

Using the data shown in Eq. 9.28, one obtains 

(9.35) 

Similarly, for i = 4, then Eq. 9.33 becomes: 

where: bg cg 
ag = -, and Pg = -

a7 a9 

Substituting the numercial values (using the data shown in Eq. 9.28) into Eq. 9.33 one 
obtains: 

-0.5X6 +O.5Xg =0 (9.36) 

Eqs. 9.34 through 9.36 are exactly the same as the numerical results presented in step 
(b). 

Some Remarks on Cyclic Reduction Algorithm: 
(I) The operations involved in steps a, b, c, and d of the cyclic reduction algorithm 

are not recursive, they are essentially independent. Thus, better vector speed 
can be expected in the cyclic reduction algorithm. 

(2) During the cyclic reduction steps, the stride (distance between two consecutive 
numbers) becomes larger and larger. Also, the vector lengths become shorter 
and shorter. 

(3) Total number of operations is approximately in the order of (l7*n) operations 
(see Homework Problem No. 9.2). 

(4) Memories are required to store, for example, 8 x 8, then 4 x 4, then 2 x 2, etc . 
. . . reduced system of equations. 

(5) Communications are needed whenever a row is updated by row(s) from other 
processors. 



www.manaraa.com

226 Parallel-Vector Equation Solvers for Finite Element Engineering Applications 

(6) Special attentions are required for handling multiple right-hand-side vectors. 

9.4 Parallel Tridiagonal Solver by Using Divided and Conquered Strategies 

To facilitate the discussions in this section, a tridiagonal (coefficient) matrix [T], with 
n = 16 degree-of-freedom (dot) is shown in the following equations 

1 2 3 4 6 8 10 12 14 16 
1 a l c i 

2 b2 a 2 c 2 
3 b3 a 3 c3 
4 b4 a 4 c 4 
5 bs as Cs 
6 b6 a 6 c 6 
7 b7 a 7 c 7 

[T] 8 bs as Cs 
9 b9 a 9 c 9 

(9.37) 

10 blO alO CIO 
II bll all Cll 
12 bl2 a l2 CI2 
13 bl3 a l3 c l3 
14 bl4 a l4 
15 bls 
16 

Assuming there are four processors (NP = 4) available, and processors PI' P2, 
P3 and P4 store rows number 1 through 4, numbers 5 through 8, numbers 9 through 12, 
and numbers 13 through 16, respectively. 

The parallel algorithms to solve tridiagonal system of equations can be 
conveniently described by the following step-by-step procedures: 
Step l(a): 

Using elementary row operations to make the terms (b2, b3, b4), (b6, b7, b8), (b lo, 
bw b 12) and (b I4, bls, b 16) become zeros (see Figure 9.1). 

As an example, the terms b2 through b4 in Eq. 9.38 can be made to become 
zeros by using the following elementary row operations (by processor PI): 

"New" row 2 (with b2 = 0) = "Old" pivot row 1 * (appropriate constant) + 
"Old" row 2 
"New" row 3 (with b3 = 0) = "New" pivot row 2 * (appropriate constant) + 
"Old" row 3 
"New" row 4 (with b4 = 0) = "New" pivot row 3 * (appropriate constant) + 
"Old" row 4 

Simultaneously, processor P4 can be used to perform elementary row 
operations to make the terms b l4 through b l6 in Eq. 9.38 to become zeros: 



www.manaraa.com

Due T. Nguyen 227 

"New" row 14 (with b l4 = 0) = "Old" pivot row 13 * (appropriate constant) + 
"Old" row 14 
"New" row 15 (with bls = 0) = "New" pivot row 14 * (appropriate constant) 
+ "Old" row 15 
"New" row 16 (with b l6 = 0) = "New" pivot row 15 * (appropriate constant) 
+ "Old" row 16 

It is important to recognize that during the process to make the terms b14, bls and bl6 to 
become zeros, three extra fill-in terms (see symbol F in Figure 9.1) are created. 

Remarks: 
(1) The elementary row operations need to be applied to the right-hand-side vector 

also. Thus, this algorithm is not efficient for multiple right-hand-side vectors. 
(2) In this step, there are no communications among processors. Thus, 100% parallel 

computation can be achieved in this step. 

Step l(b) 
Using elementary row operations to make the terms (CIS' C14' c13), (C ll ' c IO, c9), 

(c7, c6, cs) and (c3, c2, cl) become zeros (see Figure 9.2). 

Remarks: 
(1-2) Same remarks as have been mentioned in Step l(a) 
(3) Extra fills-in (see symbols F in Figure 9.2) are created during this process 
(4) This step is quite similar to previous step l(a). 

Step 2: 
Using elementary row operations to make the terms FI, F2, F3, x4, xs, F6, x7, Xg, 

F9, FlO, FII and FI2 (see Figure 9.3) to become zeros (according to the given orders FI, 
then F 2' .... F 12)' 

Remarks: 
(1) Some communications among the processors are required. For example, to make 

the term FI becomes zero (see Figure 9.3), one needs to perform the following 
elementary row operations 
"New" row 13 (with FI = 0) = "Old" pivot row 12 * (appropriate constant) + "Old" 
row 13 
Thus communications between processor P3 and P4 are necessary, since row 12 
belongs to processor P 3 and row 13 belongs to processor P 4 

(2) During the process to make F I term becomes zero, the extra fill-in term F 12 is 
created. However, this newly created extra fill-in term F 12 will also be made to zero 
(by using elementary row operations) at the end of this step! 

(3) Using "New" row 13 (with FI = 0, and FI2 * 0) as pivot row, the terms F2 (in row 
12) and F3 (in row 9) can also be made to zeros (through elementary row 
operations ). 

(4) Then, using row 8 as a pivot row, the term x4 (see Figure 9.3) can be made to zero. 
As a consequence, the extra fill-in term FlO is created. However, this newly created 



www.manaraa.com

228 Parallel-Vector Equation Solvers for Finite Element Engineering Applications 

term Flo will be made to zero, at a later time in this step. 
(5) At the end of this step, one will obtain the matrix as shown in Figure 9.4 

Step 3: 
Using elementary row operations to make the terms (Fa' Fb), (Fe, Fd), (Fe' Fro 

Fg), (Fh' F j), (Fj , Fk) and (FI' Fm, Fn) to become zeros (see Figure 9.4). 

Remarks: 
(1) Some communications among processors are required in this step. For example, 

to make the terms F. and Fb (which belong to processor P2) to become zeros, one 
needs to use pivot row number 4 (which belongs to processor PI)' Thus, some 
communications between PI and P2 are necessary. 

(2) The "orders" of those terms to be driven to zeros can be different. For example, 
the orders for the terms (Fa' Fb), (Fe, Fd) and (Fe' Fro Fg) to be driven to zeros, can 
be changed into (Fe' Fro Fg), (Fe' Fd) and (Fa' Fb). 

. x 
0 ... - x 

%_- x 
o " x 

x . x 
r 0 ... : x 
• 0 ... : x 
r 0 .' X 

X " x 
Ii 0 • X 

~ .... X 
o : x 

x " x 

: 0 

o " 0 

o " 0 Ii 

o . x, 
x, 0 r, 
F 0 • 0 

Ii 0 0 F 

F, 0 " x, 
roo X4 ,' 0 F, 

F 0 • 0 

Ii o· 0 Ii 

Flf~---O . F, 

FII~ ____ 1', .' 0 

Ii 0 . 0 

F 0,' 0 

P, 

Figure 9.3 Step 2 of parallel divide 
and conquer 

: 0 

o " 0 

o " 0 Ii 

o " x 

x " 0 
r 0 " 0 

F 0.' 0 Ii 

: 0 '. 
o ,'0 F. 

o " 0 F. 

o " 0 

o .. 0 

o " x 
x " 0 

F 0 " 0 
Ii 0,' 0 Ii 

o " x 

x " 0 
.,. () " 0 

F. 0 ,'0 r, 
F" 0,' 0 liJ 

0-0 

0-0 

F, 0 . 0 F, 

F. o· 0 F .. 

0-0 

o - 0 

F.O " 0 

)i, 0,' 0 

o : 

Figure 9.4 Step 3 of parallel divide 
and conquer 



www.manaraa.com

Due T. Nguyen 229 

(3) At the end of this step, the matrix (shown in Figure 9.4) will become a diagonal 
matrix. 

9.5 Parallel Factorization Algorithm for Tridiagonal System of Equations 
Using Separators 

One way to do parallel computation for Eqs. 9.4 through 9.6, 9.9 through 9.12 is to 
uncouple the tridiagonal matrix T into T", so that the operations in Eqs. 9.4 through 9.6 
are independent and can be done concurrently. We first define a separator as a diagonal 
element of T, say aj (1 < i < n). The locations of the separators are determined so that 
they are equally distributed in T. Assuming NP processors are available, we need NP
I separators to divide T into NP portions, so that each processor stores only one portion 
(each portion has roughly (n-NP)INP equations) plus the NP-I separa:tors. The T" 
matrix can be obtained from T matrix simply through relocating the rows and columns 
related to these NP-I separators to the end of the matrix. In fact, for separator aj, we 
only have to relocate four elements, i.e., cj, bj, bj+1 and cj_l • For example, let NP = 4 and 
the NP-l = 4 - I = 3 separators are located at i, j, and k, respectively. Then matrix T" 
can be obtained by moving the i-th row and column to the (n+ I )-th row and column, the 
j-th row and column to the (n+2)-th row and column, the k-the row and column to the 
(n+3)-th row and column, respectively. After renumbering, T" will have the same size 
as T, as shown in Figure 9.5 (only the upper portion ofT" is shown here). 

x x 
x x x 

T*= 

x x (-
t-'_f-

X x b;"'~_r-
x x x ~ (-1 ~ x x 

x x j 1'-

X X x ~1_~ 
x x F (1:-1 ~ 

x x "tll 
x x x ~ f ~ x x 

Ii F 
I; F 

lit 

Figure 9.5 The uncoupled T* matrix 

In Figure 9.5, F represents the fill-in elements in the LU factorization. The vectors 
"low" (not shown in Figure 9.5) and "up" are used to store these fill-in elements in L 
and U matrices, respectively. In practice, there is no need to renumber or to relocate the 
T matrix, the T" matrix can be generated directly from the definitions. The LU 
factorization of T" can be done in two steps: 

a. LU factorization of the NP uncoupled portions can be done by the NP 



www.manaraa.com

230 Parallel-Vector Equation Solvers for Finite Element Engineering Applications 

processors concurrently without any communications. When NP > 1, the extra 
work required is to find out the fill-in elements. 
b. When NP > 1, the LV factorization of the separators is done sequentially 

with communications among the NP processors. 

As for the forward elimination, there are also two steps: 
a. Forward elimination of the NP uncoupled portions can be done 

concurrently by the NP processors without any communications. When 
NP > 1, the extra work needed is to calculate the dot-product of the 
solution vector z and the fill-in vector "low". 

b. When NP > 1, the solution portion corresponding to the separators can 
be found with communications among the NP processors. 

Similarly, the backward substitution involves the following steps: 
a. When NP > 1, find the solution portion corresponding to the separators 

first. 
b. Backward substitution in the NP portions can be done concurrently 

without any communications. When NP > 1, the extra work to be done 
is the saxpy operations on the fill-in vector "up". 

In order to better understand the above parallel algorithm, let us consider a 15 
x 15 degree-of-freedom tridiagonal system as shown in Figure 9.6. 

For parallel computational purposes, the coefficient tridiagonal matrix T 
should be partitioned (to simplify the discussions, assuming two processors are used) 
and factorized according to the following step-by-step procedure. 

Step 1: Introducing the extra (artificial) degree-of-freedom number 16 (for matrix 
partitioning purposes) into the original tri-diagonal matrix T. The extra 16th 
row and 16th column have zero values everywhere, except I at the diagonal 
location (please refer to Figure 9.6) 

Step 2: Switching row (and column) No.8 with row (and column) No. 16 (please 
refer to Figure 9.7). Since there are 16 degree-of-freedom, and two 
processors are available, the separator should be approximately at degree-of
freedom No.8. 

Step 3: Removing the "artificial" 8th row (and column). Thus, the final partitioned 
matrix can be shown in Figure 9.8. It should be noted here that if the tri
diagonal system is symmetric, then c1 = b2, C7 = bg, cg = b9, etc ..... 
Furthermore, there will be "fills-in" in the last column during the 
factorization. These "fills-in" are denoted by the symbol "F" in Figure 9.8. 
For a separator ai (at location i = 8, as shown in Figure 9.7), then according 
to a more general case (as shown in Figure 9.5), Ci_I ' (or c7) and bi+1 (or b9) 

terms need to be moved toward the end columns. These facts have been 
confirmed in Figure 9.8 



www.manaraa.com

Due T. Nguyen 231 

a l c l 0 1 
b2 a2 c2 0 2 

b3 a3 c3 0 3 
b4 a4 c4 0 4 

bs as Cs 0 5 
b6 a6 c6 0 6 

b7 a7 c7 0 7 
bs as Cs 0 8 

b9 a9 c9 0 9 

blO alo c lO 0 10 
b ll all CII 0 11 

bl2 a l2 CI2 0 12 

bl3 a 13 c 13 0 13 
b l4 al4 CI4 0 14 

bls als 0 15 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 16 

Figure 9.6 Introducing extra degree-of-freedom # 16 

al c l 0 1 
b2 a2 c2 0 2 

b3 a3 c3 0 3 
b4 a4 c4 0 4 

bs as Cs 0 5 
b6 a6 c6 0 6 

b7 a7 0 c7 7 
0 1 0 0 8 

0 a9 c9 b9 9 

blO alo c lO 0 10 
b ll all CII 0 11 

b l2 a l2 CI2 0 12 

bl3 al3 c\3 0 13 
b l4 a l4 CI4 0 14 

bls als 0 15 
0 0 0 0 0 0 bs 0 Cs 0 0 0 0 0 0 as 16 

Figure 9.7 After switching row (and column) # 8 with row (and column) # 16 



www.manaraa.com

232 

Step 4: 

Step 5: 

Parallel-Vector Equation Solvers for Finite Element Engineering Applications 

a l c I 
b2 a2 c2 

b3 a3 c3 
b4 a4 c4 

b5 a5 c5 
b6 a6 c6 

b7 a7 c7 

a9 c9 b9 

blO a lO c lO F 
bll all Cll F 

bl2 a l2 CI2 F 
bl3 a l3 CI3 F 

bl4 a l4 CI4 F 
bl5 a l5 F 

bs Cs as 

Figure 9.8 After deleting row (and column) # 8 

Assuming the tri-diagonal system is symmetrical (if it is not symmetrical, 
then the reader should refer to Chapter 8 for an unsymmetrical equation 
solver). 

Based upon the pattern shown in Figure 9.8, and assuming two processors 
are used [i.e. processor one will store the first seven rows (or columns), 
and processor two will store the last eight rows (or columns)]. Then 
parallel factorization can be done more effectively in a column-by-column 
fashion (instead of row-by-row fashion). 

In a column-by-column factorization strategy, even though column 7 has 
not been completely factorized, columns 8, 9 through 14 can still be 
proceeded independently for factorization. Only the last (or 15th) column 
factorization requires information on the factorization of column 7. 

On the other hand, if factorization is conducted in a row-by-row fashion, 
then there will be more dependency on previous calculation and therefore, 
less parallel speed-ups can be expected. Referring to Figure 9.8, one can 
clearly see that processor 2 can not factorize row 8 (which contains the 
non-zero values of~, c9, and b9) unless row 7 (which contains the non-zero 
values of a7 and c7) has been completely factorized by processor I. 

It should be emphasized at this time that factorization of columns I through 
7 (by processor I), and columns 8 through 14 (by processor 2) can be done 
concurrently without any communication required. However, factorization 
of the last (or 15th) column by processor 2 will require some 
communication, since the factorized column 7 (possessed by processor 1) 



www.manaraa.com

Duc T. Nguyen 233 

is required. 

Using the same 15 x 15 tridiagonal matrix (as shown in Figure 9.6) and 
assuming three processors (or NP = 3) are used (hence 2, or NP-l separators are 
required), then each processor should have the following work loads 

15 - (NP - 1 ) 15 - 2 
= -- = 4.333 rows (or columns) per processor. 

NP 3 

Thus, the work load partitioning for each processor should be: 

Processor 1: row (or columns) 1 through 4 
Processor 2: row (or columns) 6 through 9 
Processor 3: row (or columns) 11 through 15 

Rows (or columns) 5 and 10 are used as processor separators and these diagonal values 
are possessed by ALL processors. 

The original 15 x 15 tridiagonal matrix can, therefore be partitioned as 
shown in Figure 9.9, or Figure 9.10 if one introduces (then removes) these two extra 
rows (and columns). 

In actual computer implementation, there is no need to introduce (and then 
remove) the extra rows/columns as shown in Figure 9.9. Instead, Figure 9.9 can be 
directly and efficiently generated as shown in Figure 9.11. Assuming the tri-diagonal 
system is symmetrical, then processors one, two and three can be used to independently 
factorize columns 1 through 4,5 through 8 and 9 through 13, respectively. Factorizing 
the last two columns (column numbers 14 and 15) will require some communications 
among processors. 

In terms of storage assignments to different processors, processors one, two 
and three will store rows 1 through 4, 5 through 8, and 9 through 13, respectively. The 
two diagonal terms aIO and as (see Figure 9.11) are stored by all processors. It should 
be mentioned here again, that Figure 9.11 has the same pattern as shown in the general 
Figure 9.5. 



www.manaraa.com

234 Parallel-Vector Equation Solvers for Finite Element Engineering Applications 

a l 

b2 

a l 

b2 

C I 

a 2 C2 
b3 a 3 C3 

b4 a 4 0 
0 1 0 

0 a 6 C6 
b7 a 7 C7 

bs as Cs 

b9 a9 0 C9 
0 1 0 0 

0 all CII b ll 

bl2 a l2 C I2 F 

bl3 a l3 C13 F 
bl4 a l4 CI4 F 

bls a ls F 
a lo 

F 

Figure 9.9 Row 5 becomes last row (or row n = 17); row 10 
becomes next to last row (or row n-l = 16); total "fills-in" = 8 

c i 

a 2 c 2 
b3 a 3 c 3 

b4 a 4 0 c 4 
0 1 0 0 

0 a6 c6 b6 
b7 a 7 c 7 F 

bs as Cs F 
b9 a 9 0 F 

0 1 0 0 
0 all CII 0 

bl2 a l2 c12 0 
bl3 a l3 CI3 0 

bl4 a l4 Cl4 0 
bls a ls 0 

bs 0 Cs F F F 0 0 0 0 0 0 as 

blO 0 c lO F F F F F 

Figure 9.10 Row 5 becomes row n-l=16; row 10 becomes row n = 17; 
total "fills-in" = 8 

C4 
0 
b6 

F 
F 
F 
0 
0 
0 
0 
0 
0 
F 

as 

c 9 
0 

bll 

F 
F 
F 
F 
F 

a lo 



www.manaraa.com

Due T. Nguyen 235 

a l c i 

b2 a 2 c 2 
b3 a 3 c 3 

b4 a 4 0 c 4 
0 a6 c 6 b6 

b7 a 7 c 7 F 
bs as Cs F 

b9 a 9 0 c 9 F 
0 all Cll bll 0 

bl2 a l2 CI2 F 0 

b13 a l3 CI3 F 0 
bl4 a l4 Cl4 F 0 

bl5 a l5 F 0 
blo c lO F F F F a lO F 

b5 c 5 F F F F a 5 

Figure 9.11 Directly partitioning (without introducing artificial rows 16 and 17) 

For structural applications (tri-diagonal, or block tridiagonal matrices), since 
the matrix is generally symmetric, one can minimize the amounts of "fills-in" by 
adopting the following numbering scheme for the cantilever beam (shown in Figure 
9.12) 

~ .1~.~2~~~~.~K*'~-*~--,~~2~.~I~~K~)~~~~~2~.~I~-*~~~'---~~2.~I __ ~~~ -x X X X X X X • X X X X • X X X X X X • X X X X X X . 

BI B2 B3 

Figure 9.12 Special numbering scheme to minimize "fill ins" 

In Figure 9.12, assuming four processors are used, and processors PI' P 2' P J 

and P4 will store K1, K2, KJ and K4 interior nodes, respectively. The nodes B1, B2 and 
BJ represent boundary nodes (nodes which belong to two or more processors). Using 
the partitioning scheme discussed in the earlier sections, the partitioned matrix 
corresponds to Figure 9.12 can be given as shown in Figure 9.13 



www.manaraa.com

236 Parallel-Vector Equation Solvers for Finite Element Engineering Applications 

11 X 

~X 
K, X 

''Z.x 
K1 

X 

X 

1 F 

1 X I 

~xl 
KJ X 

X 

1 F 

1 X 

~X 
K. X 

B1 

B2 

B3 

Figure 9.13 Minimizing "fill-in" of symmetrical tri-diagonal 
system by using proper node numbering system 

9.6 Forward and Backward Solution Phases 

To simplify the discussion, assuming we have a symmetrical tri-diagonal system. Thus, 
in Figure 9.11, the upper tridiagonal matrix is merely an image ofthe lower tridiagonal 
matrix. Furthermore, for the forwardlbackward solution phases, Figure 9.11 should be 
used only for the purpose of identifying the locations of non-zeros and "fills-in". 

9.6.1 Forward solution phase: ILl {z} = {y} 
Considering Figure 9.11, with the assumption that all terms in the upper tridiagonal 
portion are zero. It can be seen obviously that the unknowns Zl through Z4' Zs through 
Zs and Zg through ZI3 can be found concurrently by NP (=3) processors. There is no 
communication required among processors for solving the first thirteen unknowns. 
However, the last two unknowns in the forward solution phase does need 
communications among processors. For example, to solve for the unknown Z14' one has 

_ Y14 -(hlOzg +;;IO Z9 +FzlO +FZll + FZ12 +FZ 13 ) 
Z14 -

a lO 
(9.38) 

In Eq. 9.38, hlO , clO ' GIO , and F represent the non-zero values of the 



www.manaraa.com

Due T. Nguyen 237 

factorized tridiagonal matrix [T]. In actual computer implementation, only the upper 

triangular portion of the matrix T is computed and stored (in a column-by-column 

fashion). Thus, the operations shown in the parenthesis of Eq. 9.38 is basically 

involved with the dot product of the two vectors 
-
blO Zg 

c lO z9 

F zlO 

F zll 

F zI2 
-
F z13 

or, to be more precise (in actual computer implementation) 

-c9 Zg 

b ll z9 

F zlO 
-
F zll 

F zI2 

F ZI3 

where again, the "over-bar" notations in the first vector symbolically represent the non
zero values of [T] after factorization. 

Similarly, the last unknown (ZIS) to be solved during the forward solution phase 
can be given as (please refer to Figure 9.11) 

_ YIS -(~Z4 +Cszs +FZ6 +FZ7 +FZg) 
zlS - (9.39) 

as 

Again, the operations shown in the parenthesis ofEq. 9.39 is involved with the 
dot product of two vectors 

-
F Z7 

F Zg 

or, to be more precise (in actual computer implementation) 
-
c4 z4 

b6 Z5 

F Z6 

F Z7 

F Zg 

where again, the "over-bar" notations in the first vector symbolically represent the non-



www.manaraa.com

238 Parallel-Vector Equation Solvers for Finite Element Engineering Applications 

zero values of [T] after factorization. 

9.6.2 Backward solution phase: [U] {x} = {z} 
Considering Figure 9.11, with the assumption that all terms in the lower triangular 
portion are zero. 

The last two unknowns (involved with the separators) can be solved first as 
follows: 

(9.40) 

where the "over-bar" notation appeared in the denominator of Eq. 9.40 symbolically 
represents the non-zero value [U] after factorization. 

Having solved for the unknown XIS' the next unknown (X I4) can be computed as 

(9.41) 

However, in actual computer implementation, the new right-hand-side vector {z} will 
be updated right after each unknown is solved. As an example, having solved for the 
unknown XIS (according to Eq. 9.40), the right-hand-side vector {z} can be updated as 
(please refer to Figure 9.11): 

o 
o 
o 
c4 

h6 
F 
F 
F 
o 
o 
o 
o 
o 

(9.42) 

The operations involved in Eq. 9.42 is called Saxpy (Summation of a{x}+{y}) 
operations and can be done very fast on vector computers (such as the Cray-YMP, or 
Cray-C90 supercomputers). 

Similarly, having solved for the unknown X l4 (according to Eq. 9.41), the right
hand-side vector can be updated again as (please refer to Figure 9.11): 



www.manaraa.com

Duc T. Nguyen 

o 
o 
o 
o 
o 
o 
o 
c9 

bll 

F 
F 
F 
F 

239 

(9.43) 

The remaining unknowns xl3 through x9, Xs through Xs and X4 through XI can be solved 
independently (please refer to Figure 9.11) by NP (=3) processors without any 
processor communications involved. 

9.7 Comparisons between Different Algorithms 

The price paid for the parallel algorithm is the increased number of operations and the 
communications among the processors. First, 3 *n extra operations are needed in the LU 
factorization to compute the fill-in elements (see Homework Problem 9.3). Then 4*n 
extra operations are needed for forwardlbackward substitutions (see Homework 
Problem 9.4). The total operations counts is 16*n, compared with the 9*n operations 
for the sequential Gaussian elimination. One may expect a maximum speed up of 
(9116)*NP when NP processors are used. However, higher speedup is possible since 
some of the extra operations can be well vectorized, this can be seen in the following 
paragraphs. 

The implementation of the parallel algorithm in Sections 9.5 and 9.6 can be 
done differently depending on the vector performance of the computers. For example, 
the LU factorization within each portion can be done by standard Gaussian elimination 
(Eqs. 9.4 through 9.6) or by cyclic reduction. Since we intend to develop a tridiagonal 
solver for multiple right-hand-side vectors, we focus on the performance of the forward 
backward substitution rather than on the LU factorization. Even though the Eqs. 9.9 
through 9.12 are recursive, they can be executed at a rate of about 5 Mflops on an Intel 
iPSC/860 processor using single precision. Any other method seems to double the 
operation counts, so it needs a rate of 10 Mflops or higher tojustify its use. Reference 
[9.14] gives a formulation for forward elimination by cyclic reduction that needs 5 *n 
operations. Table 9.1 gives the performances of the Cyclic Reduction and the Gaussian 
elimination on Cray Y -MP and Intel iPSC/860, respectively. 



www.manaraa.com

240 Parallel-Vector Equation Solvers for Finite Element Engineering Applications 

Table 9.1 Cyclic reduction vs Gaussian elimination* 

Computer Cyclic Reduction Gaussian Elimination 

CrayY-MP 8.309 x 10-3 1.273 X 10-2 

iPSC/860 2.499 x 10-1 5.713 X 10-2 

.. 
* bidiagonal matrix With n = 131072 

It can be seen from Table 9.1 that cyclic reduction is faster than the serial 
Gaussian elimination on the Cray Y-MP, but not on the Intel iPSC/860. Thus, the 
implementation of the parallel algorithm on the Intel iPSC/860 computers can be 
described as (see Ref. 9.15): 

1) The LU factorization is done by Gaussian elimination (Eqs. 9.4 through 
9.6). The LU factorization of the separators is done by processor Zero, 
which receives necessary information from all the other processors, then 
the factored separators are sent to all the other processors. 

2) The forward elimination is done using Eqs. 9.9 and 9.10, and each 
processor will find the solutions corresponding to the separators by 
passing information to each other. 

3) Since all the processors have the solutions corresponding to the 
separators, the backward substitution can be done concurrently without 
any communications. 

This parallel algorithm[9lS) requires 16*n operations and 5*NP 
communications, in which 7*n operations and 3*NP communications are needed for 
factorization. 

9.8 Numerical Results 

Two examples are shown in this section to demonstrate the efficiency of the present 
tridiagonal solver. The timings for one processor are corresponding to 9*n operations. 

Example 9.1: The (unsymmetrical) tridiagonal systems to be solved have the 
following coefficients: 
a; = 10, h; = 2, c; = 1, J; = a; + h; + c; (i = I, 2, 3, ... , n) 

hi = 0, cn = 0, 
n = 38,400,000 
so that the solutions will be Xi = I (i = 1,2,3, ... ,n) 

Table 9.2 gives the timings for solving this problem on NP processors. Since 
NP = 128 processors are needed to solve this problem, the timings for NP < 128 are for 
problem size ofn = 300,000*NP, where 300,000 is the largest problem size which can 
be solved by a single processor. 



www.manaraa.com

Due T. Nguyen 241 

Table 9.2 Timings for parallel solutions on Intel iPSC/860 (single precision) 

Processors 1 2 4 8 16 32 64 128 

Factorization .362 .509 .510 .511 .512 .515 .5190 .526 

Forward .124 .156 .158 .158 .159 .160 .1629 .170 

Backward .216 .216 .216 .217 .217 .218 .2191 .219 

Example 9.2: This tridiagonal systems of linear equations come from the finite 
element model of the one-dimensional truss, as shown in Figure 9.14. The solid dots, 
shown in Figure 9.14, represent the elements which are used as the separators in the 
solution. The structural parameters are: 

E (Young Modulus) = 29,000 (k/in2), A(area) = 4(in2), L (Length) = 240 (in), 
and the load y = 10 (kips) acting on the last element. 

There are totally 150,OOO*NP (i.e. n = 150,OOO*NP) one-dimensional truss 
elements. The resulted tridiagonal equations are symmetric but not diagonally 
dominant: 

(i = 2, 3, 4, ... , n - I) 

/ 

Table 9.3 Presents the timings for solving this problem, using up to 128 processors. 

Table 9.3 Timings for solving example 9.2 (using double precision) 

Processors 1 2 4 8 16 32 64 128 

Factorization .284 .366 .366 .367 .369 .372 .376 .387 

Forward .082 .108 .108 .109 .109 .111 .114 .121 

Backward .116 .127 .127 .127 .134 .136 .128 .129 

9.9 A FORTRAN Can Statement to Subroutine Tridiag 

Assuming that the original tridiagonal equations has been partitioned for parallel 
processing, the following FORTRAN subroutine will be called by each processor to 
simultaneously complete the computation. 



www.manaraa.com

242 Parallel-Vector Equation Solvers for Finite Element Engineering Applications 

Subroutine tridiag (iam, np, n, b, a, c, f, up, low, bond, bonu, bonl) 
where: 
iam 

np 
n 

b, a, c 

f 

up, low 

bond 

bonu,bonl 

The identification number of each processor (0 ~ iam ~ np-I). This 
is an input variable 
The number of processors. This is an input variable. 
The size of the partition in each processor. This number can be 
different for different processors 
Vectors (each has length n) to store the tridiagonal coefficient 
matrix. These are input vectors 
Vector of length n+(np-I) to store the right-hand-side vector. This 
is an input vector 
Vectors (each has length n) to store the upper (= up) and lower (= 
low) parts of fills-in, respectively. The array low should be declared 
as a real array. These are both input and output vectors 
Vector of length (np-I) to store the diagonals of the separators. 
This is an input vector 
Vectors (each has lengthnp-2) to store the upper (= bonu) and lower 
(= bonl) parts of fills-in around the separators, respectively. These 
are output variables. Referring to Figure 9.11, one should realize 
that vectors bonu, bonl and the diagonal of the separators (= alQ, as) 
together will also have the tridiagonal form 

As an example, the matrix data shown in Figure 9.11 will be used to prepare 
for the subroutine tridiag. 

For Processor Po (iam = 0, np = 3, n =4) 

i lh location 1 2 3 4 5 6 

b(i) bs b2 b3 b4 

a(i) al a2 a3 a4 

c(i) c I c2 c3 C4 

f(i) fl f2 f3 f4 fl4 f ls 

up(i) o. o. o. o. 
low(i) o. o. o. o. 

bond(i) alQ as 

bonu(i) F (Output array) 

bonl(i) F (Output array) 



www.manaraa.com

Due T. Nguyen 243 

For Processor PI (iam = 1, np = 3, n = 4) 

ilh location 1 2 3 4 5 6 

b(i) b to b7 bs b9 

a(i) ~ a7 as ~ 

c(i) c6 C7 Cs c9 

up(i) b6 o. o. o. 
low(i) Cs o. o. o. 

bond(i) a to as 

bonu(i) F (Output array) 

bonl(i) F (Output array) 

For Processor P2 (iam = 2, np = 3, n = 5) 

ilh location 1 2 3 4 5 6 

b(i) o. b l2 bl3 b l4 b ls 

a(i) all a l2 a l3 a l4 a ls 

c(i) Cll c12 c l3 Cl4 o. 
up (i) bll o. o. o. o. 
low(i) Cto o. o. o. o. 
bond(i) ato as 

bonu(i) F (Output array) 

bonl(i) F (Output array) 



www.manaraa.com

244 Parallel-Vector Equation Solvers for Finite Element Engineering Applications 

For the complete listing of the FORTRAN source codes, instructions on how to 
incorporate this equation solver package into any existing application software (on any 
specific computer platform), and/or the complete consulting service in conjunction with 
this equation solver etc ... , the readers should contact: 

Prof. Duc T. Nguyen 
Director, Multidisciplinary Parallel-Vector Computation Center 
Civil & Environmental Engineering Dept. 
Old Dominion University 
Room 135, Kaufman Building 
Norfolk, VA 23529 (USA) 

Tel= (757) 683-3761, Fax = (757) 683-5354 
Email= dnguyen@odu.edu 

9.10 Summary 

A parallel tridiagonal solver has been developed for solving large systems of linear 
equations on massively parallel computers. The FORTRAN implementation of this 
solver on Intel iPSC/860 computers is presented. Comparing with the standard 
sequential Gaussian elimination, this proposed parallel solver only requires 50% more 
memory. More importantly, there is no need to rearrange the data, and this feature 
makes the implementation easier on parallel computers. Even though the theoretical 
maximum speedup for the proposed parallel solver is (9/l6)*NP, the practical speedup 
can be very close to NP since the extra operations can be executed much faster in a 
vector computer environment. More careful optimization of the code, such as using the 
4K cache available on Intel iPSC/860 processors properly, will further improve the 
performance of the proposed solver. 

9.11 Exercises 

9.1 For [A ]nxn {x ln x I {fIn x I 

where: 
n 12 
a l a2 a12 10 
c l c2 CII +1 
b2 b3 bl2 -1 



www.manaraa.com

Due T. Nguyen 245 

11 Q I c i 
10 b2 Q2 
10 

{f} and [A 1 

10 CII 

9 bl2 a l2 

Using a hand calculator, perfonning parallel divide and conquer algorithm discussed in 

the text to find the solution for {x} 

Hint: x = 

9.2 Prove that the number of operations in the Cyclic Reduction algorithm is 
approximately in the order of 17*n, where n is the size of the tridiagonal system 

9.3 Prove that 3 *n "extra" operations are needed in the LU factorization to compute 
the fills-in elements (as shown in Figure 9.5) 

9.4 Prove that 4*n "extra" operations are needed in the forward & backward 
solution phases (as described in Section 9.6) 

9.5 Using the data shown in Figure 9.8, and assuming two processors are available 
(NP = 2). Prepare the necessary data for Subroutine TRIDIAG (as explained 
in Section 9.9) 

9.12 References 

9.1 Yoshihara, H. ed. "Computational Fluid Dynamics: Algorithms & Supercomputers, AGARD·AG· 
311",1988. 

9.2 Hockney, R.W., "Rapid Elliptic Solvers, in Numerical Methods in Applied Fluid Dynamics", ed. 
by B. Hunt, Academic Press, New York, 1980. 

9.3 Miranker, W., "A Survey of Parallelism in Numerical Analysis", SlAM Rev. 13 (1971) 524-547. 
9.4 Heller, D., "A Survey of Parallel Algorithms in Numerical Linear Algebra", SlAM Rev., 20 (1978) 

740-777. 
9.5 Ortega, J.M. and R.G. Voigt, "Solution of Partial Differential Equations on Vector and Parallel 

Computers", SlAM Rev., 27 (1985) 149-240. 
9.6 Hockney, R., "A Fast Direct Solution of Poison's Equation Using Fourier Analysis", J.ACM, 12 

(1965) 95-113. 
9.7 Lambiotte, J. and R.G. Voigt, "The Solution ofTridiagonal Linear Systems on the CDC STAR-100 

Computers", ACM Trans. Math. Software 1 (1975) 308-329. 



www.manaraa.com

246 Parallel-Vector Equation Solvers for Finite Element Engineering Applications 

9.8 Kershaw, D., "Solution of Single Tridiagonal Linear Systems and Vectorizations of the ICCG 
Algorithm on the Cray-I, in Parallel Computations", ed. by Garry Rodrigue, Academic Press. New 
York,1982. 

9.9 Madsen, N. and G. Rodrigue, "A Comparison of Direct Methods for Tridiagonal Systems on the 
CDC STAR-100", Lawrence Livermore National Laboratory, Preprint UCRL-76993, Rev. I, 
Livermore, CA 1976. 

9.10 Reale, F, "A Tridiagonal Solver for Massively Parallel Computer Systems", Parallel Computing 16 
(190) 365-368. 

9.11 Krechel, A., H.J. Plum and K. Stuben, "Parallelization and Vectorization Aspects of the Solution 
of Tridiagonal Linear Systems", Parallel Computing 14 (1990) 31-49. 

9.12 Hajj, I.N. and S. Skelboe, "A Multilevel Parallel Solver for Block Tridiagonal and Banded Linear 
Systems", Parallel Computing IS (1990) 21-45. 

9.13 Gentzsch, W. K.W. Neves and H. Yoshihara, AGARD AGARDOGRAPHNO. 311, Computational 
Fluid Dvnamics: Algorithms and Supercomputers (March 1988). 

9.14 Axelsson, O. and V. Eijkhout, "A note on the Vectorization of Scalar Recursions", Parallel 
Computing 3 (I) (1986) 73-84. 

9.15 Qin, J. and D.T. Nguyen, "A Tridiagonal Solver for Massively Parallel Computers," Advances in 
Engineering Software, Vol. 29, No. 3-6, pp. 395-397 (1998). 



www.manaraa.com

10 Sparse Equation Solver with 
Unrolling Strategies 

10.1 Introduction 

The solution of linear systems of equations on advanced parallel and/or vector 
computers is an important area of ongoing research. The development of efficient 
equation solvers is particularly important for static and dynamic (linear and non-linear) 
structural analyses, sensitivity and structural optimization, control-structure interactions, 
ground water flows, panel flutters, eigenvalue analysis etc .... [10.1-10.19]. Modem high
performance computers (such as Cray-YMP, Cray-C90, Intel Paragon, IBM-SP2) have 
both parallel and vector capability, thus algorithms that exploit parallel and/or vector 
capabilities are the most desirable. 

In the past years, a lot of efforts have been devoted in the developments of 
efficient parallel and vector equation solvers on both shared and distributed memory 
computers which exploitthe skyline and/or variable bandwidth of the coefficient matrix. 
On a single node computer processor with vectorized capability, however, it is generally 
safe to say that equation solvers which are based on sparse technologies are more 
efficient than ones which are based on skyline and/or variable bandwidth storage 
schemes [10.20-10.23]. Basic equation solution algorithms based on sparse technologies 
have been well documented in the literatures [10.20-10.23]. Few, limited research 
efforts have also been directed to the development of parallel sparse equation solvers 
[10.24-10.25]. In this chapter, however, emphasis will be placed on the development 
of efficient, fully vectorized sparse equation solver for single processor computers with 
vectorized capability (such as the Cray-YMP, Cray-C90, Intel Paragon, IBM-SP2, IBM
R60001590 workstations, etc ... ). 

Basic Choleski and LDLT algorithms are briefly reviewed in Section 10.2. 
Different storage schemes for the coefficient matrix are presented in Section 10.3. 
Popular reordering algorithms are mentioned in Section 10.4. Sparse symbolic 
factorization is discussed in Section 10.5. Sparse numerical factorization and 
forwardlbackward solution phases are explained in Sections 10.6 and 10.7, respectively. 
Loop unrolling strategies to optimize the vector speed are introduced in Section 10.8. 
Numerical evaluations of the developed software are demonstrated in Section 10.9 
through practical finite element models, such as 23155 degree-of-freedom (dot) Exxon 
Offshored Structure, 16146 dofHigh Speed Civil Transport (HSCT) aircraft, 55000 dof 

247 



www.manaraa.com

248 Parallel-Vector Equation Solvers for Finite Element Engineering Applications 

Solid Rocket Booster (SRB) of the space shuttle and 256000 dof of an automobile. 
FORTRAN calls to sparse equation solver is explained in Section 10.10. Finally, 
conclusions are drawn in Section 10.11. 

10.2 Basic Equation Solution Algorithms 

The key to reduce the computation time for structural analysis is to reduce the time to 
solve the resulting linear system of equations. Using matrix notations, the linear system 
of equations can be conveniently expressed as 

[K]{z}={f} (10.1) 

For many engineering applications, the coefficient (stiffness) matrix [K] often has nice 
properties, such as symmetry, positive definite and sparse. In Eq. (10.1), the vectors {z} 
and {f} represent the unknown nodal displacement, and the known nodal load vectors, 
respectively. 

10.2.1. Choleski algorithm 
On sequential computers, direct methods based on Choleski algorithm are both accurate 
and fast in solving a wide range of structural analysis problems. These methods are sued 
in most commercial fmite element codes. Choleski-based methods have also been found 
to be accurate and fast in solving structural analysis problems on parallel computers. 
The unknown vector {z} can be found in three distinct steps: 

First Step: Factorization Phase 
In this step, the coefficient matrix [K] can be factorized as 

[K] = [UV[U] (10.2) 

where [U] is an upper triangular matrix 

Second Step: Forward Solution Phase 
One can substitute Eq. (10.2 into Eq. (10.1) to obtain 

[UV {y} = {f} (10.3) 

where the intermediate unknown vector {y} can be readily identified as 

Third Step: Backward Solution Phase 
[U]{z};: {y} (10.4) 

Having obtained the solution for the unknown vector {y} from Eq. (10.3), the 
original unknown vector {z} can be obtained by solving Eq. (10.4). For a single right
hand-side vector {f}, 95% (or more) of the total equation solution time will be spent in 
the first step. Thus, in this work, more emphasis will be placed on the development of 
efficient factorization schemes, which can fully exploit the vector capability of modem 
high-performance computers and workstations. 

For a simple 3x3 symmetrical and positive definite stiffness matrix [K], Eq. 
(10.1) can be represented as 



www.manaraa.com

Due T. Nguyen 249 

(10.5) 

The unknown, factorized matrix [U] in Eq. (10.5) can be easily obtained by expressing 
the equalities between the upper triangular matrix (on the left-hand-side) and its 
corresponding terms on the right-hand-side ofEq. (10.5). For a general stiffness matrix 
with dimensions nxn, the factorized matrix [U] can be obtained from [10.15, 10.26-
10.27] 

for i > 1 (10.6) 

and 

for i,j> 1 (10.7) 

Using the above Eqs. (10.6-10.7), and assuming the coefficient stiffness matrix is full 
(to simplify the discussions), the information required to factorize a general jlh row can 
be readily identified in Figure 10.1 (see the rectangular, cross-region right above the ilh 
row of Figure 10.1). 

'" '" '" "" [A] = "" 
SYM. 

~-" -
~ 

"'-

~ 

r-- Infonnation required to 
factorize the i • row 

.rII(--- i* row 

Figure 10.1 Information required to factorize the iiI row 

10.2.2 LDU algorithm 
The Choleski (or UTU) factorization is efficient, however, its application is limited to 
the case where the coefficient stiffness matrix [K] is symmetrical and positive definite. 
With negligible additional computational efforts, the LDU algorithm can be used for 
broader applications (where the coefficient matrix can be either positive, or negative 
definite). In this algorithm, the given matrix [K] in Eq. (10.1) can be factorized as 

[ K 1 = [L 1 [D 1 [L r (10.8) 

where [L] and [D] are lower triangular matrix (with unit values on the diagonal), and 
diagonal matrix, respectively. For a simple 3x3 symmetrical stiffness matrix, Eq. (10.8) 
can be explicitly expressed as 



www.manaraa.com

250 Parallel-Vector Equation Solvers for Finite Element Engineering Applications 

o 0 [I L')) 
D2 0 0 I 
o D3 0 0 

(10.9) 

The unknown Ljj and D j can be easily obtained by expressing the equalities between the 
upper triangular matrix (on the left-hand-side) and its corresponding terms on the right
hand-side of Eq. (10.9). Since the LDU algorithm will be used later on to develop 
efficient, vectorized sparse algorithm, a pseudo-FORTRAN skeleton code is given in 
Table 10.1 (assuming the original given matrix [K] is symmetrical and full). 

Table 10.1 Skeleton FORTRAN code for LDU 
(assuming the matrix U is completely full) 

1. 

2. 

3. 

4. 

5. 

c Assuming row 1 has been factorized earlier 

6. 

7. 

8. 

9. 
10. 

11. 

c 

33 

22 
11 

DO 11 1= 

D022K= 

2,N 

1, I - 1 

Compute the multiplier (Note: U represents LT) 

XMULT= U(K,J) 
U(K,K) 

D033J= I,N 

U (I, J) = U (I, J) - XMUL T * U (K, J) 

CONTINUE 

U (K, I) = XMULT 
CONTINUE 

CONTINUE 

As an example, implementation of the LDLT algorithm, shown in Table 10.1, for a 
given, simple 3x3 stiffness matrix 

[K] = [ ~l 
will lead to the following factorized matrix 

2 

[ UJ 

From Eq. (10.11), one can obtain 

-1 
2 
-1 

2 
3 
2 

o 
-2 
3 
1 
3 

(10.10) 

(10.11) 



www.manaraa.com

Due T. Nguyen 251 

2 0 0 

0 
3 0 

[D 1 '" [Diagonal of Ul 2 

0 0 
1 
-

(10.12) 

3 
and 

0 

[ L 1 T '" [ Upper .Triangular] = 
2 

-2 
PortIOn of U -

3 

(10.13) 

1 

For a simple 3x3 example shown in Eq. (10.10), the LDU algorithm presented 
in Table 10.1 can also be explained as 

(a) Row #2new = Row #2original - (xmult = UI,/U1,1) * Row #lnew 
(b) Row #3new = Row #3original - (xmultl = UI,3/U1,1) * Row #lnew 

- (xmult2 = U2,/U2,2) * Row #2new 

Using the data shown in Eq, (10.10), and following the LDLT algorithm given 
in Table 10.1, one obtains: 

2. 
3, 

5. 

6. 

For 1=2 

K= 1 

xmult = u 12/u ll = -112 
J=2 

u22 = U22 - (xmult) (u I2 ) = 2 - ( -21 ) ( - I ) 
3 

2 
7. J = 3 

9. 

2. 
3, 

5. 

6. 

9. 
3. 

U23 = u23 - (xmult) (u 13 ) = -1 - ( -~) (0) = -1 

U 12 = xmult =112 
For 1 = 3 

K=1 

u13 0 
xmult = - = - = 0 

Ull 2 

{ J = 3 
u33 = u33 - (xmult = 0) * (U 1•3 = 0) 

un = 0 

K=2 



www.manaraa.com

252 Parallel-Vector Equation Solvers for Finite Element Engineering Applications 

u23 -I -2 xmult = -

- ( %) 5. u22 3 

6. J=3 

7. U33 = u33 - ( xmult = - % ) (U23 =-I) 
3 

-2 
9. U23 = xmult =-

~ 3 

Hence, upon exiting from Table 10.1, Eq. (10.11) will be obtained, and Eqs. (10.12-
10.13) can be readily identified, accordingly. 

10.3 Storage Schemes for the Coefficient Stiffness Matrix 

Successful implementation of a sparse equation solution algorithm depends rather 
heavily on the reordering method used. While the Reversed Cuthill-Mckee (RCM), or 
Gipspoole-Stockmyer (GS)... reordering algorithms can be used efficiently in 
conjunction with skyline or variable bandwidth equation solution algorithms [10.22, 
10.28-10.29], these reordering algorithms are not suitable for sparse equation solution 
algorithms. Designing efficient sparse-reordering algorithms is a big task itself, and is 
outside the scope of this chapter. For complete treatments on this subject, the readers 
are strongly recommended to popular textbooks and articles in the literatures [10.22, 
10.30-10.36). In this section, it is assumed that the best available sparse-reordering 
algorithm, such as Modified Minimum Degree (MMD), or Nested Dissection (ND) 
[10.22], has already been applied to the original coefficient matrix [K). To facilitate the 
discussions in this section, assuming the resulted matrix [K] (after using MMD, or ND 
algorithm) takes the following form 

11. 0 
44. 

[K] 
SYM 

o 
o 

66. 

1. 
o 
o 

88. 

o 
3. 
4. 
5. 

110. 

2. 
o 
o 
o 
7. 

112. 

(10.14) 

For the data shown in Eq. (l 0.14), it can be easily shown (by referring to Eqs. 
10.6-10.7, for example) that the factorized matrix [U] will have the following form: 

x 0 0 x 0 x 
x 0 0 x 0 

x 0 x 0 
x x F [ u] (10.15) 

x x 
x 

In Eq. (10.15), the symbols "x" and "F" represent the nonzero values after factorization. 
However, the symbol "F" also refers to "Fills-in" effect, since the original value of [K] 
at location F has zero entry. 



www.manaraa.com

Due T. Nguyen 253 

For the same data shown in Eq. (10.14), if "skyline" equation solution is 
adopted, then the "fills-in" effect will take the following form: 

x 0 0 x 0 x 
x 0 F x F 

[K,.] = x F x F 
x x F 

x x 
x 

On the other hand, if "variable-bandwidth" equation solution is adopted, then the "fills
in" effect (on the data shown in Eq. 10.14) will have the following form: 

x F F x F x 
x F F x F 

[Ko] = x F x F 
x x F 

x x 
x 

Thus, for the data shown in Eq. (10.14), the "sparse" equation solution is the 
best (in the sense of minimizing the number of arithmetic operations, and the required 
storage spaces in a sequential computer environment) and the "variable-bandwidth" 
equation solution is the worst one! 

For practical computer implementation, the original stiffness matrix data, such 
as the one shown in Eq. (10.14), can be represented by the "sparse formats" as follows: 

1 1 
2 3 
3 4 

ISTARTROW = 4 5 (10.16) 
5 6 
6 7 

7 = N + 1 7 

1 

[ II 2 

ICOLNUM = 3 
4 
5 

6 = NCOEF 

(10.17) 

1 

rl 2 44. 

DIAG 3 66. 
4 88. 
5 110. 

6 = N 112. 

(10.18) 



www.manaraa.com

254 Parallel-Vector Equation Solvers for Finite Element Engineering Applications 

AK 

1 
2 
3 
4 
5 

6 = NCOEF 
= IU (10.19) 

The following definitions are used in Eqs. (10.16-10.19): 
N - Size of the original stiffness matrix [K] 
NCOEF - The number of non-zero, off-diagonal terms of the original 

ISTARTROW(i) 

ICOLNUM(j) 

DIAG(i) 

AK(j) 

stiffness matrix [K]. Only the upper triangular portion of 
[K] needs be considered. 
Starting location of the first nonzero, off-diagonal term for 
the ith row of [K]. The dimension for this integer array is 
N+l 
Column numbers associated with each nonzero, off
diagonal terms of [K] (in a row-by-row fashion). The 
dimension for this integer array is NCOEF 
Numerical values of the diagonal term of [K]. The 
dimension for this real array is N 
Numerical values of the nonzero, off-diagonal terms of [K] 
(in a row-by-row fashion). The dimension for this real array 
is NCOEF 

10.4 Reordering Algorithms 

The reordering algorithm(s) used in any equation solver should be compatible to (or 
consistent with) the storage scheme and solution strategies used in the factorized, 
forward and backward solution phases. For example, if skyline, or variable bandwidth 
strategies are used, then either RCM, or GS reordering algorithms should be employed, 
since these reordering algorithms will try to minimize the bandwidths and/or the column 
heights of the factorized matrix [U]. These bandwidths and/or column heights 
minimization will help to reduce both memory requirement and also the number of 
arithmetic operations during the factorization phase. However, in sparse algorithms (for 
factorization), the concerned issues are not in the column heights (or bandwidths). 
Instead, efficient sparse factorization algorithms will require the number of "fills-in" 
to be minimized, in order to reduce both memory requirements and the number of 
arithmetic operations. Thus, it is quite likely to see that the "best" sparse reordering 
algorithm will lead to the "worse" performance, if it is used in conjunction with either 
skyline, or variable bandwidth strategies! 

In this work, since fully vectorized sparse algorithms will be developed, either 
MMD or ND reordering algorithms [10.22] can be appropriately used. 



www.manaraa.com

Duc T. Nguyen 255 

10.5 Sparse Symbolic Factorization 

The purpose of symbolic factorization is to find the locations of all nonzero (including 
"fills-in" terms), off-diagonal terms of the factorized matrix [U] (which has NOT been 
done yet!). Thus, one ofthe major goals in this phase is to predictthe required computer 
memory for subsequent numerical factorization. The outputs from this symbolic 
factorization phase will be stored in the following 2 integer arrays (assuming the 
stiffness matrix data shown in Eq. 10.14 is used): 

1 
2 
3 

JSTARTROW 4 

1 
2 
3 

JCOLNUM 4 
5 
6 

7 = NCOEF2 

5 
6 

7 =N + 1 

4 
6 
5 
5 
5 
6 
6 

The following "new" definitions are used in Eqs. (10.20-10.21): 

1 
3 
4 
5 
7 
8 
8 

(10.20) 

(10.21) 

NCOEF2 - The number of nonzero, off-diagonal terms ofthe factorized 
matrix [U] 

JSTARTROW(i) - Starting location of the first nonzero, off-diagonal term for 
the ilh row of the factorized matrix [U]. The dimension for 
this integer array is N+ 1 

JCOLNUMU) - Column numbers associated with each nonzero, off-
diagonal terms of [U] (in a row-by-row fashion). The 
dimension for this integer array is NCOEF2. Due to "fills
in" effects, NCOEF2 > > NCOEF. 

As a rule of thumb for most engineering problems, the ratio ofNCOEF2INCOEF will 
be likely in the range between 7 and 20. 

The key steps involved during the symbolic phase will be described in the 
following paragraphs: 
Step 1: Consider each ilh row (of the original stiffness matrix [KD 
Step 2: Record the locations (such as column numbers) of the original non-zero, 

off-diagonal terms 
Step 3: Record the locations ofthe "fills-in" terms due to the contributions of some 

(not all) appropriated, previous rows j (where 1 ~ j ~ i-I). Also, consider 
if current ilh row will have any immediate contribution to a "future" row 

Step 4: Return to Step I for next row 
A simple, but highly inefficient way to accomplish Step 3 ( of the symbolic 

phase) will be identifying the nonzero terms associated with the jlh column. For 



www.manaraa.com

256 Parallel-Vector Equation Solvers for Finite Element Engineering Applications 

example, there will be no "fills-in" terms on row 3 (using the data shown in Eq. 10.14) 
due to "no contributions" of the previous rows 1 and 2. This fact can be easily realized 
by observing thatthe associated 3rd column of[KJ (shown in Eq. 10.14) has no nonzero 
terms (and also by symbolically referring to Eqs. 10.6-10.7!) 

On the other hand, if one considers row 4 in the symbolic phase, then the 
associated 41h column will have 1 nonzero term (on row 1). Thus, only row 1 (but not 
rows 2 and 3) may have "fills-in" contribution to row 4. Furthermore, since K},6 is 
nonzero (=2.), it immediately implies that there will be a "fills-in" terms at location U4,6 

of row 4, 
A much more efficient way to accomplish step 3 of the symbolic phase is by 

creating 2 additional integer arrays, as defined in the following paragraphs 
ICHAINL(i) - Chained list for the ilh row, This array will be efficiently 

created to identify which previous rows will have 
contributions to current jlh row, The dimension for this 
integer, temporary array is N 

LOCUPDA TE(i) - Updated starting location of the ilh row, 
Using the data shown in Eq. (10.14), uses of the above 2 arrays in the symbolic 

phase can be described by the following step-by-step procedure: 
Step 0: Initialize arrays ICHAINL (1, 2, ... N) = to} and LOCUPDATE (1, 2, ... , N) 

= to} 
Step 1: Consider row i = 1 
Step 2: Realize that the original nonzero terms occur in columns 4 and 6 
Step 3: Since the chained list ICHAINL(i= I) = 0, no other previous rows will have 

any contributions to row 1 

ICHAINL( 4) 

ICHAINL (1) 

LOCUPDATE( i = 1) = I 

(10.22) 

(10.23) 

(10.24) 

Eqs, (10.22-10.23) indicate that "future" row i=4 will have to refer to row 1, and row 
1 will refer to itself, Eq. (10.24) states that the updated starting location for row 1 is I. 
Step 1: Consider row i = 2 
Step 2: Realizing the original nonzero term(s) only occurs in column 5 
Step 3: Since ICHAINL(i=2) = 0, no other rows will have any contributions to 

row 2 

ICHAINL (5) = 2 

ICHAINL ( 2) = 2 

LOCUPDATE( i = 2) = 3 

(10.25) 

(10.26) 

(10.27) 

Eqs. (10.25-10.26) indicate that "future" row i = 5 will have to refer to row 2, and row 
2 will refer to itself. Eq. (10.27) states that the updated starting location for row 2 is 3. 
Step 1: Consider row i = 3 
Step 2: The original nonzero term(s) occurs in column 5 



www.manaraa.com

Due T. Nguyen 257 

Step 3: Since ICHAINL (i=3) = 0, no previous rows will have any contributions 
to row 3. 

The chained list for "future" row i = 5 will have to be updated in order to include row 
3 into its list. 

ICHAINL ( 3) = 2 

ICHAINL ( 2) = 3 

LOCUPDATE( i = 3) = 4 

(10.28) 

(10.29) 

(10.30) 

Thus, Eqs. (10.25, 10.29, 10.28) state that "future" row i = 5 will have to refer to rows 
2, row 2 will refer to row 3, and row 3 will refer to row 2. Eq. (10.30) indicates that the 
updated starting location for row 3 is 4. 
Step 1: Consider row i = 4 
Step 2: The original nonzero term(s) occurs in column 5 
Step 3: Since ICHAINL (i = 4) = 1, and ICHAINL (1) = 1 (please refer to Eq. 

10.22), it implies row 4 will have contributions from row 1 only. The 
updated starting location of row 1 now will be increased by one, thus 

LOCUPDATE ( 1) = LOCUPDATE ( I) + I (10.31) 

Hence, 

LOCUPDATE ( 1) = 1 + 1 =2 (please refer to Eq. 10.24) (10.32) 

Since the updated location of nonzero term in row 1 is now at location 2 (see 
Eq. 10.32), the column number associated with this nonzero term is column #6 (please 
refer to Eq. 10.17). Thus, it is obvious to see that there must be a "fills-in" term in 
column #6 of (current) row #4. Also, since K'.6 = 2 (or nonzero), it implies "future" row 
i=6 will have to refer to row 1. 

Furthermore, since the first nonzero term of row 4 occurs in column 5, it 
implies that "future" row 5 will also have to refer to row 4 (in addition to refer to rows 
2 and 3). The chained list for "future" row 5, therefore, has to be slightly updated (so 
that row 4 will be included on the list) as follows: 

ICHAINL ( 4) = 3 

ICHAINL ( 2) = 4 

LOCUPDATE( i = 4) = 5 

(10.33) 

(10.34) 

(10.35) 

Notice that Eq. (10.34) will override Eq. (10.29). Thus, Eqs. (10.25, 10.34, 10.33) 
clearly show that symbolically factorizing "future" row i = 5 will have to refer to rows 
2, then 4 and then 3, respectively. 
Step 1: Consider row i = 5 
Step 2: The original nonzero term(s) occurs in column 6 
Step 3: Since 

ICHAINL ( i = 5) = 2 (10.25, repeated) 



www.manaraa.com

258 Parallel-Vector Equation Solvers for Finite Element Engineering Applications 

ICHAINL ( 2) = 4 

ICHAINL ( 4) = 3 

(10.34, repeated) 

(10.33, repeated) 

It implies rows #2 , then 4 and then 3 "may" have contributions (or "fills-in" 
effects) on row 5. However, since KS,6 is originally a nonzero term, therefore, 
rows 2, 4, and 3 will NOT have any "fills-in" effects on row 5 

Step 1: There is no need to consider the last row i = N = 6, since there will be no 
"fills-in" effects on the last row! It is extremely important to emphasize that 
upon completion of the symbolic phase, the output array JCOLNUM(-) has 
to be re-arranged to make sure that the column numbers in each row should 
be in the increasing orders! 

In this particular example (see data shown in Eq. 10.14), there is one fill-in 
taken place in row 4. However, there is no need to perform the "ordering" operations 
in this case, because the column numbers are already in the ascending order. This 
observation can be verified easily by referring to Eq. 10.15 . The original non-zero term 
of row 4 occurs in column 5 and the non-zero term (due to "fills-in") of row 4 occurs 
in column 6. 

Thus, these column numbers are already in the ascending order! 
In a general situation, however, "ordering" operations may be required as can 

be shown in Eq. (10.36). 

[K] = 

row 31 
row 32 

- X f -f -+- llh row = 981h row 

(10.36) 

During the sym4bolic factorization phase, assuming that only rows 31,32 and 
40 have their contributions to the current 98th row (as shown in Eq. 10.36). In this case, 
the original non-zero terms of row #98 occurs in columns 99, 120 and 127. However, 
the 2 "fills-in" terms occur in columns 122 and then 121 (assuming current row #98 will 
get the contributions from rows #32, 40, 31, respectively). Thus, the "ordering" 
operations are required in this case as shown in Eq., 10.36 (since column numbers 99, 
120, 127, 122 and 121 are NOT in the ascending order yet!) 



www.manaraa.com

Due T. Nguyen 259 

In subsequent paragraphs, more detailed discussions (including computer 
codings) about symbolic factorization will be presented. To facilitate the discussions, 
a specific stiffness matrix data is shown in Eq. (10.37) 

x x x x 
x x 

x x 
K= x x F F (10.37) 

x x F 
x F 

x 

For this simple example, the "fills-in" effects (refer to symbols F) can be easily 
identified as shown in Eq. (10.37). 

The symbolic codes (refer to Table 10.2) together with its explanations are 
described in the following paragraphs. 

Table 10.2 FORTRAN listing of symbolic codes 

integer isr(9),icn(9)jsr(9)jcn( 66),ichain(9) 00 I 
read(5, *) n,ncoef ! 002 
ncoef2= I O*ncoef ! 003 
read(5,*) (isr(i),i=l,n+l) 004 
read(5,*)(icn(i),i=l,ncoef) ! 005 
write(6, *) 'n,ncoef= ',n,ncoef ! 006 
write(6,*) 'isr(-)= ',(isr(i),i=l,n+l) 007 
write(6,*) 'icn(-)= ',(icn(i),i=l,ncoef) ! 008 
call symfact(n,isr,icnjsr jcn,ichain,ncoef,ncoef2) ! 009 
stop! 010 
end! OIl 

C********************************************************* 012 
subroutine symfact(n,isr,icnjsrjcn,ichain,ncoef,ncoef2) 013 
integer isr(I),icn(1)jsr(1)jcn(I),ichain(1) ! 014 

C ...... Purposes: Symbolic factorization ! 015 
C input: isr, icn structure of given matrix A inRR(U)U.! 016 



www.manaraa.com

260 Parallel-Vector Equation Solvers for Finite Element Engineering Applications 

C n order of matrix A and of matrix U. ! 017 
C output: jsrjcn structure of resulting matrix U in RR(U)U. 018 
C working space: ichain of dimension N. Chained lists of rows ! 019 
C associated with each column. ! 020 
C The array jsr is also used as the multiple! 021 
C switch array. ! 022 
c. ..... ! 023 
C ... This subroutine & all other subroutines in this file,EXCEPT numfa8, 024 
C .... has been verified by Duc T. Nguyen on March 9'96. Using! 025 
C ..... the following .3 simultaneous equations: ! 026 
C ...... 2 -1 0 xII! 027 
c. ..... -1 2 -1 x2 0 028 
C...... 0 -1 1 x3 0 029 
C------ ! 030 

nml=N-l 031 
npl=N+1 032 
DO 18 I=I,N 033 
jsr(I)=O ! 034 

18 ichain(I)=O ! 035 
iount=1 ! 036 
DO 21 I=I,nml 037 
write(6, *) '1= ',i 038 
isrtem=icount ! 039 
write(6, *) 'isrtem= ',isrtem 040 
jexceed=N+icount-I ! 041 
write(6,*) 'jexceed= 'jexceed 042 
MIN=npl ! 043 
write(6,*) 'MIN= ',min! 044 
isra=isr(I) ! 045 
write(6,*) 'isra= ',isra ! 046 
isrb=isr(I + 1 )-1 ! 047 
write(6, *) 'isrb= ',isrb ! 048 
IF(isrb.LT.isra)GO TO 30 049 
DO 25 J=isra,isrb 050 
write(6,*)'J='j! 051 
jcoln=icn(J) ! 052 
write( 6, *) 'jcoln= 'jcoln 053 
jcn(icount)=jcoln ! 054 
write(6, *) 'jcn(',icount,')= 'jcn(icount) 055 
icount=icount+ 1 ! 056 
write(6, *) 'icount= ',icount 057 
IFGcoln.LT.MIN) then! 058 
min=jcoln ! 059 
write(6,*) 'MIN= ',min 060 
end if ! 061 



www.manaraa.com

Due T. Nguyen 

JsrGcoln)=1 ! 
write(6,*) 1sr('jcoln,')= 'jsrGcoln) ! 

25 continue ! 
30 LAST=ichain(I) ! 

write(6,*) 'LAST= ',last! 
IF(LAST.EQ.O)GO TO 66 
L=LAST! 
write(6,*) 'L= ',I 

79 L=ichain(L) ! 
write(6,*) 'L= ',I 
LH=L+l ! 
write(6, *) 'LH= ',Ih ! 
iau=jsr(L) ! 
write(6,*) 'iau= ',iau ! 
ibu=jsr(LH)-1 ! 
write(6,*) 'ibu= ',ibu ! 
IF(LH.EQ.I) then ! 
ibu=isrtem-l ! 
write(6,*) 'ibu= ',ibu ! 
endif ! 
jsr{l)=I ! 
write(6, *) 1sr(', i , ')= " jsr(i) ! 
DO 84 J=iau,ibu ! 
write(6, *) 'J= 'j ! 
jcoln=jcn(J) ! 
write(6, *) 1coln= 'jcoln ! 
IFGsrGcoln).EQ.I)GO TO 84 
jcn(icount)=jcoln ! 
write(6, *) 1cn(', icount ,')= 'jcn(icount) ! 
icount=icount+ I ! 
write(6, *) 'icount= ',icount ! 
jsrGcoln)=I ! 
write(6, *) 1sr(', jcoln ,')= 'jsrGcoln) ! 
IFGcoln.LT.MIN) then! 
min=jcoln ! 
write(6,*) 'MIN= ',min! 
endif ! 

84 continue ! 
IF(icount.EQ.jexceed) GO TO 723 
IF(L.NE.LAST)GO TO 79 ! 

66 IF(MIN.EQ.npl)GO TO 322 ! 
723 L=ichain(MIN) ! 

write(6, *) 'L= ',I ! 
IF(L.EQ.O) GO TO 875 
ichain{l)=ichain(L) ! 

261 

062 
063 
064 
065 
066 
067 
068 
069 
070 
071 
072 
073 
074 
075 
076 
077 
078 
079 
080 
081 
082 
083 
084 
085 
086 
087 
088 
089 
090 
091 
092 
093 
094 
095 
096 
097 
098 
099 
100 
101 
102 
103 
104 
105 
106 



www.manaraa.com

262 Parallel-Vector Equation Solvers for Finite Element Engineering Applications 

Write(6*) 'ichain(,ichain(" i, ')=' ,ichain(i)! 
ichain(L)=I ! 
write(6, *) 'ichain(" I ,')= ',ichain(l) 
GO TO 322 ! 

875 ichain(MIN)=I ! 
write(6, *) 'ichain(" min ,')= ',ichain(min) 
ichain(l)=I ! 
write(6,*) 'ichain(" i ,')= ',ichain(i) 

322 jsr(l)=isrtem ! 
write(6, *) ~sr(', i ,')= 'jsr(i) 

21 continue ! 
j sr(N)=icount ! 
write(6, *) 'jsr(', n ,')= ',jsr(n) 
jsr(np 1 )=icount ! 
write(6,*) ~sr(', npl ,')= ',jsr(npl) 
return 

end 

107 
108 
109 
110 
111 
112 
113 
114 
115 
116 
117 
118 
119 
120 
121 
122 
123 

Lines 1-12: Main program: input data are read, such as the size (N) of the 
coefficient matrix, the number of non zeros (NCOEF) of the original 
coefficient matrix (see line 2), starting nonzero locations of each row 
(see line 4, array isr), column numbers associated with nonzero terms 
in each row (see line 5, array icn). The entire input data file for the 
stiffness matrix data (shown in Eq. 10.37) is given in Table 10.3 

Lines 12-30: These lines are essentially self-explained, since most of them are 
comment statements. The following arrays need to be defined: 
jsr( -), and jcn( -): Same definitions as arrays isr( -), and icn( -), 
respectively. However, arrays jsr( -) and icn( -) are associated with the 
factorized stiffness matrix, whereas arrays isr( -) and icn( -) are 
associated with the original stiffness matrix. 
ichain( -): Chained lists associated with each row. This array has been 
explained as shown in Eqs. (10.22-10.23, 10.25-10.26). 
NCOEF2: Total number of non zeros of the factorized stiffness matrix 
(including "fills-in" terms) 

Lines 31-36: Arraysjsr(-) and ichain(-) are initialized to zero. The counter "icount" 
is initialized to one. This integer variable will be increased by 1 
whenever a nonzero term (either from the original stiffness matrix, or 
from the "fills-in") is detected. Thus, upon exiting from the symbolic 
factorization (or subroutine symfact, on line 13), the value of"icount" 
will be "NCOEF2". 

Line 37: First major do-loop for symbolic factorization. The index I represents 
the current rh row 

Line 39: The temporary starting location for current rh row is stored in variable 
isrtem 



www.manaraa.com

Due T. Nguyen 263 

Line 41: Since "icount" represents the cumulative number of nonzero terms (up 
to and including the current Ilh row), hence (N-I) represents the 
maximum possible number of columns in row I (see Figure 10.2) 

Line 43: 

Lines 45-47: 
Line 50: 
Line 52: 

Line 54: 
Line 56: 

Lines 58-61 : 

Lines 62-64: 

Lines 43-64: 

Line 65: 

N-I 
.. ~ 

isrtem = icount = starting (nonzero) 
location of i .. row 

I"'row 

Figure 10.2 Interpretation of the variable "jexceed" 

The MINimum column number (=MIN) in all previous rows (and 
including the original nonzero terms of current row i) which have 
contributions to the current ilh row. The value of MIN is initialized to 
a large column number (such as NPI, or N + 1). For example, 
assuming I = 20, and MIN = 43, then the algorithm will prepare the 
chained list ichain( -) for future row #MIN. 
Starting and ending locations of nonzero terms in the current Jlh row 
In this do-loop, all nonzero terms of the Jlh row will be considered 
Column number (of Ilh row) of the original (before factorization) 
stiffness matrix is recalled. 
Column number of the (soon will be) factorized matrix is recorded. 
The counter "icount" is updated whenever a nonzero term and/or fills 
in term has been found 
For structural engineering applications, the original stiffness matrix is 
always in order (for example, the column numbers, corresponding to 
nonzero terms in each row, is already in the increasing order), thus this 
if statement is not really required. However, for general applications, 
the original, coefficient (stiffness) matrix may not be in order yet, and 
therefore, the value of MIN may have to be updated (as shown in line 
59) 
Column # jcoln has already contributed to row #1. Later on, we do 
NOT want to include column # jcoln again for row I! 
In summary, the main purpose for this segment of the code is to load 
the Jlh row of the original coefficient (stiffness) matrix into the Jlh row 
of the (soon to be) factorized matrix [U] 
The chained list array ichain( -) is used to find "which" previous rows 
will have contributions to the current Ilh row. The row # of the last 



www.manaraa.com

264 

Line 67: 

Line 68: 
Line 70: 

Line 74: 

Lines 72, 76: 

Lines 78-81: 

Parallel-Vector Equation Solvers for Finite Element Engineering Applications 

previous row (which has contributions to current Jlh row) is stored in 
the variable "LAST" 
If LAST = 0, it implies that the current Jlh row will NOT receive any 
contributions from its previous rows (However, the "current" Ith row 
may have contributions to "future" Jth row, where J > I) 
The value of LAST is copied into a variable L 
Among all previous rows which have contributions to the current Jlh 
row, L is the "current" previous row number to be considered 
Starting location for the V h row (of the soon to be factorized matrix 
[U]) is stored in the variable "IAU" 
Ending location for the V h row is stored in the variable "IBU". Since 
LH = L + 1, therefore, JSR(LH) will give the starting location of the 
(L+ lyh row. Hence, JSR(LH) - 1 (= IBU) will give the ending location 
of the V h row! 
These statements can be better explained by referring to Figure 10.3 

x X X 

X X 

X X ~ current previous Ltlt = 3 rd row foe 

X X Ffoe - current ]'> = 4 .. row 

X X 

X 

Figure 10.3 Special case for obtaining the ending location of the Lth row 

Assuming the current Jlh row to be the 4th row, and assuming the "previous 
current" V h row to be the 3rd row, thus the starting location of the Lth row can be 
obtained from line 74 as: 

IAU=JSR(yd row} (10.38) 

However, if we try to obtain the ending location of the V h row from line 76, then: 

lEU = JSR (4 th row) - 1 (10.39) 

Since we are currently considering row I = 4, the variable JSR (3rd row) has 
already been properly defined. However, the variable JSR (4th row) has not been 
properly defined yet. This variable JSR (4th row) will have its properly defined value 
only when the current row I (=4) has been completely processed! Thus, special formula 
(shown on line 79) need be used to properly define the value ofIBU whenever row #L 
is right above current row #I. Since ISRTEM represents the "proper" starting location 
of row #1 = 4, hence ISRTEM-1 will give a proper ending location of row #L = 3. 



www.manaraa.com

Due T. Nguyen 265 

Line 84: All nonzero terms of the "current previous" row #L are considered 
in this do-loop (with index J). Here, the index J represents the 
locations associated with nonzero terms (of row #L). 

Line 86: Column number, associated with a nonzero location, is defined in 
variable JCOLN 

Lines 82, 88: Referring to Figure 10.3, these two statements (together with the 
statement shown on line 62) will guarantee that such a nonzero term 
of previous row #L, which has contributions to the diagonal term of 
current row #1, will NOTbe included in the JSR(-) and JCN(-) arrays 

Furthermore, these two statements will also guarantee that 
the contributions of the factorized, fills-in term U 46 on the term U 56 

(assuming current row #1 = 5) will also NOT be included in arrays 
JSR( -) and JCN( -), since the "original" (before factorization) nonzero 
term K56 has already been existed! 

Lines 89, 91, 93: These three statements play similar roles as earlier statements, which 
have already been explained on lines 54, 56 and 62, respectively. 

Lines 95-98: These statements play similar roles as earlier statements, which have 
already been explained on lines 58-61. In here, however, ordering the 
column numbers (to make sure they are in increasing order) is usually 
required, regardless structural, or general applications (recalled the 
earlier descriptions related to Eq. 10.36) 

Line 100: This statement, if satisfied, implies that current row #1 is already full 
(please refer to the variable JEXCEED, defined earlier on line 41) 

Line 101: This statement, if satisfied, implies that the next previous row (which 
has contributions to current ph row) has to be considered 

Lines 65-101: In summary, the main purpose of this segment of the code is to 
consider the possibilities for fills-in effects of previous rows on the 
current ph row 

Line 102: Only two places where the value for variable MIN is redefined: lines 
#59 and #96. This statement, is satisfied, will imply: 
(a) Current row #1 does NOT have any off-diagonal terms, and/or 
(b) There are no previous rows which have contributions to row #1 

Lines 103-123: In this segment of the code, the contribution of current row #1 on 
"future" row #MIN is considered. Figure lOA (a, b, c, d) needs to be 
referred to for better understanding the logic behind this code 
segment. The original stiffness matrix (with fills-in terms denoted by 
the symbol "F") is shown in Figure lOA (a). Assuming the current 
row is row #1=5, and MIN = 7. 

Line 1 03: Assuming L = ICHAIN(7) = 0, then the "if statement" (on line 105) 
will direct the code to line # III 

Line Ill: ICHAIN(7) = 5 
Line 113: ICHAIN(5) = 5 
Line 115: Starting location for the ph row of the (soon to be) factorized matrix 

is recorded in array (JSR( -), before considering the next ph row (see 
lines 117 & 37) 



www.manaraa.com

266 Parallel-Vector Equation Solvers for Finite Element Engineering Applications 

Lines 103, III & 113: 
In summary, ifL = 0, it implies that up until now, "current" row #1 = 5 is the 
ONLY row which will have contributions to "future" row #MIN. Hence, the 
chained list for "future" row #MIN can now be established, accordingly (see 
Figure lOAb). 

Line 103: On the other hand, if one assumes L = ICHAIN(7) * 0, say L = 3, 
then the "if statement" (on line 105) will direct the code to line 106 

Line 106: ICHAIN(5) = ICHAIN(3) 
Assuming ICHAIN (3) = 2, then ICHAIN(5) = 2 

Line 108: ICHAIN(3) = 5, and then 
Lines 110, 115: Starting location for the Ilh row of the (soon to be) factorized matrix 

is recorded in array JSR( -), before considering the next Jlh row (see 
lines 117 & 37) 

Lines 103, 106, 
108 & 110: 

In summary, ifL * 0, it implies that the "current" row #1 = 5 will be added to 
the chained lists for "future" row #MIN. The data shown in Figure 1 OAa has 
clearly indicated that "previous" rows #2 & #3 had already been included on 
the chained lists for "future" row #7 (see Figure lOAc). After including the 
"current" row #MIN, the chained list for "future" row #MIN is updated as 
shown in Figure lOAd 



www.manaraa.com

Due T. Nguyen 

(a) Coefficient stiffness matrix 

x 
x x x x 

x x x x 
x 

1 
2 
3 
4 
5 
6 
7 
8 
t 

(i) F F x - '.mIIl r row I • 5 (en! MIN. 7) 

10 
11 
12 

x 
(Xl F F - "fI.wlf row I • 7 (. MIN) 

x 
x F 

x 
x 

x 
12345678t101112 

(b) CUlTent row 1= Sis 
the o~y row which has 
contribltiOll to ''future'' 
row II MIN 

lUi 
A(X7 

(c) Before considering 
row S 

X2) C 

I(Xhlast 

A (XS 
x7 

c 

(d) After COlI sidering 
row S 

A 

. x7 

Figure 10.4 Contributions of "current" row # I on "future" row # MIN 

267 

The data file associated with Eq. 10.37 (also refer to lines #2,4, and 5 of Table 10.2) is 
given in Table 10.3 

Table 10.3 Example data for symbolic factorization 

I: 
7 

4 5 6 7 8 8 8 

6 7 5 5 5 6 

How to Obtain the Symbolic Factorized Matrix with Proper Orderings?? It has 
been explained in Eq. (10.36) that upon exiting from the symbolic factorization phase, 
the coefficient (stiffness) matrix (including new nonzero terms, due to fills-in effects) 
need to be ordered to make sure the column numbers (associated with nonzero terms) 



www.manaraa.com

268 Parallel-Vector Equation Solvers for Finite Element Engineering Applications 

in each row are in ascending order. This type of ordering operation is necessary before 
performing the numerical factorization. 

To facilitate the discussions, let's consider an unordered, rectangular matrix 
(shown in Figure 10.5) which can be described by Eqs. (10.40-10.42) 

D(5th) 

H(lOth) 

2 3 4 
A(3rd) 

E(4th) 

F(6th) G(7th) 

I(9th) J(8th) 

K(llth) 

5 6 
B(I't) c(2nd) 

U13th) M(12th) 

= No. Columns (= NC) 

1 

2 

3 

4 

5 = No. Rows (= NR) 

Figure 10.5 An unordered, rectangular matrix 
(numbers in parenthesis represent location numbers) 

The starting location for each row in Figure 10.5 is given as 

ISTARTROW 

1 
2 
3 
4 
5 

6=NR+I 
=Ii 11 

14 

(10.40) 

The (unordered) column numbers associated with each row is given as 

1 5 
2 6 
3 3 
4 4 
5 1 
6 3 

ICOLNUM 7 4 (10.41) 
8 4 
9 3 
10 1 
11 2 
12 6 

13 = ISTARTROW( 6) - 1 5 

The "numerical" values (for the matrix shown in Figure 10.5) can be given as 



www.manaraa.com

Due T. Nguyen 

AK 

I 
2 
3 
4 
5 
6 
7 
8 
9 
10 
II 
12 
13 

B 
C 
A 
E 
D 
F 
G 
J 
I 
H 
K 
M 
L 

269 

(10.42) 

The "unordered" matrix, shown in Figure 10.5, can be made into an "ordered" matrix 
by the following 2-step procedure: 

Step 1: Transposing The Given Unordered Matrix Once: If the matrix shown in Figure 
10.5 is transposed, then one will obtain the following matrix (shown in Figure 10.6) 

Col. No.1 Col. No.2 Col. No.3 Col. No.4 Col. No.5 

Row #1 n(lst) H(2nd) 

Row #2 K(3rd) 

Row #3 A(4th) F(Sth) I(6th) 

Row #4 E(7th) G(Bth) J(9th) 

Row #5 B(\Oth) L(llth) 

Row #6 C(12th) M(13th) 

Figure 10.6 Transposing a given unordered matrix once 

The starting locations and the associated column numbers for the matrix shown 
in Figure 10.6 are given as: 

1 1 
2 3 
3 4 

ISTROW TRANSPOSE 1 4 7 (10.43) 
5 10 
6 12 
7 14 



www.manaraa.com

270 Parallel-Vector Equation Solvers for Finite Element Engineering Applications 

1 2 
2 4 
3 5 
4 1 
5 3 
6 4 

JeOLN TRANSPOSE 1 7 2 (10.44) 
8 3 
9 4 
10 1 
11 5 
12 1 
13 5 

It is important to realize from Figure 10.6 (and also from Eq. 10.44) that the matrix 
shown in Figure 10.6 is already properly ordered. For each row of the matrix shown in 
Figure 10.6, increasing the location numbers also associates with increasing the column 
numbers. 

Step 2: Transposing the Given Unordered Matrix Twice: If the matrix shown in Figure 
10.6 is transposed again (or the original matrix shown in Figure 10.5 is transposed 
twice), then one will obtain the matrix as shown in Figure 10.7 

2 3 4 
A(I't) 

D(4th) E(5th) 

F(6th) G(7th) 

H(8th) I(9th) J(lOth) 

K(llth) 

5 
B(2nd) 

U l2th) 

6 
c(3rd) 

M(l3th) 

2 

3 

4 

5 

Figure 10.7 Transposing a given unordered matrix twice 

The starting locations and the associated column numbers (for the matrix 
shown in Figure 10.7) are given as: 

JST ROWTRANSPOSE2 

1 
2 
3 
4 
5 

6 = NR + 1 UI (10.45) 



www.manaraa.com

Duc T. Nguyen 271 

ICOLNTRANSPOSE2 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 

3 
5 
6 
1 
4 
3 
4 
1 
3 
4 
2 
5 
6 

(10.46) 

Thus, one concludes that an "ordered" matrix can be obtained from the 
original, "unordered" matrix simply by transposing the "unordered" matrix twice! 

10.6 Sparse Numerical Factorization 

It is generally safe to say that sparse numerical factorization is more complicated for 
computer coding implementation than its skyline, or variable bandwidth cases. Main 
difficulties are due to complex "book-keeping" (or index referring) process. The "key" 
ideas in this numerical phase are still basically involved the creation and usage of the 
2 integer arrays ICHAINL(-) and LOCUPDATE(-), which have been discussed with 
great details in Section 10.5. There are two (2) important modifications that need to be 
done on the symbolic factorization, in order to do the sparse numerical factorization (to 
facilitate the discussion, please refer to the data shown in Eq. 10.14): 
(a) For symbolic factorization purpose, there is no need to have any floating 

arithmetic calculation. Thus, upon completing the symbolic process for row 4, 
there are practically no needs to consider row 2 and/or row 3 for possible 
contributions to row 5. Only row 4 needs to be considered for possible 
contributions (or "fills-in" effects) to row 5 (since row 4, with its "fills-in," is 
already full). 

For numerical factorization purpose, however, all rows 2, then 4 and 
then 3 will have to be included in the numerical factorization of row 5. 

(b) For sparse numerical factorization, the basic skeleton FORTRAN code for 
LDU, shown in Table 10.1 of Section 10.2.2, can be used in conjunction with 
the chained list strategies (using arrays ICHAINL and LOCUPDA TE) which 
have been discussed earlier in Section 10.5. 
The skeleton FORTRAN code for sparse LDU is shown in Table 10.4. 

Comparing Table 10.1 and Table 10.4, one immediately sees the "major differences" 
only occur in the 2 do-loop indexes K and J, on lines 3 and 6, respectively. 

Table 10.4 Pseudo FORTRAN skeleton code for sparse LDLT factorization 

1. c ... Assuming row 1 has been factorized earlier 

2. DO 11 1=2, N 



www.manaraa.com

272 Parallel-Vector Equation Solvers for Finite Element Engineering Applications 

3. DO 22 K = Only those previous rows which have contributions to 
current row I 

4.1 c ... Compute the multiplier (Note: U represents LT) 

5.1 XMULT = U (K, I) / U (K, K) 

6. DO 33 J = appropriated column numbers of row #K 

7.1 U(I, J) = U(I, J) - XMULT * U(K, J) 

8. 33 CONTINUE 

9.1 U (K, I) = XMULT 

10. 22 CONTINUE 

11. 11 CONTINUE 

A more detailed FORTRAN code for numerical factorization is shown in Table 
10.5. The following are definitions of various input, output and temporary arrays used 
in Table 10.5 

Input Arrays: 
ISR(N+l), IU(N+l) 

ICN(Ncoft), JCN(Ncof2) 

AN(Ncoft) 
AD(N) 

Output Arrays: 
UN(Ncof2) 
DI(N) 

Temporary Arrays: 
Ichain(N) 
KUPP (N) 

Starting location number of the first nonzero term in 
each row of the "original" matrix, and the factorized 
matrix, respectively 
Column numbers (associated only with nonzero terms) 
of the original matrix, and the factorized matrix, 
respectively. 
Off-diagonal terms of the original (stiffness) matrix 
Diagonal terms of the original (stiffness) matrix 

Factorized, off-diagonal terms of the (stiffness) matrix 
Inverse of the factorized diagonal terms of the matrix 
(this array is also used as the expanded accumulator) 

Chained list of rows associated with a column 
"Starting" location of a row 

Table 10.5 Detailed numerical sparse factorization 

I 
DO 10 J=I,N ! 

10 ichain(J)=O ! 

I 
C. ..... Begin of of I-st (nested) loop: outer-most loop, for each i-th row 

DO 130 I=I,N ! 
I IH=I+l ! 

ooll 
002

1 

I 

0031 
004: 



www.manaraa.com

Due T. Nguyen 

ICUU=IU(I) ! 
IBUU=IU(IH)-1 

IF(IBUU.LT.lCUU)GO TO 40 
DO 20 J=ICUU,IBUU 

20 DIGcn(J))=O. ! 
ica=isr(l) ! 
iba=isr(lH)-1 ! 
IF(iba.L T.ica)GO TO 40 
DO 30 J=ica,iba ! 

30 DI(icn(J))=AN(J) ! 
40 DI(I)=AD(I) ! 

LAST=ichain(l) ! 
IF(LAST.EQ.O)GO TO 90 ! 
LN=ichain(LAST) ! 

C ...... begin of2-nd (nested) loop: considering all APPROPRIATED previous 
C...... rows (any appropriated rows 1--->i-l) 

50 L=LN ! 
LN=ichain(L) 
iucl=kupp(L) ! 
iudl=IU(L+l)-1 ! 
UM=UN(iucl)*DI(L) ! 

C ...... begin of 3-rd (nested) inner-most loop: considering all APPROPRIATED 
C...... columns (any columns i--->n) 

DO 60 J=iucl,iudl ! 
JJ=jcn(J) ! 

60 DI(JJ)=DI(JJ)-UN(J)*UM 
UN(iucl)=UM ! 
kupp(L)=iucl+ 1 ! 
IF(iucI.EQ.iudl)GO TO 80 ! 
J=jcn(iucl+l) ! 
JJ=ichain(J) ! 
IF(JJ.EQ.O)GO TO 70 
ichain(L)=ichain(JJ) ! 
ichain(JJ)=L ! 
GOT080! 

70 ichain(J)=L ! 
ichain(L)=L ! 

C ...... the following go to statement is equivalent to 2-nd nested loop 
C ...... for factorization 

273 

005 
006 
007 
008 
009 
010 
011 
012 
013 
014 
015 
016 
017 
018 

019
1 020 

021 
022 
023 

0241 
025 
026 
027 
028 
029 
030 
031 
032 
033 
034 
035 
036 
037 



www.manaraa.com

274 Parallel-Vector Equation Solvers for Finite Element Engineering Applications 

80 IF(L.NE.LAST)GO TO 50 ! 038 
90 DI(l)=1.IDI(l) ! 039 

IF(IBUU.LT.lCUU)GO TO 120 040 
DO 100 J=ICUU,IBUU 041 

100 UN(J)=DIGcn(J» 042 
J=jcn(lCUU) ! 043 
JJ=ichain(J) ! 044 
IF(JJ.EQ.O)GO TO 110 045 
ichain(I)=ichain(JJ) 046 
ichain(JJ)=I ! 047 
GO TO 120 ! 048 

110 ichain(J)=1 ! 049 
ichain(I)=I ! 050 

120 kupp(l)=ICUU 051 
130 continue ! 0521 

Explanations for various statements in Table 10.5 are given in the following 
paragraphs 
Lines 1-2: 
Line 3: 

Lines 4-6: 

Line 7: 

Lines 8-9: 

Lines 10-11: 

Line 12: 

Lines 13-14: 
Line 15: 

Line 16: 

Initialize the array Ichain( -) 
The first DO-LOOP of the numerical factorization. The index I 
represents the I'h row which is currently being factorized 
Find the starting (=ICUU) and ending (=IBUU) locations of the I'h 
row of the factorized matrix 
Check and see if the I'h row (of the factorized matrix) has no off
diagonal terms 
The array DI( -) is initialized. For better efficiency, however, only 
those nonzero locations of the I'h row are included here 
Find the starting (=ICA) and ending (=IBA) locations of the I'h row 
of the "original" (or unfactorized) matrix 
Check and see if the I'h row (of the original matrix) has no off
diagonal terms 
Copy Row #1 (of the original matrix) into a temporary array DI(-) 
Copy the J'h diagonal term (of the original matrix) into a temporary 
array DI(-) 
The "last" previously factorized row which has contributions to the 
currently factorized I'h row. Strictly speaking, this should be 
considered as the "first" previously factorized row! As an example, 
suppose the currently factorized row #6 will require [according to 
array Ichain( -)] the information from the previously factorized rows 
#5, 4, 1, respectively, then LAST = 1. Based upon skyline and/or 
variable bandwidth factorization, the currently factorized row #6 



www.manaraa.com

Due T. Nguyen 

Line 17: 

Lines 18-19: 

Line 20: 
Lines 21-22: 
Line 23: 

Lines 24-26: 

Line 27: 

Line 28: 

275 

should receive the contributions from the previously factorized row 
#1 first, then row #4 and row #5, respectively! 
If LAST = 0, then it implies that there are NO previously factorized 
rows which have contributions to the current ph row. Referring to the 
data shown in Eq. (10.14), as an example, for ph row = 3rd row, there 
are NO previous rows (such as rows 1 & 2) which have contribution 
to row 3, hence LAST = O. On the other hand, for the current ph row 
= 4th row (see Eq. 10.14), it will receive the contribution from the 
previously factorized row #1, hence LAST = 1 
The "first" previously factorized row #L is defined as 

L = LN, or L = Ichain (LAST) 
Thus, L can be considered as the "current previous" row # which has 
contributions to the currently factorized row #1. Note that line #19 (L 
= LN) is the beginning of the 2nd loop of the numerical factorization 
(which has contributions to the currently factorized row #1) 
The "next" previously factorized row #LN is defined 
Starting and ending (nonzero) location of row #L, respectively 
Compute the multiplier factor (also see Table 10.1 in Section 10.2.2 
for the expression xmult = UK. /uK. K). Note here DI( -) contains the 
inverse (or reciprocal) value of diagonal term (see line 39) 
The 3rd do loop of numerical factorization is used to partially update 
the current row #1 (due to the contributions from the previously 
factorized row #L). The partially updated current row #1 is stored 
temporarily under the array DI( -) 
This statement plays the same role as the statement u(K, I) = xmult 
in Table 10.1 
The "next" (non-zero) starting location for row #L is computed (See 
Figure 10.8) 



www.manaraa.com

276 Parallel-Vector Equation Solvers for Finite Element Engineering Applications 

IUC L = the ''fir sf' nQllIerO 100000iQII of Lth row 

j IUC L = KU PP IL I the "wrrent" fir sf nQIII«O 100000iQII of Lth row 

1 
KUP P III = IlK L.. 1 = the ''next'' fir sf nQIII«O 100000iQII of Lth row 1 r ......... ·-_o-~ .. ,· .... 

--I-x-*------I-------x-*-x--- Lth rrm, whkh has contribuliQII to the Ith row 

""-.... ' ---------- llcurrartly" factorimd Itil row 

'.------- ''future'' Jth row, to be factorized 

.Ithco.,mnl 

Figure 10.8 The "current" first nonzero location of the L'h row, which 
has contribution to the currently factorized ph row 

Line 29: IfIUCL = IDDL, then (accordingly to Figure 10.8) it implies row #L 
has no more nonzero terms, and therefore row #L has absolutely no 
more use in the subsequent rows (such as rows #1+ 1, 1+2, .... , N). 

Line 30: Find the column number (=J) which corresponds to the "next" (or 
"new") first (nonzero) location of row #L 

Line 31: Get the information (=11) about column J, see ifany nonzero rows in 
this column 

Lines 32, 36-37: If 11 = 0, it implies that row #L will be the only row (so far) which 
will have the contributions into the "future" (to be factorized) row #J. 
Thus, the "future" factorized row #J will have to refer to the 
"previously factorized" row L (see statement on line #36) 

Lines 33, 34: If 11 "* 0, then it implies that row #L will be added to the "chained 
list" of those (previously factorized) rows which will have 
contributions to "future" row #1 (see Figure 10.9) 



www.manaraa.com

Due T. Nguyen 

I 
-------~¥---- --

--+--I-'7-+-,.L---1 row #JJ 

KUPP(L) = IUeL + I = the "next" tirst 
nonzero location of L do row 

-HH~----I L" row = the "current previous" row which has 
contributions to the current 1m row 

'>c--;--~~--I currently factorized 1m row 

"future" .r" row 

Figure 1 0.9 Previously factorized Vb row is being added to the list of rows 
which will have contributions to the future JIb row 

277 

Rows #JJ and #L will have the contributions to the "future" row #J, hence row #L (or, 
the "current previous" row which will have contributions to "future" row #J) will be 
added on the chained list array Ichain(-). In other words, before row #L entering into 
the picture, row #JJ is assumed to be the only row who will contribute to "future" row 
#J. Thus, the chained list array will be: 

IP(J) = JJ 
IP(JJ) = JJ 

Now, since row #L also has contributions to future row #J, hence the chained list array 
will be updated as 

IP(J) = JJ 
IP(JJ) = L 
IP(L) = JJ 
The evolution of the chained list array IP( -) to include those (previously 

factorized) rows (such as row #JJ, and then subsequently row #L) which will have the 
contributions to "future" row #J is shown in Figure 10.10 

(: Previa us ro w JJ 
\') _om •• JJ 

Previa us ro w L (x Previous row L 

Cumnt row I x CumntrowI 

x Future row J x Future row J 

Figure 10.10 Evolution of previous rows #JJ and #L to future row #J 



www.manaraa.com

278 

Line 38: 

Line 39: 

Line 40: 

Lines 41-42: 

Lines 43-50: 

Line 51: 

Line 52: 

Parallel-Vector Equation Solvers for Finite Element Engineering Applications 

row L = nonzero terms at lsi, --
2nd (or 1st, 4th terms of row I) 

(olumn J = JeN (lCUU) 

l 
I @ ® @ - row JJ = nonzero terms::: 1st, 
x x x 2nd, 3rd (or 2nd, 3rd, sth terms 

of row I) 

x0 0x0 -rowl 

Figure 10.11 Contributions from the previously factorized 
rows #JJ and #L to current Ilh row 

If L * LAST, it implies the previously factorized row #L is not yet 
the last row which have contributions to the current Ilh row (in other 
words, there are more previously factorized row(s) which have 
contributions to the current Ilh row). In this case, the algorithm will 
go back to line # 19 to consider the contributions of the "new" 
previously factorized row (="new" row L) on the current ph row 
The inverse (or reciprocal) of diagonal term [= IIDI(I) or I1u(K,K) 
as shown in Table 10.1]. This information will be used in calculating 
the multiplier constant as shown on line 23 
IfIBUU < ICUU, then it implies there are NO MORE nonzero terms 
in row #1 of the factorized matrix 
The "temporary" array DI(-), which has been used to store the 
updated (or factorized) ph row (see line 26) is now copied into a 
"permanent" array UN(-). 

This approach is more convenient than introducing the 
"permanent" array UN(-) directly on line 26, because row #JJ will 
have the contributions on the 2nd, 3rd and 51h off-diagonal terms of the 
current I Ih row, whereas row #L will have the contributions on the 151 
and 41h off-diagonal terms of the current ph row (see Figure 10.11) 
Essentially followed the same logic as already explained in lines 30-
37. In lines 30-37, the chained list Ichain( -) array was updated so that 
"earlier" rows which contribute to the "current" row I and "future" 
row(s) J were recorded. However, in lines 43-50, the Ichain(-) array 
is updated so that the "current" row I which has contributions to 
"future" row(s) J is recorded. 
The "current" first (nonzero) location of row #1 is recorded in array 
KUPP(I) 
Go back to line #3 to consider the next row 

10.7 Forward and Backward Solutions 

For a single right-hand-side vector {f}, the combined forward and backward solution 
time is very small as compared to the numerical factorization time. However, for 
multiple right-hand-side vector {f}, or for cases where the vector {f} needs to be 



www.manaraa.com

Due T. Nguyen 279 

modified repeatedly (such as in eigenvalue analysis, structural dynamics, nonlinear 
finite element analysis, electro-magnetic engineering applications, etc .... ), the forward 
and backward solution time has to be considered more seriously. 

10.7.1 Forward substitution phase 
In the forward substitution phase, the intermediate vector {y} can be solved from Eq. 
(10.3) 

[ur {y} = {j} (10.3, repeated) 

For the Choleski method, [U]T = [L] where [L] is a lower triangular matrix. Thus, Eq. 
(10.3) can be rewritten as 

[L] {y} = {j} (10.47) 

For the data shown in Eq. (10.15), Eq. (10.47) has the following form 

LlI 0 0 0 0 0 YI h 
0 L22 0 0 0 0 Y2 1; 
0 0 L33 0 0 0 Y3 A (10.48) 

L41 0 0 L44 0 0 Y4 h 
0 L52 L53 L54 L55 0 Y5 Is 

L61 0 0 L64 L65 L66 Y6 fr, 

The first unknown YI can be found easily as 

h 
YI = - (10.49) 

LII 

As soon as YI has been solved, the right-hand-side vector {f} can be updated 
by taking the first column of[L] (or for the actual implementation, the first row of[UD 
to operate on the variable YI' This type of operation is NOT time consuming since row 
I is quite sparse (only three nonzero terms appeared in the first column of matrix [L D. 
Thus, only three terms (the first, the fourth and the sixth terms) of the vector {f} need 
to be updated. Then, the next unknown, Y2' can be solved and this process can be 
repeated until all unknowns of the vector {y} are solved. 

It should be emphasized here that in actual computer implementation, the 
intermediate array {y} is not needed and the forward solution phase will be overwritten 
on the original vector {f}. 

10.7.2 Backward substitution phase 
For the data shown in Eq. (10.15), Eq. (10.4) will take the following form 

U II 0 0 U I4 0 U I6 ZI YI 
0 U22 0 0 U25 0 Z2 Y2 
0 0 U33 0 U35 0 z3 Y3 (10.50) 
0 0 0 U44 U45 U46 Z4 Y4 
0 0 0 0 U55 U56 Z5 Y5 
0 0 0 0 0 U66 Z6 Y6 



www.manaraa.com

280 Parallel-Vector Equation Solvers for Finite Element Engineering Applications 

The last unknown ~ can be found easily as 

Y6 
Z6 =-

U66 
(10.51) 

Once ~ has been solved, one may attempt to (follow the same logic mentioned in 
Section 10.7.1) update the right-hand-side vector {y} by taking the sixth column of 
matrix [U] to operate on the variable ~ . This kind of operation although is valid, 
however, is NOT preferred in practical computer implementation. This conclusion can 
be drawn because in practice, the upper triangular matrix [U] is stored in a 1-D array 
{A} according to a row-by-row fashion. Thus, it is neither convenient, nor efficient to 
locate nonzero terms of column 6 and multiply with variable Z6 in order to update the 
vector {y}. 

In general, assuming z." z.,.l'"'' Z i+l have been solved, then the next unknown 
Z i can be obtained by simply operating a few non-zero terms of the ilh row (of the [U] 
matrix) on the unknown variables Zj+l' Zi+2' .... ' z.,.l' z.,. 

As an example, for the data shown in Eq. (10.15) and assuming that variables 
Z6' zs, and Z4 have been solved, then the unknown variable Z3 can be found as 

10.8 

U33 

Sparse Solver with Improved Strategies 

(10.52) 

In this section, several strategies which can be used to improve the performance of the 
developed sparse solver will be discussed. 

10.8.1 Finding master (or super) degree-of-freedoms (dot) 
To simplify the discussion, assuming that upon completion of the symbolic phase, the 
stiffness matrix [K] will have the following form 

2 3 4 5 6 7 8 9 10 II 12 13 14 
x x x x x x x x x I 

x x x x x x x x 2 
x x x x x x x 3 

x x x x x 4 
x x x x 5 

x x x F F F x F 6 
[KJ SYM. x x x x F x x 7 (10.53) 

x x x F x x 8 
x x F x x 9 

x F x x 10 
x x x x II 

x x x 12 
x x 13 

x 14 

In Eq. (10.53) the stiffness matrix [K] has 14 dof. The symbols "x" and "F" refer to the 
original nonzero terms, and the nonzero terms due to "Fills-in," respectively. It can be 
seen that rows 1-3 have the same nonzero patterns (by referring to the enclosed 
"rectangular" region, and ignoring the fully populated "triangular" region of rows 1-3). 



www.manaraa.com

Due T. Nguyen 281 

Similarly, rows 4-5 have the same nonzero patterns. Rows 7-10 have the same nonzero 
patterns. Finally, rows 11-14 also have the same nonzero patterns. Thus, for the data 
shown in Eq. (10.53), the "Master" (or "Super") dof can be generated as 

1 3 
2 0 
3 0 
4 2 
5 0 
6 1 
7 4 
8 0 MASTER (10.54) 

9 0 
10 0 
11 4 
12 0 
13 0 

14 = N 0 

According to Eq. (10.54), then the "master" (or "super") dof are dof #1 (which is 
followed by 2 "slave" dot), dof#4 (which is followed by I slave dot), dof#6 (which 
has no slave dofl), dof #7 (which is followed by 3 slave dot), and dof # 11 (which is 
followed by 3 slave dot). 

10.S.2 Sparse matrix (with unrolling strategies) times vector 
In our developed sparse equation solver, upon obtaining the solutions, the user has the 
option to compute the relative error norm (see R.E.N. in Section 10.9). For the error 
norm computation, one needs to have efficient sparse matrix (with unrolling strategies) 
vector multiplication. 

To facilitate the discussions, let us consider the coefficient (stiffness) matrix 
as shown in Figure 10.12. This 14 dofmatrix is symmetrical, and it has same nonzero 
patterns as the one considered earlier in Eq. (10.53). The master/slave dof for this 
matrix has been discussed and given in Eq. (10.54). The input data file associated with 
Figure 10.12 follows exactly the same sparse numerical factorization procedures 
discussed earlier in arrays ISR(-), ICN(-), AN(-) and AD(-). 

The sparse matrix-vector [A] * {x} multiplication (with unrolling strategies) 
can be described by the following step-by-step procedures (please also refer to Figure 
10.12) 

Step 0.1 :Multiplications between the given diagonal terms of [A] and vector {x} 
Step 0.2:Consider the first "master" dof. According to Figure 10.12 (and Eq. 10.54), 

the first master dof is at row # 1, and this master dofhas 2 associated slave dof. 
In other words, the first 3 rows of Figure 10.12 have the same off-diagonal, 
nonzero patterns 

Step 1: The first three rows (within a rectangular box) ofthe given matrix [A] (shown 
in Figure 10.12) operate on the given vector {x} 

Step 2: The first 3 columns (within a rectangular box) ofthe given matrix [A] (shown 
in Figure 10.12) operate on the given vector {x} 



www.manaraa.com

282 Parallel-Vector Equation Solvers for Finite Element Engineering Applications 

Step 3: The upper and lower triangular portions (right next to the first 3 diagonal terms 
of the given matrix [AD operate on the given vector {x}, according to the 
orders a, then b, and finally c (as shown in Figure 10.12) 

Step 4: The row number corresponds to the next "master" dof can be easily computed 
(using the master/slave dof information, provided by Eq. 10.54). 

If the next "master" dofnumber exceeds N (where N = total number 
of dof of the given matrix [AD, then stop, or else return to step 0.2 (where the 
"first" master dofwill be replaced by the "second" master dof, etc .... ) 

Third Step 
The upper and lower triangular regions (next to diagonal terms) will finally be processed 
(according to the order 9 then 9, 1 and 2, then 1 and 2) 

2 3 4 5 6 7 8 9 10 11 12 13 14 

101 1 2 3 4 5 6 7 8 

1 102 9 10 11 12 13 14 15 

2 9 103 16 17 18 19 20 21 

104 22 23 24 25 

22 105 26 27 28 

3 10 16 106 29 30 31 

23 26 29 107 32 33 34 35 36 

24 27 30 32 108 37 38 39 40 

4 11 17 33 37 109 41 42 43 

5 12 18 34 38 41 110 44 45 
6 13 19 III 46 47 48 

46 112 49 50 

7 14 20 25 28 31 35 39 42 44 47 49 113 51 

R 1, ., 
t t t 

Second Step 

First Step 
-------'These 3 rows in this 
-------.rectangular box will be 

processed (dot product 
-------. operations) 

These 3 columns in this rectangular box will be processed (saxpyoperations) 

Figure 10.12 Space matrix - vector multiplications with unrolling strategies 

The above step-by-step procedures (for sparse matrix-vector multiplication with 
master/slave dofand unrolling strategies) have been implemented into the FORTRAN 
computer code, shown in Table 10.6. 

Explanations for major block of FORTRAN statements (in Table 10.6) will be 
given in the following paragraphs (see subroutine multspa) 
Lines 8-9: Step 0.1 is implemented 
Line 11: The first master dof (or supernode) is considered 
Line 15: Unrolling level 4 strategies are assumed 



www.manaraa.com

Due T. Nguyen 283 

Line 16: The total number of master and slave rows (corresponding to the 
current master row) is identified in variable "jj". For the example 
data shown in Figure 10.12, we have: 

JJ = isupem (1) = 3 
However, for the sake of discussion, let us assume JJ = 11 

Line 17: Since level 4 unrolling strategies are used (see line IS), here we want 
to find how many blocks (each block contains 4 rows) to be 
associated with the above II rows (which correspond to the current 
master row). Thus: 

KK = (1114) * 4 = (2) * 4 = 8 
For our actual data (shown in Figure 10.12), then: KK = (3/4) * 

4 = (0) * 4 = 0 
Thus, the first 8 rows (out of the total 11 rows) will be considered 
first (see lines 19-68). The number of remaining rows, in general, can 
be either I, or 2, or 3, and is calculated in line 69. 
Thus: 
LEFTOV (= LEFT OVER) = II - 8 = 3 (see line 69) 
Depending on the number of remaining rows (1, 2, or 3), the code 
will branch to line 133, 108, or 72, accordingly. For the actual data 
shown in Figure 10.12, since JJ = 3 (see line 16), hence lines 19-68 
will be skipped. Furthermore, the remaining rows can be calculated 
(according to line 69) as: 

LEFTOV=3 -0=3 
Thus, the code will branch to line 72 

Lines 72-76: The row number corresponds to the last row (of the remaining rows 
for the current master/slave rows) is calculated in line 74. The row 
numbers of the preceeding 2 rows are calculated in lines 75-76. 

Line 77: The total number of nonzero terms (corresponding to the last row) is 
calculated. 

Lines 78-80: The starting locations for each of the remaining rows are calculated 
Lines 86-89: Step 1 is implemented (please also refer to Figure 10.12) 
Lines 90-93: Step 2 is implemented (refer to Figure 10.12) 
Lines 99-100: Step 3a is implemented (refer to Figure 10.12) 
Line 103: Step 3b is implemented (refer to Figure 10.12) 
Lines 105-106: Step 3c is implemented (refer to Figure 10.12) 

The FORTRAN statements used in lines 19-68, or lines 108-132, or lines 133-
147 follow the "same logic" as explained in lines 86-106. 
Lines 150-151: Step 4 is implemented. 

Table 10.6 Master dof and sparse matrix times vector 

subroutine multspa(n,istartr,kindx,coefs,diag,rhs,answer,isupem) 
implicit real*8(a-h,0-z) ! 
common/junk1lIastrmi(8) ! 

c. .. purpose: <sparse, and symmetric> matrix times vector 

001 
002 
003 
004 



www.manaraa.com

284 Parallel-Vector Equation Solvers for Finite Element Engineering Applications 

c .. with UNROLLING capability ! 
dimension diag( 1 ),kindx( 1 ),coefs( 1 ),rhs( 1 ),istartr( 1) ! 

$,answer(1 ),isupem(1) ! 
C ... dimension kptrs(1) 

c. .. starting with diagonal multiplications 

do 3 i=l,n ! 
3 answer(i)=diag(i)*rhs(i) ! 

C write(6,*) 'MVSPARU: diag*rhs= ',(answer(i),i=l,n) 

C ...... first supemode ! 
i=1 ! 

c. .. subsequent supemodes 
1000 continue ! 

I 
C ..... number of rows (equations) in the i-th supemode 

nunrol=4 ! 

I 
jj=isupem(i)! 

kk=Uj/nunrol)*nunrol ! 

1 C---~~~;;~~:~~~--~------------------------------------------

I 
C .... write(6, *) 'MVSPARU:jj,kk,lastrow= 'jj,kk,lastrow 

I do 31 j= 1 ,kk,nunrol ! 

1 

C .... find the last row # in a block (each block = "nunrol" rows) 
lastrow=lastrow+nunrol ! 

1 

lastrm I =Iastrow-I 
lastrm2 = lastrow-2 

I lastrm3=lastrow-3 

II C····;~strmi(1 )=lastrm3 

lastrmi(2)=lastrm2 

I lastrmi(3)=lastrml 
I C. .. .ii=kptrs(lastrow) 
I ii=istartr(lastrow+ 1 )-istartr(lastrow) 

I C .... .if(ii.eq.O) go to ??? 

I 
icount=istartr(lastrow)-I! 
icaum 1 =istartr(lastrm 1) ! 

• 

icaum2=istartr(lastrm2)+ 1 

icaum3 =istartr(lastrm3)+ 2 

do 32 k=l,ii 

icount=icount+ 1 ! 

icauml =icauml + 1 

005 
006 

007 

008 

009 

010 
OIl 

012
1 

013 

014 
015 

016 
017 

018 

019 

020 
021 

022 
023 

024 

025 
026 

027 

028 

029 

030 

031 

032 

033 
034 

0351 



www.manaraa.com

I 

Due T. Nguyen 

icaum2=icaum2+ I 

icaum3=icaum3+ I 
jcoln=kindx(icount) ! 

285 

036: 
! 

037 1 

I 

I C ..... upper portions (vector unrolling) 
038

1 

039 1 

I answer(1astrow )=answer(lastrow )+coefs( icount)* rhs(j co In) 

I answer(lastnn 1 )=answer(lastnn 1 )+coefs(icaum I )*rhs(jcoln) ! 040
1 

041 

1 

answer(lastrm2)=answer(lastrm2)+coefs(icaum2)*rhs(jcoln)! 
answer(lastnn3 )=answer(lastnn3 )+coefs( icaum3) *rhs(j co In) ! 042

1 
043 

I 
C .... write( 6, *) 'MVSPARU :icount,icaum I ,icaum2,icaum3jcoln,lastrow= ' 

C .... write(6, *) icount,icauml ,icaum2,icaum3jcoln,lastrow 

I
c .... write(6,*) 'MVSPARU: answer(lastrow),answer(lastrm3)=' 
C .... write(6, *) answer(lastrow),answer(lastrm3) . 

1 

C .... .lower portions (loop unrolling) ! 

answer(jcoln)=answer(jcoln)+coefs(icount)*rhs(lastrow) 
044

1 045 
I 

I 
$ +coefs(icaum 1 )*rhs(lastnn 1) ! 
$ +coefs(icaum2)*rhs(lastrrn2) ! 046

1 
047 

$ +coefs(icaum3)*rhs(lastnn3) ! 048 
C. ... write(6,*) 'MVSPARU: answer(jcoln)= ',answer(jcoln) 

32 continue ! 049 
C .... now,take care of2 little "FULL" (upper & lower) triangular portions 050 

C .... the following FORTRAN statements can be applied in several places, 051 
C .... thus these statements can be placed in a form of a subroutine! 052 

C. ... call fulltri(nunrol,istartr,kindx,answer,coefs,rhs) ! 053 
C .... subroutine fulltri(nunrol,istartr,kindx,answer,coefs,rhs) 054 

C .... .implicit real*8(a-h,0-z) 

C ..... common/junkl/lastnni(8) 
C ..... dimension istartr( 1 ),kindx( 1 ),answer( 1 ),coefs( 1 ),rhs( 1) 

C********* 
do 33 1= 1 ,nunrol-l ! 055 

nterms=nunrol-I ! 056 
ithrow=lastrmi(l) ! 057 
icount=istartr(ithrow)-1 058 

do 34 m=l,nterms ! 059 

icount=icount+ 1 ! 060 
jcoln=kindx(icount) ! 061 

C .... upper row ! 062 
answer(ithrow)=answer(ithrow)+coefs(icount)*rhs(jcoln) 063 

C .... write(6,*) 'MVSPARU: ithrow,answer(-)= ',ithrow,answer(ithrow) 

C .... .lower column =s 064 



www.manaraa.com

286 Parallel-Vector Equation Solvers for Finite Element Engineering Applications 

answerGcoln)=answerGcoln)+coefs(icount)*rhs(ithrow) ! 
C .... write(6,*) 'MVSPARU:jcoln,answer(-)= 'jcoln,answerGcoln) 

34 continue 

33 continue 

31 continue 

C********* 

C--------------------------------------------------------------
leftov=jj-kk ! 

C .... write(6,*) 'MVSPARU: leftov= ',leftov 

if(leftov.eq.O) go to 789 

go to(l0,20,30),leftov ! 
30 continue ! 

c. ... vectorize by unrolling (level 3) for left over rows (of a supemode) 

lastrow=i+jj-l ! 

lastrml =Iastrow-l 

lastrm2=lastrow-2 

C ... .ii=kptrs(lastrow) 

ii=istartr(lastrow+ 1 )-istartr(lastrow) 

C .... .if(ii.eq.O) go to ??? 

icount=istartr(lastrow)-1 ! 

icaum 1 =istartr(lastrm 1) ! 
icaum2=istartr(lastrm2)+ I 

do 2 k=l,ii ! 

icount=icount+ 1 ! 
icaum 1 =icaum I + I 
icaum2=icaum2+ I 

jcoln=kindx(icount) ! 

C .... upper portion (vector unrolling) 

answer(lastrow )=answer(lastrow )+coefs( icount)* rhsG co In) 

answer(lastrm I )=answer(lastrm 1 )+coefs(icaum I )*rhsGcoln) ! 

answer(lastrm2 )=answer(lastrm2 )+coefs( icaum2)* rhsG co In) 

C .... write(6,*) 'MVSPARU: check point # I' 
C .... write(6, *) 'MVSPARU: answer(lastrow),answer(lastrm2)' 

c. ... write(6, *) answer(lastrow),answer(lastrm2) 

C .... lower portion (loop unrolling) ! 
answerGcoln )=answerG coin )+coefs(icount)* rhs(lastrow) 

1 

$ +coefs(icaum I )*rhs(lastrm I) ! 

$ +coefs(icaum2)*rhs(lastrm2) ! 

Ic ... write(6,*) 'MVSPARU: jcoln,answerGcoln)= '.jcoln,answerGcoln) 

065 

066 

067 

068 

069 

070 

071 

072 

073 

074 

075
1 

076 

0771 

0781 
079

1 
080 

081
1 

082 

083
1 

084 

0851 

086
1 

087
1 088 

0891 

I 

090
1 091 1 

092
1 

093 1 

I 
! , 



www.manaraa.com

Due T. Nguyen 

2 continue! 

C ..... now,take care of2 little "FULL" (upper & lower) triangular portions 

C ..... call fulltri(nunrol,istartr,kindx,answer,coefs,rhs) 

icaum 1 =istartr(lastrm 1 ) ! 

jcoln=kindx(icauml) ! 

answer(lastrm 1 )=answer(lastrm I )+coefs(icaum 1 )*rhsGcoln) 

answerGcoln)=answerGcoln)+coefs(icaum I )*rhs(lastrm 1) 
icaum2=istartr(lastrm2) ! 

jcoln=kindx(icaum2) ! 

answer(lastrm2 )=answer(lastrm2 )+coefs( icaum2 )*rhsG coin) 

$ +coefs(icaum2+ 1 )*rhsGcoln+ 1) ! 

answerGcoln)=answerGcoln)+coefs(icaum2)*rhs(lastrm2) ! 

I 
answerGcoln+ 1 )=answerGcoln+ 1 )+coefs(icaum2+ 1 )*rhs(lastrm2) 

C .... write(6,*) 'MVSPARU: check point # 11' 

go to 789 ! 

20 continue ! 

C ..... vectorize by unrolling (level 2) for left over rows (of a supemode) 

lastrow=i+jj-I ! 

I lastrm1 =lastrow-l ! 

I c. .. ii=kptrs(lastrow) 

1 

ii=istartr(lastrow+ 1 )-istartr(lastrow) 

C. ... .if(ii.eq.O) go to ??? 

I 
icount=istartr(lastrow)-I! 

icaum 1 =istartr(lastnn 1) 

I 
do 12 k=I,ii ! 

icount=icount+ 1 ! 

I 
icaum 1 =icaum 1 + 1 

jcoln=kindx(icount) ! 

I C .... upper portions ! 

I answer(lastrow)=answer(lastrow)+coefs(icount)*rhsGcoln)! 

1 

answer(lastnn 1 )=answer(lastnn 1 )+coefs(icaum 1 )*rhsGeoln) 

c. ... .lower portions ! 

I answerGcoln)=answerGcoln)+coefs(icount)*rhs(lastrow) 

I $ +coefs(icaum l)*rhs(lastnn I) 

'112 continue ! 
c. ... write(6,*) 'MVSPARU: check point # 21' 

!C ..... now,take care of2 little "FULL" (upper & lower) triangular portions 
I 
I c. .... call fulltri(nunrol,istartr,kindx,answer,coefs,rhs) ! 

I icaum 1 =istartr(lastnn 1) ! 

287 

094 

095 

096 

097 

098
1 

099 

100 
101 
102 

103
1 

104 

105 

106 

107 
108 
109 
110 

III 

1121 

113 

114 

115 
116 

117 

118 
119 

120 

1211 
122 

123
1 

124 

125
1 

126
1 127 

__ J281 



www.manaraa.com

288 Parallel-Vector Equation Solvers for Finite Element Engineering Applications 

jcoln=kindx(icaum1) ! 

answer(lastrm 1 )=answer(lastrm 1 )+coefs(icaum 1 )*rhs(jcoln) 

answer(jcoln)=answer(jcoln)+coefs(icaum 1 )*rhs(lastrm 1) 
go to 789 ! 

10 continue ! 

C .... NO vectorize by unrolling (level 1) for left over rows (of a supernode) 

C .... write(6,*) 'MVSPARU: check point # 31' 
lastrow=i+jj-1 ! 

c. ... ii=kptrs(lastrow) 

ii=istartr(lastrow+ 1 )-istartr(lastrow) 

C. .. .if(ii.eq.O) go to ??? 
icount=istartr(lastrow)-1 
do 13k=l,ii ! 

icount=icount+ 1 ! 

jcoln=kindx(icount) 
C .... upper portion ! 

answer(lastrow )=answer(lastrow )+coefs(icount) *rhs(j co In) 
C .... .lower portion ! 

answer(j coIn )=answer(j co In )+coefs( icount )*rhs(lastrow) 
13 continue ! 

C .... write(6,*) 'MVSPARU: check point # 41' 

C ..... for this case (left over 1 row from unrolling),there is NO 2 FULL 
c. ... .little triangular portions ! 

go to 789 ! 

I~:::::~nd the row (equation) number of the next supernode 

1

789 i=i+jj ! 
c. ... write(6,*) 'MVSPARU: check point # 41' 

I
C. ... write(6,*) 'MVSPARU: i= ',i 

if(i.lt.n) go to 1000 ! 

I return 
L end 

10.8.3 Modifications for the chained list array ICHAINL(-) 

129 
130 

131
1 

132 
133 
134 

135 

136 

137 
138 

139 
140 
141 

142 

143 

144 
145 

146 

147 
148 

149\ 

150
1 
I 

I 
151i , 

The chained list strategies discussed earlier in Section 10.5 need to be modified in order 
to include the additional information provided by the MASTER dof (refer to, for 
example, Eq. 10.54). The major modification that needs to be done can be accomplished 
by simply making sure that the chained list array ICHAINL(-) will be pointing only 
toward the Master dof (and not toward the slave dof!) 



www.manaraa.com

Due T. Nguyen 289 

10.8.4 Sparse numerical factorization with unrolling strategies 
The vector unrolling, and loop unrolling strategies that have been successfully 
introduced earlier in Refs [10.1-10.2] for skyline and variable bandwidth equation 
solvers, can also be effectively incorporated into the developed sparse solver (in 
conjunction with the Master dof strategies). 

Referring to the stiffness matrix data shown in Eq. (10.53), for example, and 
assuming the first 10 rows of [U] have already been completely factorized, thus our 
objective now is to factorize the current ith (= 11th) row. 

By simply observing Eq. (10.53), one will immediately see that factorizing row 
#11 will require the information from the previously factorized row numbers 1,2,3,6, 
7, 8, 9, and 10 (not necessarily to be in the stated increasing row numbers!) in the 
"conventional" sparse algorithm. Using "loop-unrolling" sparse algorithm, however, the 
chained list array ICHAINL( -) will point only to the "master" dof #6, #7 and # 1. 

The skeleton FORTRAN code LDU (with full matrix) shown in Table 10.1 
(refer to Section 10.2.2) should be modified as shown by the pseudo, skeleton 
FORTRAN code in Table 10.7. 

2 

3 

4 

4 

5 

5 

5 

6 

7 

7 

8 

9 

9 

10 

II 

Table 10.7 Pseudo FORTRAN skeleton code for sparse LDU factorization 
with unrolling strategies 

c 

c 

c 

33 

22 

11 

Assuming row 1 has been factorized earlier 

DO II 1= 2, N 

DO 22 K = Only those previous "master" rows which have 
contributions to current row I 

Compute the multiplier(s) (Note: U represents LT) 

NSLA VEDOF = MASTER(I) - 1 

XMULT = U (K, I) I U (K, K) 

XMULm = U (K + m, I) I U (K + m, K + m) 

m = 1,2, .... NSLAVEDOF 

DO 33 J = appropriated column numbers of "master" row #K 

U(I, J) = U(I, J) - XMULT * U(K, J) 

- XMULm * U(K + m, J) 

CONTINUE 

U(K, I) = XMUL T 

U(K +m, I) = XMULm 

CONTINUE 

CONTINUE 



www.manaraa.com

290 Parallel-Vector Equation Solvers for Finite Element Engineering Applications 

More detailed computer codings for sparse LDL T factorization with "loop-unrolling" 
(level 8) strategies are given in subroutine numfa8, shown in Table 10.8. 

Table 10.8 Detailed computer codings for numerical sparse factorization 
with unrolling strategies 

I 
subroutine numfa8(n,isr,icn,ad,an,iujcn,di,un,ichain,kupp,isupd,iopf, 

$ ME,maxnp) ! 

I 
C ...... purpose: numerical factorization ! 

C ..... this portion of numerical factorization has unrolling level 8 ! 

I 
implicit real*8(a-h,0-z) ! 
dimension isr(*),icn(*),ad(*),an(*),iu(*)jcn(*),di(*),un(*) 

I 
dimension ichain(*),kupp(*),isupd(*) ! 

C ..... DEFINITIONS ! 

[C
C .......... input: isr,icn,an,ad given matrix A in RR(U)U. 

iujcn structure of resulting matrix U in 

[
C..... RR(U)O. ! 

C..... n order of matrices A and U. 

c. .... output: un numerical values of the nonzeros of ! 
c..... matrix U in RR(U)O. ! 

C ..... di inverse of the diagonal matrix D. ! 

C ..... working space: ichain of dimension N. Chained lists of rows 

C..... associated with each column. is diffemt ! 
C ..... 

C..... kupp 

C ..... 

C..... di 

DO 10 J=l,N 

10 ichain(J)=O ! 

from the one in symbolic ! 
of dimension N. Auxiliary pointers to 

portions of rows. ! 

is used as the expanded accumulator. ! 

DO 130 I=l,N ! 
write(6,*) ,***> I = 

IH=I+1 ! 

<***',i 

icuu=IU(I) ! 

ibuu=IU(IH)-l 

write(6, *) 'IH, icuu, ibuu= ',ih,icuu,ibuu 

IF(ibuu.LT.icuu)GO TO 40 

DO 20 J=icuu,ibuu 

20 DI(jcn(J»=O. ! 

001 

002 

003 

004 

005
1 

006 

007 

008 

009 

010 

011 

012 

013 

014 

015 

016 

017 

018 

019 

020 

021 

022 

023 

024 

025 

026 

027\ 
028 

029 

030 

031 

032 

033 

034 



www.manaraa.com

Due T. Nguyen 

write(6, *) 'IAA,IAB= ',iaa,iab ! 
IF(IAB.LT.lAA)GO TO 40 ! 
DO 30 J=IAA,IAB ! 

30 DI(icn(J»=AN(J) ! 
40 DI(I)=AD(I) ! 

LAST=ichain(I) ! 
write(6, *) 'LAST= ',last! 
IF(LAST.EQ.O)GO TO 90 ! 
LN=ichain(LAST) ! 
write(6,*) 'LN= ',In! 

loop=8 ! 
50 L=LN ! 

write(6, *) 'L= ',I! 
LN=ichain(L) ! 
m= min(i-I,isupd(l) ! 
iend=(m/loop)*loop ! 
isbegin=1 ! 
isend=l+iend-l ! 
write(6, *) 'LN,m,iend,isbegin,isend= ',In,m,iend,isbegin,isend ! 
IUCL=kupp(isbegin) ! 
ieul=iucl ! 
IUDL=IU(isbegin+ 1 )-1 

write(6,*) 'IUCL,icul,IUDL= ',iucl,icul,iudl ! 
kupp(l)=iucl + 1 ! 
length=IUDL-IUCL+l ! 
write(6, *) 'kupp(',L,')= ',kupp(l) ! 
write(6, *) 'Iength= ',length! 
do is= isbegin,isend,8 ! 
IUC2=IU(is+2)-length ! 
IUC3=IU(is+3)-length ! 
IUC4=IU(is+4)-length ! 
IUC5=IU(is+5)-length ! 
IUC6=IU(is+6)-length ! 
IUC7=IU(is+7)-length ! 
iuc8=IU(is+8)-length ! 
write(6, *) 'is,IUCL,IUC2, ... ,IUC8= ',is,IUCL,IUC2,IUC3,IUC4 

$ ,IUC5,IUC6,IUC7,IUC8 
UM1=UN(IUCL)*DI(is) ! 

291 

035 
036 

037
1 

038 

039
1 

040 

041
1 

042 

043
1 

044 
045 
046 
047 
048 

049
1 

050 1 

051 
052 

053 
054 
055 
056 

057 
058 
059 
060 
061 
062 
063 
064 

065
1 

066 
067 
068 

069 
070 

071 
072 



www.manaraa.com

292 Parallel-Vector Equation Solvers for Finite Element Engineering Applications 

UM3=UN(IUC3)*DI(is+2) ! 

UM4=UN(IUC4)*DI(is+3) ! 

UMS=UN(IUCS)*DI(is+4) ! 

UM6=UN(IUC6)*DI(is+S) ! 

UM7=UN(IUC7)*DI(is+6) ! 

UM8=UN (IUC8)*DI(is+ 7) 

DO 68 J=IUCL,IUDL ! 
JJ=jcn(J) ! 

68 DI(JJ)=DI(JJ)-UN(J)*UM 1-un(iuc2-iucI+j)*um2 

+ -un(iuc3-iucI+j)*um3-un(iuc4-iucI+j)*um4! 

+ -un(iucS-iucI+j)*umS-un(iuc6-iucI+j)*um6! 

+ -un(iuc7-iucI+j)*um7-un(iuc8-iucI+j)*um8 

UN(IUCL)=UMI 

un(iuc2)=um2 

un(iuc3 )=um3 ! 

un(iuc4)=um4 ! 

un(iucS)=umS ! 

un(iuc6)=um6 ! 

un(iuc7)=um7 ! 

un(iuc8)=um8 ! 

iucl=iu(is+9)-length 

iudl=iucI+length-l ! 

write(6,*) 'IUCL,IUDL= ',iucl,iudl 

enddo ! 

c. ... .Ioop ofleveI7,6,S,4,3,2,1 

iloop=m-iend ! 

write(6,*) 'iloop = m-iend = ',iloop ! 

if (iloop.eq.O) go to 77 ! 

go to(1,2,3,4,S,6,7)iloop ! 

go to 77 ! 

C@@@@@@@@@@@@@@@ 
1 is=isend+ 1 ! 

UMI=UN(IUCL)*DI(is) ! 

DO 61 J=IUCL,IUDL ! 

JJ=jcn(J) ! 

61 DI(JJ)=DI(JJ)-UN(J)*UMI 

UN(IUCL)=UMI ! 

write(6, *) 'is,IUCL= ',is,IUCL ! 

o to 77 ! 

073 

074 

07S 
076 

077 

078 

079 

080 

081 

082 

083 

084 

08S 
086 

087 

088 

089 

090 

091 

092 

093 

094 

09S 
096 

097 

098 

099 

100 

101 

102 

103
1 

104 

lOS 
106 

107 

108 

109 



www.manaraa.com

Due T. Nguyen 293 .-1------------------ .. -----------....... --..... , 
~@~~s~n~!i~@@ II 0 i 

I 
IUC2=IU(is+2)-length II1I 
UMl=UN(IUCL)*DI(is) ! 1121 

I 
UM2=UN(IUC2)*DI(is+I)! 113 1 

DO 62 J=IUCL,IUDL ! 114 
JJ=jcn(J) ! 115 

62 DI(JJ)=DI(JJ)-UN(J)*UMl-un(iuc2-iucL+j)*urn2 ! 116 

UN(lUCL)=UMI ! 1171' 
un(IUC2)=urn2 ! 118 
write(6,*) 'is,IUCL,IUC2= ',is,IUCL,IUC2 ! 1191 

go to 77 ! 120 I 
C@@@@@@@@@@ 
3 is=isend+ 1 ! 

IUC2=IU(is+2)-length ! 
IUC3=IU(is+3)-length ! 
UMI=UN(IUCL)*DI(is) ! 
UM2=UN(IUC2)*DI(is+ 1) ! 
UM3=UN(IUC3)*DI(is+2) ! 
DO 63 J=IUCL,IUDL ! 
JJ=jcn(J) ! 

63 DI(JJ)=DI(JJ)-UN(J)*UMI-un(iuc2-iucl+j)*urn2 ! 
+ -un(iuc3-iucl+j)*urn3! 
UN(IUCL)=UMI 
un(iuc2)=urn2 ! 
un(iuc3)=urn3 ! 
write(6,*) 'is,IUCL,IUC2, ... ,IUC3= ',is,IUCL,IUC2,IUC3 ! 
go to 77 ! 

C@@@@@@@@@@@@ 
4 is=isend+ 1 ! 

IUC2=IU(is+2)-length ! 
IUC3=IU(is+3)-length ! 
IUC4=IU(is+4)-length ! 
UM1=UN(IUCL)*DI(is) ! 
UM2=UN(IUC2)*DI(is+ 1) ! 
UM3=UN(IUC3)*DI(is+2) ! 
UM4=UN(IUC4)*DI(is+3) ! 
DO 64 J=IUCL,IUDL ! 
JJ=·cn J ! 

121 
122 
123 
124 
125 
126 
127 
128 
129 
130 
131 
132 
133 
134 
135 

136 
137 
138 
139 
140 
141 
142 
143 
144 
145 



www.manaraa.com

294 Parallel-Vector Equation Solvers for Finite Element Engineering Applications 

64 DI(JJ)=DI(JJ)-UN(J)*UM l-un(iuc2-iucl+j)*um2 ! 
+ -un(iuc3-iucl+j)*um3-un(iuc4-iucl+j)*um4 

UN(IUCL)=UMI 

un(iuc2)=um2 ! 

un(iuc3)=um3 ! 
un(iuc4)=um4 ! 

write(6, *) 'is,IUCL,IUC2, ... ,IUC4= ',is,IUCL,IUC2,IUC3,IUC4 

go to 77 ! 

C@@@@@@@@@@@@@@ 
5 is=isend+ 1 ! 

IUC2=IU(is+2)-length ! 
IUC3=IU(is+3)-length ! 

IUC4=IU(is+4)-length ! 
IUC5=IU(is+5)-length ! 

UM 1 =UN(IUCL)*DI(is) 

UM2=UN(IUC2)*DI(is+ 1) 

UM3=UN(IUC3)*DI(is+2) ! 
UM4=UN(IUC4)*DI(is+3) ! 

UM5=UN(IUC5)*DI(is+4) ! 

DO 65 J=IUCL,IUDL ! 

JJ=jcn(J) ! 

65 DI(JJ)=DI(JJ)-UN(J)*UM l-un(iuc2-iucl+j)*um2 

+ -un(iuc3-iucl+j)*um3-un(iuc4-iucl+j)*um4 

+ -un(iuc5-iucl+j)*um5 

UN(IUCL)=UMI 

un(iuc2)=um2 ! 
un(iuc3)=um3 ! 
un(iuc4)=um4 ! 

un(iuc5)=um5 ! 

go to 77 ! 

C@@@@@@@@@@@@@ 

146 

147 

148 

149 

150 

151 

152 

153 

154 

155 

156 

157 

158 

159 

160 

161 

162 

163 

164 

165 

166 

167 

168 

169 

170 

171 

172 

173 

174 

IUC2=IU(is+2)-length ! 
IUC3=IU(is+ 3)-length ! 

IUC4=IU(is+4)-length ! 
IUC5=IU(is+5)-length ! 

IUC6=IU(is+6)-length ! 
UMl=UN(IUCL)*DI(is) ! 

UM2=UN(IUC2)*DI(is+ 1) 

175 

176 

177 

178 

179 

180 

181
1 

182! _______ ~ __________ i 



www.manaraa.com

Due T. Nguyen 

UM3=UN(IUC3)*DI(is+2) ! 
UM4=UN(IUC4)*DI(is+3) ! 

UMS=UN(IUCS)*DI(is+4) ! 
UM6=UN(IUC6)*DI(is+S) ! 

DO 66 J=IUCL,IUDL ! 
JJ=jcn(J) ! 

66 DI(JJ)=DI(JJ)-UN(J)*UMl-un(iuc2-iucl+j)*um2 ! 
+ -un(iuc3-iucl+j)*um3-un(iuc4-iucl+j)*um4! 

+ -un(iucS-iucl+j)*umS-un(iuc6-iucl+j)*um6! 

UN(IUCL)=UMI 

un(iuc2)=um2 ! 
un(iuc3)=um3 ! 

un(iuc4)=um4 ! 

un(iucS)=umS ! 

un(iuc6)=um6 ! 

go to 77 ! 

C@@@@@@@@@@ 
7 is=isend+ 1 ! 

IUC2=IU(is+2)-length ! 
IUC3=IU(is+3)-length ! 

IUC4=IU(is+4)-length ! 

IUCS=IU(is+S)-length ! 

IUC6=IU(is+6)-length ! 
IUC7=IU(is+7)-length ! 

UMl=UN(IUCL)*DI(is) ! 

UM2=UN(IUC2)*DI(is+ 1) 
UM3=UN(IUC3)*DI(is+2) 

UM4=UN(IUC4)*DI(is+3) 
UMS=UN(IUCS)*DI(is+4) 

UM6=UN(IUC6)*DI(is+S) 

UM7=UN(IUC7)*DI(is+6) 
DO 67 J=IUCL,IUDL ! 

JJ=jcn(J) ! 

67 DI(JJ)=DI(JJ)-UN(J)*UMl-un(iuc2-iucl+j)*um2 ! 

+ -un(iuc3-iucl+j)*um3-un(iuc4-iucl+j)*um4! 
+ -un(iucS-iucl+j)*umS-un(iuc6-iucl+j)*um6! 

+ -un(iuc7-iucl+j)*um7! 
UN(IUCL)=UMI 
un(iuc2)=um2 ! 

295 

183 

184 

18S 
186 

187 

188 

189 
190 

191 

192 

193 
194 

19S 

196 

197 
198 

1991 
200 

201 

202 

203 

204 
20S 

206 

207 
208 

209 
210 

211 

2121 
213 

214 

21S 

216 
217 

218
1 219 

2201 



www.manaraa.com

296 Parallel-Vector Equation Solvers for Finite Element Engineering Applications 

un(iuc3)=um3 ! 
un(iuc4)=um4 ! 

un(iuc5)=um5 ! 
un(iuc6)=um6 

un(iuc7)=um7 ! 

go to 77 ! 

C@@@@@@@@@@@@@@@@ 
77 continue ! 

if(icul.eq.iudl) go to 80 ! 
j=jcn(icu1+1) ! 

JJ=ichain(J) ! 

write(6, *) 1=jcn(icu1 + 1)= 'j 
write(6, *) 'JJ=ichain(J)= 'jj 

IF(JJ.EQ.O)GO TO 70 ! 
ichain(L)=ichain(JJ) ! 
write(6, *) 'ichain(', L , ')= I, ichain(L) 

ichain(JJ)=L ! 
write(6,*) 'ichain(" JJ , ')= I, ichain(JJ) 

GO TO 80 ! 
70 ichain(J)=L ! 

write(6, *) 'ichain(" J , ')= I, ichain(J) 

ichain(L)=L ! 
write(6, *) 'ichain(" L , ')= I, ichain(L) 

C ..... . 

80 IF(L.NE.LAST)GO TO 50 
90 DI(I)=l.dOIDI(I) ! 

IF(ibuu.LT.icuu)GO TO 120 
DO 100 J=icuu,ibuu ! 

100 UN(J)=DI(jcn(J)) ! 

write(6, *) 'isupd(i)= I, isupd(i) 

if(isupd(i).eq.O) go to 130 ! 
J=jcn(icuu) ! 

write(6, *) 'J=jcn(icuu)= 'j ! 

JJ=ichain(J) ! 
write(6, *) 'JJ=ichain(j)= 'jj 

IF(JJ.EQ.O)GO TO 110 ! 

ichain(I)=ichain(JJ) ! 
write(6, *) 'ichain(" i , ')= I, ichain(i) 

_ ichain(JJ)=I! 

2211 222 

223 
224 

225 
226 

227 

228 

229 

230 
231 

232 

233 

234 

235 

236 
237 

238 
239 

240 
241 

242 

243 

244 

245 

247 
248 

249 
250 

251 

252 

253: 
, 

254! 
255! 

2561 
~ __ ~ __ ~ ____ 2571 



www.manaraa.com

Due T. Nguyen 

write(6, *) 'ichain(', jj , ')= " ichainGj) 

GO TO 120 ! 
110 ichain(J)=1 ! 

write(6,*) 'ichain("j, ')=', ichainG) 
ichain(I)=1 ! 

write(6, *) 'ichain(" i, ')= " ichain(i) 

1

120 continue ! 

kupp(I)=icuu ! 

I 
write(6, *) 'kupp(', i, ')= " kupp(i) 

130 continue ! 

IC ...... Store output results [arrays un(-) and di(-)] on fort*.files 

I 999 return ! 
I end! 

297 

258 
259 
260 
261 

262 

263 

264
1 

265 

266
1 267 

2681 
2691 

Since the "key ideas" in sparse numerical factorization with unrolling strategies 
has already been explained (please refer to Table 10.7), only "major differences" 
between the detailed codes shown in Table 10.5 and Table 10.8 will be explained in the 
following paragraphs (please refer also to subroutine numfa8, in Table 10.8). 
Line 24: The current rh row is being factorized 
Line 45: Loop-unrolling level 8 is assumed 
Lines 51-52: The beginning (is begin) and ending (isend) row numbers of a group 

ofrows which have the same paterns (or same column numbers) of 
nonzero terms are identified. 

Lines 54-57: The starting location for the beginning row number (is begin) is stored 
in variable ICU I (see Figure 10.13). The ending location for the 
beginning row number (isbegin) is stored in variable IDDL (see 
Figure 10.13). 

Line 59: 

IUDL 

!CUI r---H 1 I(U2 J----H Le.el 8 unrolling 

I(U5 J----H 

I(U8r---H 

f Remaining rows 

These 10 rows 
have the same 
nonzero patterns 

(urrent Ilh row is being factorized 

Figure 10.13 Level 8 unrolling with some remaining rows 

Knowing the starting and ending locations for the beginning row 
number (isbegin), the length can be computed (see Figure 10.13). 



www.manaraa.com

298 Parallel-Vector Equation Solvers for Finite Element Engineering Applications 

Lines 62-69: In Figure 10.13, the current row #1 is assumed to require the 
information from the previously factorized row numbers 1 through 
10. Furthermore, it is assumed that the first 10 rows will all have the 
same nonzero patterns. Since loop-unrolling level 8 is used, the first 
8 rows will be treated first, and then, the remaining 2 rows will be 
treated separately. 

The starting locations for rows 2 through 8 are computed in 
lines 63 through 69 (please also refer to Figure 10.l3). The 8 
multiplier factors UM 1 through UM8 are computed in lines 71 
through 78. 

The inner-most do-loop 68 (see line 79) is expanded to make 
sure that the contributions from the first 8 rows are all included in 
factorizing the current row #1 (see lines 81-84). Finally, the 
factorized terms U(l, I), U(2, I), ... , U(8, I) are updated in lines 85 
through 92. 

It is important to realize that, although the computer codes shown in Table 10.8 
look much more complicated than the earlier version (without using unrolling 
strategies), it still looks very similar to the basic, skeleton code shown earlier in Table 
10.7. In fact, lines 71 through 78 in Table 10.8 are completely equivalent to lines 5.1-
5.2 in Table 10.7. Lines 81-84 in Table 10.8 are completely equivalent to lines 7.1-7.2 
in Table 10.7, and lines 85-92 in Table 10.8 are completely equivalent to lines 9.1-9.2 
in Table 10.7. 

The starting and ending locations for the first remaining rows (such as row #9, 
shown in Figure 10.13) are calculated in lines 93 and 94, respectively. 
Line 97: The number of remaining rows (such as rows 9-10, shown in Figure 

1O.l3) of the same (nonzero patterns) group is calculated and stored 
in variable "iloop". 

Lines 99-100: Since loop-unrolling level 8 is assumed in the codes, the remaining 
rows (of the same nonzero patterns group) can only be 0, or 1,2, ... 
, 7. Thus, the code will branch to lines 227, or 102, or 110, or 121, or 
l36, or 154, or 175, or 199, respectively. 

For the example shown in Figure 10.13, since the number of 
remaining rows iloop = 2, hence the code will branch to line 110. 

Lines 111-118: These statements play the "same roles" as those which have already 
been explained earlier, in lines 63-92. 

Lines 229-242: The starting location for the previously factorized row #L is updated 
to the next location (see ICUI + 1, on line 229), and the 
corresponding column number is identified by the variable J (see line 
229). The chained lists for "future" row #J (which will require the 
previously factorized row #L) is prepared in lines 234-242. 

This segment of the codes (lines 229-242) play the same 
roles as described earlier in Table 10.5 (lines 33-37) for LDLT sparse 
numerical factorization without using "loop-unrolling" strategies. 

Line 249: Check to see if the current row #1 is a master, or slave row (or dot). 
If row #1 is a slave dof, then the code will branch to line 267 (to 



www.manaraa.com

Due T. Nguyen 299 

Line 265: 

consider the next row I). However, if row #1 is a master dof, then the 
column number (corresponds to the first nonzero term of current row 
#1) is identified in the variable J (see line 250). The chained lists for 
"future" row #J (which will require the currently factorized row #I) 
is prepared in lines 251-262. 

This segment of the codes (lines 250-262) play the same 
roles as described without using "loop-unrolling" strategies 
The currentearlier in Table 10.5 (lines 43-50) for LDU sparse 
numerical factorization first nonzero term of row #1 is recorded in 
array kupp( -) 

10.8.5 Out-oC-core sparse equation solver with unrolling strategies 
For extremely large-scale applications, the available incore memory of even a 
supercomputer may not be large enough to store the entire coefficient (stiffness) matrix. 
Thus, one needs to assemble the coefficient matrix in a block-by-block fashion, where 
a block may contain several rows (refer to Figure 10.14) 

[K] 

-
~ i 

Block 2 I 
I 

~ 
SYMMETRY 

-

Block 4 

Block 5 

-

....--row#S3 

..-- row #60 
"--row#70 
o(~ row #81 

0(- row #312 
0(--- row #324 

..-- row #401 

Figure 10.14 Sparse coefficient (stiffness) matrix is stored in 
blocks (of rows) in auxiliary storages. 

The number ofrows in each block will be determined by the available incore 
memory and the sparsity of the matrix [K]. The available incore memory will be 
partitioned into 2 blocks (A and B) as shown in Figure 1O.15(a). 



www.manaraa.com

300 Parallel-Vector Equation Solvers for Finite Element Engineering Applications 

Incore Memory Available for [K] Incore Memory Available for [K] 

Block A Block B Block A Block B I Block C 

To store a 
block of To store a block of "Currently" 

"Previously" factorized 
"currently" "previously" factorized 

row(s) 
factorized factorized rows row(s) 

row(s) 

(a) 2-block partitioning scheme (b) 3-block partitioning scheme 

Figure 10.15 Partitioning schemes for the available incore memory 

Obviously, the size of block A (or block B) should be large enough to hold the 
largest block shown in Figure 10.14. Block A is used to store "currently" factorized 
row(s), while block B is used to store some (or all) "previously" and completely 
factorized rows, which have contributions to currently factorized row(s). As an 
example, considering the factorization of the first row of block #4 (or, say row #401 as 
shown in Figure 10.14), and assuming the sequence of previously factorized rows 
(which have contributions to the current row #401) to be in the following orders (using 
the chained list array ICHAINL(-) discussed in Section 10.5): rows #324, 312, 81, 70, 
60 and 53. 

Thus, both previous blocks #3 and #1 will have to be brought (one at a time) 
to the core memory (see block B of Figure 10.15a). In order to reduce the I/O time, 
whenever a block of rows (say, block #3 of Figure 10.14) is read into a core memory 
(and resided in block B, see Figure 10.15a), this block of rows' information should also 
be used to "partially" factorize other "future" rows (if possible), in addition to factorize 
the "current" ith (=40 I 't) row. 

On some high-performance computers, where Buffer-In/Buffer-Out 
capabilities (to do I/O and computation at the same time) are available (such as the 
Cray-YMP, Cray C90, and Intel Paragon), alternative strategies (such as the one shown 
in Figure 10.15b) should be considered. Using the 3-block partitioning scheme (as 
shown in Figure I 0.15b), factorizing row #40 I can be done in the following fashions: 

Step 1: 

Step 2: 

Step 3: 

Buffer-In block #3 from the auxiliary storage into block B of the incore 
memory 
Using block #3 to partially factorize the current row (say, row #401). While 
these arithmetic computation is taking place, one can also buffer-in block # 1 
from the auxiliary storage into block C of the incore memory. 
When block #3 has been completely utilized to partially factorize the current 
row, then 

(a) Use block #1 to factorize current row #i; 
(b) buffer-out block #3 to the auxiliary storage 



www.manaraa.com

Duc T. Nguyen 301 

The above 3-step procedure can be repeated, until the current row #i is 
completely factorized. Thus, the 3 incore memory blocks A, B & C should always be 
occupied: block A is used to stored "currently" factorized row(s), blocks B & Care 
used to store the "immediately needed," previously factorized rows, and the "soon 
needed," previously factorized rows. These out-of-core strategies can be conveniently 
represented in Figure 10.16 

Incore Memory Blocks 

Block A Block B BlockC 

"Currently" factorized "Immediately" 
"Soon" 

Time =t) needed rows 
rows needed rows 

(Buffer-In) 

"Currently" factorized 
"Soon" "Immediately" 

Time =1i > t) needed rows 
rows 

(Buffer-In) 
needed rows 

"Currently" factorized "Immediately" 
"Soon" 

Time = t3 > 1i needed rows 
rows needed rows 

(Buffer-In) 

"Currently" factorized 
"Soon" 

"Immediately" 
Time = t4 > t3 needed rows 

rows 
(Buffer-In) 

needed rows 

Figure 10.16 Out-of-core sparse factorization using three in-core-memory blocks 

10.9 Numerical Performance of the Developed Sparse Equation Solver 

Based upon the discussions in previous sections, several practical finite element models 
(such as Exxon Off-Shore Structure, High Speed Civil Transport Aircraft, Space Shuttle 
Solid Rocket Booster, and Automobile Structure) are used to evaluate the performance 
of the developed sparse solver. Since the codes have been written in standard 
FORTRAN language (and without using any library subroutines), it can be ported to 
different computer platforms (such as SUN-Sparc, IBM-R6000/590, Intel Paragon, 
Cray-C90 etc .... ) with no (or minimum) changes to the codes. The accuracy of the 
developed codes for solving system oflinear equations can be measured by the Relative 
Error-Norm (=R.E.N.) which can be computed as 

R.E.N. = II K * Z - III 
IIIII 

Example 1: Exxon Off-Shore Structure 

(10.55) 

The finite element model for the Exxon model (refer to Figure 10.17) has been used 
extensively in earlier research works [10.37-10.39]. The resulted system of linear 



www.manaraa.com

302 Parallel-Vector Equation Solvers for Finite Element Engineering Applications 

equations from the Exxon model has 23,155 dof. The number of nonzero terms of the 
original stiffness matrix is 809,427. Using the Nested-Dissection (ND) algorithm, the 
number of nonzero terms (including "fills-in" terms) is 10,826,014. The relative error 
norm (or R.E.N., defined in Eq. 10.55) and the wall-clock time is presented and 
explained in Table 10.9. 

It should be noted here that on the IBM-R6000/590 workstation, vector 
capability is available. Thus, the time improvements by using "master" dof, and "loop 
unrolling" strategies should be visible. Even though no efforts have been spent to utilize 
the optimized compiler, "loop unrolling" strategies do help to reduce the wall clock time 
by nearly a factor of 2 (wall clock time is dropped from 302.50 sec to 179.1 0 sec). 

Table 10.9 Numerical performance of 4 practical finite element models 

Total Total No. Nonzeros of 
No. [K] Before (and after) Time 

Example No. dof Factorization R.E.N. (in seconds) 

657.50 (a) 
1. Exxon 23155 809,427 (10,826,014) 4.97 * 10-11 179.10 (b) 

302.50 (c) 

2. HSCT 16152 373,980 (2,746,286) 2.01 * 10-6 2.25 (d) 

3. SRB 
54870 

1,308,185 2.28*10-9 
12.5 (d) 

(11,987,067) 

4. Car 
263096 

6,267,099 5.83 * 10-9 
44.78 (e) 

(36,744,123) 

Notes: 
(a) Sun-Sparc 20: time includes 110, symbolic factorization, numerical 

"unrolling" factorization, forwardlbackward solution, R.E.N. computation 
(b) IBM-R6000/590: (Peak Performance = 266 MFLOPS per node) same 

discriptions as in (a) 
(c) IBM-R6000/590: same descriptions as in (b), but NOT using "unroll" 

strategies 
(d) Single Cray-C90 processor: same description as in (a) 
(e) Single Cray-C90 processor: (Peak performance = 980 MFLOPS per node) 

Symbolic factorization = 2.09 seconds 
Time to find "master" dof = 0.42 seconds 
Numerical factorization = 41.33 seconds 
Forward & backward solution = 0.94 seconds 

(f) Peak performance (per node) on the Paragon and Cray-YMP are 75 
MFLOPS, and 333 MFLOPS, respectively 



www.manaraa.com

Due T. Nguyen 303 

Example 2: High Speed Civil Transport (HSCT) Aircraft 
The fmite element model for the HSCT aircraft (refer to Figure 10.18) has been used 
extensively in earlier research works [10.1-10.2, 10.7]. The resulted system of linear 
equations from the HSCT model has 16,152 dof. The number of nonzero terms of the 
original stiffness matrix is 373,980. Using the Modified Minimum Degree (MMD) 
algorithm, the number of nonzero terms (including "fills-in" terms) is 2,746,286. The 
relative error norm (or R.E.N., defined in Eq. 10.55) and the wall clock time is 
presented and explained in Table 10.9. 

The maximum value of the unknown vector (or maximum displacement) is 
0.1134 and is occurred at the 27th DOF. The timing for error-norm check, reading input 
files, symbolic factorization, ordering, numerical factorization and forwardlbackward 
solutions are presented in Table 10.10. The flop-rates are also shown in Table 10.10. 

rj = 273 102 
r 0= 365 9A = 30.55° 

hI = 30 98 = 60.02° 

h2= 30 9( = 31.66° 

9D = 50.08° 

Figure 10.17 TLP flexjoint geometry parameters 

Figure 10.18 High speed civil transport (HSCT) aircraft 

Example 3: Solid Rocket Booster (SRB) of Space Shuttle 
The finite element model for the SRB (refer to Figure 10.19) has been used extensively 
in earlier research works [l 0.1-1 0.2, 10.7]. The resulted system of linear equations from 
the SRB model has 54,870 dof. The number of nonzero terms of the original stiffness 



www.manaraa.com

304 Parallel-Vector Equation Solvers for Finite Element Engineering Applications 

matrix is 1,308,185. Using the Modified Minimum Degree (MMD) algorithm, the 
number of nonzero terms (including "fills-in" terms) is 11,987,067. the relative error 
norm (or R.E.N., defined in Eq. 10.55) and the wall clock time is presented and 
explained in Table 10.9. 

The maximum value of the unknown vector (or maximum displacement) is-
2.0619 and is occurred at the 4704ph DOF. The timing for error-norm check, reading 
input files, symbolic factorization, ordering, numerical factorization and 
forwardlbackward solutions are presented in Table 10.11. The flop-rates are also shown 
in Table 10.11. 

Figure 10.19 Solid rocket booster (SRB) of space shuttle 

Table 10.10 Sparse (incore) solver for the HSCT aircraft model 

I----------------------------------------------------------~ 

I 
neq 
before fill-in, ncoff 

I :':i:~:~~s~~~cem'nt 
I 

The summation of the displacements 
Absolute error norm IIAx-bll 

i Relative error norm II Ax-b II / II b II 
Time for error norm check 

Time for reading files 
Time for symbolic factorization 

Time for reordering 
Time for numerical factorization 

Time for forwardlbackward solution 
Total time 

Total operations in factorization 

Total operations for forwardlbackward 

MFLOPS for factorization 

= 16152 
= 373980 

= 2746286 
= 0.1133645326777 at the 27-th dof 

= 90.66547130756 
= 4.029842721613E-4 

= 2.0149213608065E-6 
= 2.6892126197993E-2 

= 7.579180090071 
= 0.147645148167 

= 0.123889385358 
= 1.890624158667 

= 6.049758941998IE-2 
= 2.252237772942 

= 781071623 
= 11017444 

= 406.7645686811 



www.manaraa.com

Due T. Nguyen 305 

I MFLOPS for forwardlbackward = 182.1137685919 

Table 10.11 Sparse (incore) solver for the space shuttle SRB model 

neq 

before fill-in, ncoff 

after fill-in, ncof2 

Maximum displacement 

= 54870 

= 1308185 

= 11987067 

= -2.061863838374 at the 
47041-th dof 

The summation of the displacements = 13569.65122618 

Absolute error norm IIAx-bll = 1.729938340402E-2 

Relative error norm II Ax-b 11/ II b II = 2.2804218761662E-9 

Time for error norm check = 9.1727875142851E-2 

Time for reading files = 37.15652628432 

Time for symbolic factorization = 0.588571548624 

Time for reordering = 0.528286334526 

Time for numerical factorization = 11.02692366666 

Time for forwardlbackward solution = 0.2415057814171 

Total time = 12.501004192 

Total operations in factorization = 5416379330 

Total operations for forwardlbackward = 48058004 

MFLOPS for factorization = 491.1958671645 I 

L--=-:M-=.:F'-=L=-cO::....:P=---=S=-c-=.:fo~r-"-fo-=.:rw~a::..:rdlb=-=-:a=-=c:.:.:k-'-'w-=ar:....::d'----________ =--'1::.::9---=8..:..:.9~9_-=-3-=-18=-=2::.::3---,4-=-9=--5_~ 
Example 4: Large-Scale Car Model 
The finite element model for an automobile (see Figure 10.20) is used in this work 
[10.40] to evaluate the performance of the developed sparse algorithm on large-scale 
problems. The resulted system of linear equations from this car model has 263,096 
dof. The number of nonzero terms of the original stiffness matrix is 6,267,099. 
Using the Modified Minimum Degree (MMD) algorithm, the number of nonzero 
terms (including "fills-in terms) is 36,744,123. The relative error norm (R.E.N., 
defined in Eq. 10.55) and the wall-clock time are presented and explained in Table 
10.9. Other detailed results are presented in Table 10.12. 

It is interesting to notice that for the example shown in Eq. 10.53, the 
integer array "master" (shown in Eq. 10.54) has 9 zero values. 

Since more zero values in array "Master" indicate that more "slave" dof 
exists in the finite element model (and thus, better vector speed can be expected 
from unrolling techniques). For this automobile finite element model, there are 
227,975 zero values. The numbers of 1, 2, 3, 4,5,6,7,8, and larger than 8 are 3493, 
2095,2085,275, 1398,20816,193,86, and 4679, respectively. 



www.manaraa.com

306 Parallel-Vector Equation Solvers for Finite Element Engineering Applications 

Figure 10.20 Finite element analysis of an automobile 

Table 10.12 Sparse (incore) solver for the automobile model 

neq 
before fill-in, ncoff 

after fill-in, ncof2 

Maximum displacement 

The summation of the displacements 

Absolute error norm IIAx-bll 

Relative error norm II Ax-b II / II b II 
Time for error norm check 

Time for reading files 

Time for symbolic factorization 
Time for reordering 

Time for numerical factorization 

Time for forwardlbackward solution 

Total time 
Total operations in factorization 

Total operations for forwardlbackward 

MFLOPS for factorization 
MFLOPS for forwardlbackward 

= 263096 

= 6267099 

= 36744123 
= 7.8424204546417E-6 at the 
78977-th dof 

= 1.5413413603372E-4 
= 5.8339128095829E-7 

= 5.8339128095829E-9 

= 0.439017051888 
= 4.0042494810001E-3 

= 2.099430224316 

= 1.802684694906 
= 41.33246903718 

= 0.9438044399822 
= 46.60164401246 

= 20750449948 
= 147239584 

= 502.0375126715 
= 156.0064540518 

10.10 FORTRAN Call Statements to SPARSE Equation Solver 

Based upon the discussions in the earlier sections, FORTRAN computer codes for 
the developed sparse equation solver has been written and presented in Table 10.13. 
The required input data, and a sequence of FORTRAN call statements have been 
presented in the main program, shown in Table 10.13 Explanations of the main 



www.manaraa.com

Due T. Nguyen 307 

program are given in the comment statements (inserted inside Table 10.13), and in 
the following paragraphs: 

Lines 1-5: 
Line 8: 

N 
NCOEF 

Lines 9-13: 
.Line 14: 
Lines 16-17: 

Line 19: 

Line 22: 

Dimensions for various arrays are declared 
Input variables N, NCOEF 

Size of the coefficient (stiffness) matrix (= number of rows) 
= Number of nonzero, off-diagonal (upper triangular) terms of 

the "original" (stiffness) matrix 
Input arrays (see explanations above) 
To perform the symbolic factorization (see Section 10.5) 
To perform the orderings for the matrix (see Section 10.5, Eqs. 
10.40-10.46) 
To perform the sparse numerical factorization (with unrolling 
strategies) 
To perform the Forward and Backward solution phases 

Table 10.13 Calling sequences for sparse equation solver with unrolling level 8 

1 Cmain Program to Test NUMFA8* 

2 implicit real *8 (a-h, o-z) 

3 real *8 ad(lOO), an(10000), di(IOO), un(10000), b(100), x(lOO) 

4 integer isr( I 00), icn(lOOOO), iu(1 00), jcn( I 0000), ichain( I 00). 

5 $ isupd(100), kupp(100),jsrt(100),jcnt(10000) 

C-------------------------------------------
6 me=1 

7 maxnp=1 

8 read(5, *) n,ncoef !number of rows, # nonzero off-diagonal terms 

9 read(5,*) (isr(i), i=l, n+l) ! Starting locations of the first nonzero of 
each row 

10 read (5, *) (icn(i), i=l, ncoet) ! Column numbers (for each row) 

II read (5, *) (ad(i), i=l,n) ! Diagonal values 

12 read(5,*) (an(i), i=l, ncoet) !off-diagonal values 

13 read (5,*) (b(i),i=l,n)! Values ofRHS vector 

c---------------------------------------------------------------------
14 call symfact (n, isr, icn, iu,jcn, ichain, ncoet2, ME, isupd, maxnp) 

15 write (6,*) 'passed symbolic factorization !" 

16 call transa (n, n, iu, jcn, jsrt, jcnt) 

17 call transa (n, n, jsrt, jcnt, iu, jcn) 

18 write (6,*) 'passed transa twice' 

19 call numfa8 (n, isr, icn,ad, an, iu, jcn, di, un, ichain, kupp, isupd, iopf, 

20 $ ME,maxnp) 

21 write (6 *) 'passed numerical factorization!' 



www.manaraa.com

308 Parallel-Vector Equation Solvers for Finite Element Engineering Applications 

22 
23 

I~: 

call fbe (n, iu, jcn, di, un, b, x, iopb, isupd) 
write(6,*) 'passed forwardlbackward !' 
stop 
end 

10.11 Summary 

Detailed discussions for the proposed sparse equation solver have been presented in 
this chapter. Both incore and out-of-core strategies have been explained. While the 
very basic, key ideas for sparse equation solution is rather straight forward, effective 
sparse solution can only by achieved by careful implementation of various 
components in a sparse solution process. Successful sparse codes will require the 
combinations of best available reordering algorithm(s), efficient usages of the 
"chained list" and optimum utilization of the vector speed (saxpy and/or dot 
operations) offered by modem high-performance computers. It has been 
demonstrated that loop-unrolling techniques can be used effectively in conjunction 
with sparse algorithms to fully exploit the vector capability of high-performance 
computers. Numerical results presented in this chapter (on medium to large-scale 
practical finite element models) have clearly indicated that the developed sparse 
algorithms and software are accurate and highly efficient. 

10.12 Exercises 

10.1 For the given (stiffness matrix) data shown in Figure 5.27 of Chapter 5, and 
using the sparse storage schemes described in Section 10.3 
(a) Define the integer array ISTARTROW(-), as explained earlier in Eq. 

(10.16) 
(b) Define the integer array ICOLNUM(-), as explained earlier in Eq. 

(10.17) 
(c) Define the real array DIAG(-), as explained earlier in Eq. (10.18) 
(d) Define the real array AK(-), as explained earlier in Eq. (10.19) 

10.2 Using same data as in problem 10.1: 
(a) Without any actual computations, identify all possible fills-in 

factorized terms from Figure 5.27 
(b) Define the integer array JSTARTROW(-), as explained earlier in Eq. 

(10.20) 
(c) Define the integer array JCOLNUM(-), as explained earlier in Eq. 

(10.21) 
(d) After symbolic factorization phase, do we need to perform 

"ordering" phase for row #15 (as explained in Eqs. 10.40-10.46)? 
Explain your reason(s)? 

10.3 For the data shown in Figure 5.27, assuming loop-unrolling level 9 is used. 
Find the integer array MASTER(-), as explained earlier in Eq. (1O.54)? 

10.4 Re-do problem 10.3, ifloop-unrolling level 4 is used? 

• 



www.manaraa.com

Due T. Nguyen 309 

10.5 For the data shown in Figure 5.27, without using loop-unrolling strategies 
(thus, loop-unrolling level 1 is assumed!), following the steps 0-3 (shown in 
Eqs. 10.22-10.35) to define arrays ICHAINL(-), LOCUPDATE(-), only for 
the first 5 rows of figure 5.27? 

10.6 Re-do problem 10.5, ifloop-unrolling level 4 is used? 

10.13 References 

10.1 Pissanetzky, S., "Sparse Matrix Technology," Academic Press, Inc., London (\ 984). 
10.2 Agarwal, T.K., Storaasli, 0.0., and Nguyen, D.T., "A Parallel-Vector Algorithm for Rapid 

Structural Analysis on High Performance Computers," to appear in Computers and Structures 
Journal. 

10.3 Nguyen, D.T., Storaasli, 0.0., Carmona, E.A., AI-Nasra, M., Zhang, Y., Baddourah, M.A and 
Agarwal, T.K., "Parallel-Vector Computation for Linear Structural Analysis and Nonlinear 
Unconstrained Optimization Problems," Computing Systems in Engineering, An International 
Journal, Vo1.2, No.2/3, September 1991, (Pergamon Press), pp.175-182. 

10.4 Qin, J., Gray,", C.E., Mei, C. and Nguyen, D.T., "A Parallel-Vector Equation Solver for 
Unsymmetric Matrices on Supercomputers," Computing Systems in Engineering, An 
International Journal, Vol.2, No.2/3, September 1991 (Pergamon Press), pp.197-202. 

10.5 Zhang, Y. and Nguyen, D.T., "Parallel-Vector Sensitivity Calculations in Linear Structural 
Dynamics," Computing Systems in Engineering Journal, Vol.3, No.I-4, pp.365-378, (1992). 

10.6 Belvin, W.K., Maghami, P.G. and Nguyen, D.T., "Efficient Use of High Performance 
Computers for Integrated Controls and Structures Design," Computing Systems in Engineering 
Journal, Vol.3, No.I-4, pp.181-188, (\ 992). 

10.7 Qin, J. and Nguyen, D.T., "A Parallel-Vector Equation Solver for Distributed Memory 
Cemputers," Computing Systems in Engineeringjournal, Vol.5, No.1, (\ 994). 

10.8 Maker, B.N., Qin, J. and Nguyen. D.T., "Performance ofNIKE3D with PVSOLVE on Vector 
and Parallel Computers," to appear in Computing Systems in Engineering Journal. 

10.9 Qin, J. and Nguyen, D.T., "A Parallel-Vector Simplex Algorithm on Distributed Memory 
Computers." to appear in Optimization Journal. 

10.10 Akan, A.D., Qin, J., Nguyen. D.T., and Basco, D.R., "Parallel Computation t()[ Groundwater 
Flow," Proceedings of the International Groundwater Management Symposium, San Antonio, 
TX (August 1995) 

10.11 Qin, J., Nguyen. D.T. and Zhang, Y., "Parallel-Vector Lanczos Eigen-Solver for Structural 
Vibration Problems," Proceedings of the 41h International Conference on Recent Advances in 
Structural Dynamics, Institute of Sound and Vibration Research, University of Southamption, 
Southampton, England (July 15-18, 1991). 

10.12 Bailey. D.H., Barszcz. E., Dagum, L., and Simon, H.D., "NAS Parallel Benchmark Results 10-
93," NASA Ames Research Center Report, ARC275. Moffett Field, CA 

10.13 Sporzynski, Steven R., "Vector/Parallel Skyline Matrix Routines for the IBM-3090," 
Technical Report. Washington Systems Center, IBM Corp., 18100 Frederick Pike, 
Gaithersburg. MD 20879 (May 1990). 

10.14 Zheng, D. and Chang, T.Y.P .. "Parallel Cholesky Method on MIMD with Shared Memory," 
Computers and Structures, Vo1.56, No.1. pp.25-38 (\ 995). 

10.15 Tong. Pin, Rossettos, John N., "Finite Element Method: Basic Technique and 
Implementation." the MIT Press. Cambridge. Massachusetts, and London, England. 

10.16 Ortega, J .M., "Introduction to Parallel and Vector Solution of Linear Systems," Plenum Press 
( 1988). 

10.17 Khan, AI. and Topping. B.H.V .. "Parallel-Finite Element Analysis Using the Jacobi
Conditioned Conjugate Gradient Algorithm," Information Technology for Civil and Structural 
Engineers," B.H.V. Topping & A.1. Khan (Eds.), Civil-Comp. Press, Edinburgh, 245-255 
(1993). 

10.18 Khan, AI.. and Topping, B.H.V., "A Transputer Routing Algorithm for Nonlinear or Dynamic 
Finite Element Analysis," Engineering Computations, Yol.J I, pp.549-564 (\994). 



www.manaraa.com

310 ParalleJ-Vector Equation Solvers for Finite Element Engineering Applications 

10.19 Topping, B.H.V. and Khan, A.I., "Parallel Computations for Structural Analysis, Re-Analysis 
and Optimization," Optimization of Large Structural Systems, Vol.I1, pp.767-792 (GJ.N. 
Rozvany, Ed., 1993 Kluwer Academic Publishers, Netherlands). 

10.20 Duff,I.S. and Stewart, G.W. (Editors), "Sparse Matrix Proceedings 1979," SIAM (1979) 
10.21 Duff,I.S., Grimes, R.G. and Lewis, J.G., "Sparse Matrix Test Problems," ACM Trans. Math 

Software, 15, pp.1-14 (1989). 
10.22 George, J.A. and Liu, W.H., "Computer Solution of Large Sparse Positive Definite Systems," 

Prentice-Hall, Englewood Cliffs, NJ (1981). 
10.23 Damhaug, A.C., Mathisen, K.M., and Okstad, K.M., "The Use of Sparse Matrix Methods in 

Finite Element Codes for Structural Mechanics Applications," Department of Structural 
Engineering, The Norwegian Institute of Technology, N-7034 Troudheim, Norway (1993). 

10.24 Noor, A.K., "Parallel Processing In Finite Element Structural Analysis," in Parallel 
Computations and Their Impact on Mechanics, ASME, pp.253-277, A.K. Noor (Ed.) 1987. 

10.25 Law, K.H. and Mackay, DR, "A Parallel Row-Oriented Sparse Solution Method for Finite 
Element Structural Analysis," Inter. Journal for Num. Meth. in Engr., Vol.36, pp.2895-2919 
(1993). 

10.26 Bathe, KJ., Finite Element Procedures, Prentice-Hall (1996). 
10.27 Golub, G.H. and VanLoan, C.F., "Matrix Computations," Johns Hopkins University Press, 

Baltimore, MD, Second Edition (1989). 
10.28 Cuthill, E. and McKee, J., "Reducing the Bandwidth of Sparse Symmetric Matrices," Proc. 

24th Nat' I. Conf. Assoc. Comput. Mach., ACM Publ., pp.157-172 (1969). 
10.29 Crane, H.L., Jr., Gibbs, N.E., Poole, Jr., W.G., and Stockmeyer, P.K., "Algorithm 508: Matrix 

Bandwidth and Profile Reduction," ACM Trans. on Math. Software, 2, pp.375-377 (1976). 
10.30 Lewis, J.G., Peyton, B.W. and Pothen, A., "A Fast Algorithm for Reordering Sparse Matrices 

for Parallel Factorization," SIAM J. Sci. Statist. Comput., 6, pp.1l46-1173 (1989). 
10.31 Liu, J .W.H., "Reordering Sparse Matrices for Parallel Elimination," Tech. Report 87-0 I, 

Computer Science, York University, North York, Ontario, Canada (1987). 
10.32 Pothen, A., Simon, H.D. and Liou, K-P., "Partitioning Sparse Matrice with Eigenvectors of 

Graphic," Siam J. Matrix, Vol.II, No.1, pp.430-452 (1990). 
10.33 George, J.A., "Nested Dissection ofa Regular Finite Element Mesh," Siam J. Numer. Anal., 

15, pp.1053-1069 (1978). 
10.34 Gilbert, J.R. and Zmijewski, E., "A Parallel Graph Partitioning Algorithm for a Message 

Passing MultiProcessor," Inter. J. Parallel Programming, 16, pp.427-449 (1987). 
10.35 Leiserson, C.E. and Lewis, J.G., "Orderings for Parallel Sparse Symmetrix Factorization," 

Third SIAM Conference on Parallel Processing for Scientific Computing (1987). 
10.36 Simon, H.D., Vu, P. and Yang, C., "Performance ofa Supernodal General Sparse Solver on 

the Cray-YMP: 1.68 GFLOPS with Autotasking," Applied Mathematics Technical Report 
(SCA-TR-(17), Boeing Computer Service, Scientific Computing and Analysis Division, G-
8910, MIS 7L-21, P.O. Box 24346, Seattle, Washington, 98124-0346, USA. 

10.37 Wang, S.M., Chang, T.Y.P. and Tong, P., "Nonlinear Deformation Responses of Rubber 
Components by Finite Element Analysis," Computational Mechanics '95: Theory and 
Applications Proceedings of the International Conference on Computational Engineering 
Science, July 30-August 3, 1995, Hawaii, USA (Volume 2, pp.3135-3140). 

10,38 Chang, T.Y.P., Saleeb, A.F, and Li, G., "Large Strain Analysis of Rubber-like Materials Based 
on a Perturbed Lagrangian Variational Principal," J. Com put. Mech., Vol.8, pp.221-233, 
(1991), 

10.39 Gunderson, R.H., "Fatigue Life ofTLP Flexelements," 24th Annual OTC Conference, Houston, 
Texas, May 4-7, 1992. 

10.40 Storaasli, 0.0., NASA Langley Research Center, Hampton, VA (Private Communication). 
10.41 Ng, E. and Peyton, B.W., "Block Sparse Choleski Algorithm On Advanced Uniprocessor 

Computer," SIAM J. of Sci. Comput., Volume 14, pp. 1034-1056, 1993. 



www.manaraa.com

11 Algorithms for 
Sparse-Symmetrical-Indefinite and 

Sparse-Unsymmetrical 
System of Equations 

11.1 Introduction 

For certain important classes of engineering and science applications [11.1-11.5], the 
coefficient matrix of the system of linear equations is no longer "positive definite." 
Instead, it can be symmetric (or unsymmetric) and/or "indefinite" matrix. For these 
problems, pivoting strategies [11.6-11.10] are often required in order to avoid numerical 
difficulties. For symmetric, positive definite matrix [11.11-11.19], since pivoting 
strategies are not required, thus it is relatively easy to accurately "predict" the amounts 
offill-in terms during the factorization process. In fact, upon completion the symbolic 
factorization (as discussed in Section 10.5), the exact dimensions for the (soon to be) 
factorized matrix can be determined, hence exact memory allocations can be assigned 
to the factorized matrix. 

However, when pivoting strategies are required, one has to switch row(s) and 
column(s) of the matrix. These actions will change the fill-in patterns of the coefficient 
matrix. Furthermore, since pivoting strategies may be required at any stages during the 
factorization process, it is quite difficult to have a precise prediction on the total 
numbers offill-in terms "before" entering the numerical factorization phase! For these 
reasons, it is proposed in this work that symbolic and numerical factorization will be 
executed simultaneously in a row-by-row fashion. 

11.2 Basic Formulation for Indefinite System of Linear Equations 

Without losing any generality, it is assumed that the original coefficient (stiffness) 
matrix has a zero value (at the first diagonal location) as shown in Eq. (11.1). 

311 



www.manaraa.com

312 Parallel-Vector Equation Solvers for Finite Element Engineering Applications 

0 X 0 X 0 X X 

X 0 0 X 0 X X 

X 0 X 0 X 

X X 0 X X X 
X X X 

X X 

0 X 0 X 0 X 
[K] = S Y M. X 0 0 X 0 (11.1) 

X 0 X 0 X 
X X 0 

X X X 

X X 
Ix 

X 

X 

In Eq. (11.1), the symbol "x" represents a nonzero value, and row # 1 is referred to as 
"sick" row (please notice a zero value on the diagonal term of row #1). Equation (11.1) 
can be symbolically represented as 

[K] = Az, 
L-_-L-___ ----l 

Where, using the data shown in Eq. (11.1), one can identify: 

[All] :: [~ :]::a 2x2 symmetrical, square submatrix 

[A 12 ] :: a 2xl3 rectangular submatrix :: [A21f 

[A 22 ] :: a 13 x 13 symmetrical, square sub matrix 

(11.2) 

(11.3) 

(11.4) 

(11.5) 

Case 1: Two-by-Two (2x2) Block Pivoting, With Remaining Block Factorization 
Assuming the submatrix [All] is non-singular, Eq. (11.2) can be factorized (in the 
partitioned form) as: 
In Eq. (11.5a), the following sub-matrices are defined: 

(1l.5a) 

[L,,] is a 2 x 2 identity matrix 
[Lzz] is a J x J identity matrix (where J=13, according to the assumed 

dimensions shown in Eqs.1 1.2-1 1.5). 
[Lz,] is a J x 2 rectangular matrix 



www.manaraa.com

Due T. Nguyen 

[D lI ] is a 2 x 2 non-diagonal matrix 
[Dzz] is a J x J non-diagonal matrix 

313 

In this case, the unknowns are [LzI ], [D lI ] and [Dzz ]. Expanding the right-hand-side of 
Eq. (l1.5a), and realizing that [L II ] and [Lzz ] are identity matrices, one has: 

Comparing both sides ofEq. (l1.5b), one obtains: 

T 
D22 = A22 - L21 Dll L21 

Substituting Eq. (l1.5d) into Eq. (l1.5e), one obtains: 

(ll.5b) 

(11.5c) 

(11.5d) 

(11.5e) 

(11.51) 

Thus, either Eq. (l1.5e), or Eq. (11.5f) can be used to compute the unknown sub-matrix 
D22 • 

Rotation Matrix [R): 
The sub-matrix [D II ], defined in Eq. (l1.5c), can be made a diagonal 

matrix [DI'd by the following transformation: 

[D(y ~J = [~ ~] [DO'I ~J [ROT ~] (11.5g) 

In the above equation, [R] = [<11] = [Eigen matrix ofDII ], such that RTR = I = 
RRT (or RT = RI). Substituting Eq. (l1.5g) into Eq. (l1.5a), one has: 

~;: ~;:l' [~;:~ L~,][DO; ;"j [R ~L,: R :f'l (I1.Sh) 

Since LII and L22 are identity matrices, hence Eq. (l1.5h) becomes: 

~A II A 12] I RDI'IR T RDI'IR TL2~ 1 
A A = • T 'R TL T D 

21 22 L21RDIIR L21RDII 21 + 22 
(11.5i) 

Comparing both sides ofEq. (11.5i), one has: 
• _ T 

DII - R A]]R (11.5j) 

(11.5k) 



www.manaraa.com

314 Parallel-Vector Equation Solvers for Finite Element Engineering Applications 

or 

Example 11.1: 
The system of equations [A] {x} = {b} is given, where: 

[A] 

° -1 ° 
-1 2 -1 

° -1 2 

° 

° ° 
-~ and (b) " m . 

-1 1 

(11.51) 

(11.5m) 

Our objectives here are simply to fmd the LDLT (without using the rotations matrix [R]) 
factorization of the given matrix [A]. From Eq. (11.5 c), one has: 

r 2 11 
_ _ [0 -1) -I _ llA _ [-2 -1) [Dll]-[A ll ] - • Thus, DII - -

-1 2 (-1) -1 ° 

From Eq. (11.5d), one obtains 

L2~ = [D\l)" 1 [A I2 ] 

From Eq. (1l.5t), one has 

or 

=[-2 -1] [00] 
-1 ° -1 ° 

[D22 ] = [31 -/]-[g 01] [=i 01] [_°1 g] = [31 -/] - [g g] 
or 

(11.50) 

(11.5p) 

(11.5q) 

The LDU factorization of A, in the partitioned form, can be expressed as shown in Eq. 
(1I.5a): 

~:: ~::l "~:: Ll~' :,,l L~; ~:; 
In the above matrix equations, submatrices [Lll ] and [L22] are identity matrices. 



www.manaraa.com

Due T. Nguyen 315 

Furthennore, the above matrix equations are satisfied when all submatrices (in left-hand
side and right-hand-side) of the above equations are replaced by their numerical values. 

Example 11.2: 
Using the same data as shown in Example 11.1, and using the rotation matrix [R] to 
factorize the given matrix [A] according to Eq. (ll.5h), one has: 
[T] = Eigen matrix of [DII ], such that TTT = [I] = TTT 

~-A 
Hence from Eq. (ll.5n), one obtains: detl_1 -1 I 2-A =o=-n + A2-1. The 2 roots (or 

eigen values) can be computed as : 

A] = 1 -12 
A = 2±2..f8 = 2±~12 = 1 ± 12· Therefore, A2 = 1 +12 

eFor A=A] =1-{i 

From the eigen-equations [D II ] {<I>} =A{<I>}, one has 

[12-1 -1 I J <1>]:) = {~} 
-1 1 +12 l<l>2 

Letting <1>: = 1, Eq. (1l.5r) can be solved and nonnalized as 

<1>(1) - J 1 } ( 1 ) - V2 -1 * l.0824 

"'(]) = \1 ~08241 or 'f' 0.4142 

l.0824 

eFor A=A2=1 +{i 
Similar to Eq. (ll.5r), one obtains 

-1_-1/i 1 ~~l {::}.j:) 
Letting <l>i = 1, Eq. (11.5s) can be solved and nonnalized as 

(11.5r) 

(11.5s) 



www.manaraa.com

316 Parallel-Vector Equation Solvers for Finite Element Engineering Applications 

1 4>~) I~ I or 4>(2) = = 
4>; -2.4142 

2.6131 

The rotation matrix [R] which consists ofthe eigen-vectors of [D II ] can be given as 

[R] - <I> 1.0824 2.6131 = [0.9239 0.3827] =T 
0.4142 -2.4142 0.3827 -0.9239 
1.0824 2.6131 

Since: 

<I>1'<I> = I = <I><I>7' = T 7'T = IT 7' 

Therefore, from Egs. (l1.5j) and (l1.5n), one has: 

* _ 7' _[0.9239 0.3827] [ 0 -1] [0.9239 
DII - R AIIR- 0.3827 -0.9239 -1 2 0.3827 

0.3827 ] 
-0.9239 

D * __ [-0.4142 0] 
II 0 2.4143 

. Thus, the inverse of DI*I can be obtained as: 

[-2.4143 0 1 [D * r l -
II - 0 0.4142 

From Eg. (l1.5k), one obtains: 

L T _ [0.9239 0.3827] [-2.4143 0] [0.9239 0.3827] [0 0] 
21 - 0.3827 -0.9239 0 0.4142 0.3827 -0.9239 -1 0 

)' - [1 0] . T T _ [0.9239 0.3827] [1 0]- [0.9239 00] 
L21 - 0 0 . Therefore, one computes. R L21 - 0.3827 -0.9239 0 0 - 0.3827 

From Eg. (11.5 m), one obtains 

[ 2 1] [1 0] [0.9239 0.3827] [-0.4142 0] [0.9239 0.3827] [1 0] 
D22 = -1 -1 - ° ° 0.3827 -0.9239 ° 2.4143 0.3827 -0.9239 ° ° 

[2 -1] 
Dn = -1 1 



www.manaraa.com

Due T. Nguyen 317 

Thus, from Eq. (11.5h), one does verifY that the following equation is correct: 

0 -I 0 0 0.5239 0.3827 0 0 -0.4142 0 0 0 0.9239 0.3827 0.9239 0 
-I 2 -I 0 0.3827 -0.9239 0 0 0 2.4143 0 0 0.3827 -0.9239 0.3827 0 
0 -I 2 -I 0.9239 0.3827 1 0 0 0 2 -I 0 0 1 0 
0 0 -I 1 0 0 0 1 0 0 -I 1 0 0 0 1 

Case 2: Two-by-Two (2x2) Block Pivoting, with Remaining Row-by-Row Factorization 
Assuming the submatrix [All] is non-singular, then Eq. (11.2) can be factorized as 
indicated in Eq. (10.9), or as shown in the following partitioned form (see Figure 11.1): 

All A12 

A21 
A22 

Figure 11.1 LDL T with 2x2 block pivoting 

In Fig. 11.l, the submatrix [L II ] is a 2x2 identity matrix, the 2x2 submatrix 
[D II ] is "NOT" a diagonal matrix, the JxJ submatrix [D22 ] is a diagonal matrix (where 
J = n-2, and n is the total number of degree-of-freedoms of the matrix [K], in Eq. 11.2), 
the JxJ submatrix [Lzz] is a lower triangular matrix with unit values on its diagonal, and 
the Jx2 submatrix [LzI ] is a rectangular matrix. Thus, in this case, the unknown sub
matrices are L2~' DI1 , D22 and Lzz. 

Expanding the right-hand-side of Figure 11.1, one obtains: 

(11.6) 

Equating both sides of Eq. (11.6), one has 

(11.7) 

(11.8) 

(11.9) 

where 
(11.10) 

The basic procedures for a 2x2 pivoting strategies for sparse factorization can 
be summarized in the following step-by-step algorithms: 

Step 1: Eq. (11.7) is used to compute [DI}J 
Step 2: Eq. (11.8) is used to compute [L2l ] 

Step 3: Eq. (11.l0) is used to compute [A 2;] 



www.manaraa.com

318 Parallel-Vector Equation Solvers for Finite Element Engineering Applications 

Step 4: Knowing [A2;], its triple product L22D22L2~ can be computed in an usual 
fashion as explained earlier in Section 10.6. 

11.3 Rotation Matrix [R] Strategies 

Since the 2 x 2 submatrix [D II ], shown in Figure 11.l, is a "non-diagonal" matrix, 
factorizing the subsequent rows (after the "sick" row) are not convenient. These 
inconveniences are mainly due to the facts that the previous rows which have the 
contributions to the currently factorized ith row can be processed 1 row at a time, with 
the exception of the "sick" 2x2 block (which contains the sick row and the next row)! 
Thus, it is desirable to uncouple the "sick" 2x2 block. In other words, one would like to 
transform the non-diagonal matrix [DIl ] into a diagonal matrix [Dl*l]' through the 

following transfor~li~n. 0 ] " [R 0] [Dl*l 0 1 [R TO] 
l 0 D22 0 I 0 D22 0 I 

(11.11) 

In Eq. (11.l1), [R] is the 2x2 rotation matrix whose columns are the normalized 
eigenvectors of the 2x2 matrix [DIl]. The rotation matrix [R] is also normalized so that 

[R] [R]T = [I] = [RY [R] 

From a geometry view point, the rotation matrix [R] can also be expressed as 

[R] =[c?se -Sine] 
sme cose 

(11.12) 

In the above form, only 1 parameter (say, angle e) needs be defined for ·recovering the 
matrix [R]. Expanding the right-hand-side of Eq. (11.11), one obtains 

Thus: 

(11.13) 

(11.14) 

or (11.15) 

Now, substituting Eq. (11.l1) into the right-hand-side of the equation shown 
in Figure 11.1, one obtains 

(11.16) 

Expanding the right-hand-side of Eq. (11.16), one has 

IAll A12] " [LlIR 0] [Dl*l 0 1 [R TLl~ 
t'12l A22 L2lR L22 0 D22 0 

(11.17) 

where: 



www.manaraa.com

Due T. Nguyen 

[LlI ] = [1]2x2 
[R] = Eigen-matrix of [011 ] 

[DI*d and [011 ] are defmed in Eqs. (11.14) and (11.15) 
[~2] and [022] are defmed in Eq. (11.9) 
[L21 ] is defined in Eq. (11.8) 

319 

Example 11.3: Resolve the same example 11.1, using the formulation in case 2 with 
Rotation matrix [R]. From Eq. (11.7), 

[ 0 -1] [0.9239 0.3827] [DII]=[A II ]= e Thus, [«I>=eigen-vectors of D II ]= =[R] 
-1 2 0.3827 -0.9238 

From Eq. (11.5j), one has [DI;]=[«I>f rDII] [«1>]=[-0.4142 0] 
t ° 2.4143 

FromEq.(11.8),onehas [L2~]=[Dllrl A 12 , where [Dllrl = [-2 -1] 
-1 ° 

LT =[-2 -1][0 0])1 
21 -1 ° -1 ° lo 

0] T [0.9239 
eTherefore, R TL21 = 

° 0.3827 

R TL T = [09239 °0] 
21 0.3828 

From Eq. (11.10), one has A2;=A22-L2IDIIL2~ 

_[2 -1] [10][0 -1][10] - -1 1 - ° ° -1 2 ° ° 

_ [2 -1] 
- -1 1 

0.3827] [1 00] 
-0.9238 ° 

From Eq. (11.9), A2; can be factorized (in a row-by-row fashion, in actual computer 
implementation) as: 

From Eq. (11.17), one has: 

o -1 0 0 
-1 2 -1 0 
o -1 2 -1 
o 0 -I 1 

0.9239 0.3827 
0.3827 -0.9239 
0.9239 0.3828 

o 0 

o 0 -0.4142 
000 
1 0 0 

-0.5 1 0 

000 
2.4143 0 0 
020 
o 0 0.5 

0.9239 0.3827 0.9239 0 
0.3827 -0.9239 0.3828 0 

o 
o 

o 
o 

-0.5 
o 

In actual computer coding, the rotation matrix R need not be stored in the upper-left 



www.manaraa.com

320 Parallel-Vector Equation Solvers for Finite Element Engineering Applications 

portion of [L], or [LY. Instead, only the row ~ column) location of the "sick" row, and 
one rotation angle e need to be stored, since these infonnation will be used later during 
the Forward and Backward solution phases. 

Recalled: [R] :; [<I> = Eigen Matrix] = [8:~~~~ ~6~~:fJ9] 

( COS 22 So = 0.9239) Thus, we only need to store rotation angle e =22.5" . 22 ·so =0.3827 to recover 
th . . [R] sm . e rotatIon matrIx . 

Example 11.4: 
The system of equations [A] {x} = {b} is given, where: 

2 10 0 7 ~91 10 0 1 4 15 
[AJ = 0 1 1 8 and {b} = 10 

7 4 8 9 8 

It is noted that [A] is an indefinite matrix, since the eigenvalues of [A] have both 
positive and negative eigen-values (according to MATLAB solutions!) 
(a) Question 1: Find the LDLT factorization of A, by using the algorithm shown in 

Table 10.1 
(b) Question 2: Find the LDU factorization of A, by using the algorithm shown in 

Table 10.1, and by "pretending" row #2 is sick. 
Solution for question 1 of this example is described in the following paragraphs (also 
refer to Table 10.1): 

Step 1: 
Step 2: 

Factorize row #1 (temporarily assume row #1 is not changed!) 
Factorize row #2 (thus, 1=2) 

K = 1 
XMULT= U 1,2=..!.Q=5 

2 

Step 3: Factorize row #3 (thus, 1=3) 
K = <D,@ u 
XMULT= ~=O 

2 10 0 
-SO 1 

1 

7 
-31 
8 
9 

2 10 0 7 
-SO 1 -31 

1 8 
9 



www.manaraa.com

Due T. Nguyen 321 

I 

ju =1+ ~l *(u =1)=~=1.02 3,3 50 2,3 50 

+1 
U34 =8- - *(u24 =+31)=7.38 

, 50 ' 

2 10 0 

7J -50 -0.02 -31 
1.02 7'J8 

U2,3=-0.02 

Step 4: Factorize row # 4 (thus, 1=4) 
K = CD, @, @ 

XMULT = ~=2=3.5 
U1,1 2 

{J=@ 
U4,4 =9 -(3.5)(U1,4 =7)= -15.5 

U 1,4 =3.5 

XMULT= U2,4 = -31 =0.62 
U2,2 -50 

{
J=4 
U4,4 = -15.5 +(0.62)(U2,4 = + 31 )=3.72 

U2,4 =0.62 

XMUL T = U3,4 = 7.38 =7.24 
u3,3 1.02 

{J=® 
U4,4 =3.72 -(7.24)(U3,4 =7.38)= -49.71 

U3,4 =7.24 

Hence: 

2 10 0 7 1 0 0 0 
10 0 1 4 5 1 0 0 
0 1 1 8 

-
0 -0.02 1 0 

7 4 8 9 3.5 0.62 7.24 1 

2 0 0 
0 -50 0 
0 0 1.02 
0 0 0 

0 
0 
0 

2 5 0 3.5 
-31 
7.38 
-15.5 

-50 -0.02 
1.02 

,--- --- ----------- --~-----, 

L' 2~ -~5(O -IO:~2 i-:~ 
3.72 

-~-~ 

2 5 0 3.5 

-50 -0.02 0.62 

1.02 7.24 

-49.71 

1 5 0 3.5 
0 1 -0.02 0.62 
0 0 1 7.24 

-49.79 0 0 0 1 

Solution for question 2 of this example is described in the following paragraphs (also 
refer to Table 10.1) 

Step 1: Factorize row #1 (temporarily assume row #1 is not ch~nged !) 
Step 2: Factorize row #2 (thus, I = 2) 

K = 1 



www.manaraa.com

322 Parallel-Vector Equation Solvers for Finite Element Engineering Applications 

XMULT = u(I,2) =.!Q=S 
u(I,I) 2 

J=®,®,® 
u2,2 =0-(5) *u l ,2 = -50 
u23 =1-(S)*UI3 =1 , , 

u =4-(S)*(u =7)=-31 2,4 1,4 

U I,2=S 

Step 3: At this stage, we "pretend" row #2 is the sick row! 

2 10 0 7 

-50 -31 

8 

9 

Step 4: Factorize row #3 (thus, I =3), by considering contribution from row #1 only! 
K = 1 (note: K = 2 = "sick" row is not considered) 

u 
XMULT= ~=O 

UI,I 

1 ~~~~(O)*(X)= 1 

2 10 0 

-50 

7 

-31 

8 

9 u3 4 =8 -(0) *(x)=8 
U13 =0 

Step 5: Since the d~terminant ofa 2x2 block is I-yO 11,,0, hence the 2x2 block is non
singular (and no switching rows/columns required) 
Step 6: Perform the 2x2 pivoting with rotation strategies 

[-50 1] [0.9998 0.0196] Since DlI=AlI = . Therefore, [R]=[<b]= =[Eigen matrix of D II] 
1 1 -0.0196 0.9998 

From Eq. (11.15), one has 

D· - cpTD cp - [-50.0196 0] 
II - II - 0 1.0196 

-1_[-0.0196 0.0196]. _{-31} 
DII - 0.0196 0.9804 ' A12 - 8 

T -I {0.76471 From Eq. (11.8), one has L21 =DII * AI2 = 
7.2353 

Furthermore, 

Thus, currently we have 

2 10 
-50.0196 

o 
o 

1.0196 

T T T {-31.1 5081 RA =RA = 
21 12 7.3910 

7 
-31.1508 
7.3910 

9 

Step 7: Factorize row #4 (using contributions from previous rows) according to the 



www.manaraa.com

Due T. Nguyen 

nonnal procedure. 
Using previous rows K = @, @, @ 

U 7 
MULT= ~ - = 3.5 

UI,I 2 

{J=® 
U4,4 =9-(3.5)(u l ,4 =7)= -15.5 

U I ,4=3.5 

MULT = U2,4 _ 31.1508 0.6228 
U2,2 50.0196 

323 

---------·----------·---·1 

2 10 

-50.0196 

o 
o 

1.0196 

2 10 

-50.0196 

o 

I 
3.5 I 

-31.1508 I' 

7.3910 

-15.5 

3.5 

0.6228 ! 
{J =® 
U4,4 = -15.5 +(0.6228)(U2,4 = + 31.1508)=3.90 

o 
1.0196 7.3910 .11 

3.9 ~ 
u2,4 = 0.6228 

MULT = U3,4 = 7.3910 =7.2489 
U3•3 1.0196 

{J=@ 
U4,4 =3.9 -(7.2489)(uJ,4 =7.391 0)= -49.6768 

uJ ,4 = 7 .2489 

Hence: 

2 10 0 7 0 0 0 2 0 

10 0 I 4 5 0.9998 0.0196 0 0 -50.0196 

0 I I 8 0 -0.0196 0.9998 0 0 0 

7 4 8 9 3.5 0.6728 7.2489 I 0 0 

11.4 "Natural" 2x2 Pivoting 

0 

0 

1.01096 

0 

---

---------··---·----1 

2 10 0 3.5 i 

-50.0196 o 0.6228 

1.0196 7.2489 
I 

-49.6768J 
---~~-~-----.-----

0 5 0 3.5 

o 0.9998 -0.0196 0.6728 

0 o 0.0196 0.9998 7.2489 

-49.6768 0 0 0 

The submatrix [All]' shown in Eq. (11.3) and in Figure 11.1, has been assumed to be 
non-singular. In practical computer implementation, the following procedure can be used 
for detennining whether or not submatrix [All] can pass the "non-singular" test. 

To assure that submatrix [All] is "invertible," in general, we would like to see 
the detenninant of [All] to be relatively large. In other words, since the diagonal tenn 
(of submatrix [All]) on the "sick" row is very small (nearly zero), we prefer to have 
(please refer to Eq. 11.3): 

lalll < max I alrl, r = 2, 3 .... N (11.18) 
The inequality shown in Eq. (11.18) is necessary, since if required, we can 

move maxlalrl into the location of a l2 (to achieve a large detenninant of submatrix [A II])' 

To be even safer, the inequality Eq. (11.18) can be modified to 



www.manaraa.com

324 Parallel-Vector Equation Solvers for Finite Element Engineering Applications 

The factor C( has been suggested in Refs. [11.1, 11.3] as 

C( =( 1 +.,ff7)/8 

(11.19) 

(11.20) 

Thus, the diagonal term on the "sick" row of submatrix [All] will be much smaller than 
its off-diagonal term. 

To make the discussion more general, the "sick" row may occur at any row 
(such as the kth row) instead of assuming to occur in row 1. Thus, Eq. (11.19) can be 
generalized to: 

lakkl < C( * maxi akrl, (11.21) 
Equation (11.21), however, can only be applied for a "single" row. In order to make it 
applicable also to a "2x2 block" row, the "concept" can be generalized to: 

I [All] 1< C( * max {~kr } 
k+ I,r 

(11.22) 

The left-hand-side of Eq. (11.22) "looks" like a 2x2 matrix, but the right-hand-side 
"looks" like a vector. Thus, for dimensional "compatibility," Eq. (11.22) should be 
modified as 

I [All] I *{!}< C( * max J:kr I (11.23) l k+ I,r 

where y = maxi akrl 
11= max lak+l.rl 

From Eq. (11.3), one has 

Hence: 

The scalar D, shown in Eq. (11.27), is the determinant of submatrix [All]' 
Eq. (11.27) can be symbolically represented as 

I [A r l I = [IbId Ibd] 
II Ib 121 Ib221 

where 
la22 1 

Iblll -
D 

Ib221 - lsJ 
D 

Ibd -
l-a12 1 

D 

(11.24) 

(11.25) 

(11.26) 

(11.27) 

(11.28) 

(11.29) 

(11.30) 

(11.31) 



www.manaraa.com

Due T. Nguyen 325 

Substituting Eq. (11.28) into Eq. (11.24), one obtains 

(11.32) 

{I} < a * [lb ll IY + Ib I21!!] 
1 Ibl2ly+ Ib22l!! 

(11.33) 

or l<a (lbIIIY+ Ib I21!!) (11.34) 

(11.35) 

11.5 Switching Row(s) and Column(s) During Factorization 

Up to this point, it has been assumed that one only has a single "sick" row. In other 
words, the 2x2 block rows (which consists of a sick row, and its neighboring row) is 
non-singular. If this is not the case, then row(s) and column(s) switching are necessary 
for maintaining the numerical stabilities. In this work, the criteria used to determine 
whether a row (or a block 2x2 rows) is sick are similar (but not exactly the same) to the 
ones used in Ref. [10.27], and are illustrated in Figure 11.2 and Fig. 11.3. 

Remarks: 
1. Point F (on the "sick" row) is assumed to have the maximum value. 
2. Point G (on the column which passes through point F) is assumed to have the 

maximum value on column FL T, or (due to symmetry) on column FU 
3. The good region #1, bounded by ABCDEFQO (except the "sick" row) is 

assumed to have been factorized in a "normal" row-by-row fashion (no 
switching rows and columns are required in this region). It is also assumed that 
the factorized region BCDE is zero. Thus, triangular region HIN will "not" be 
effected by those factorized rows in the good region # 1. 

4. Since the row(s) switching only occurs between the "sick" row, and the rth row, 
the arrays IA(-) and JA(-) correspond to the triangular region UN will not be 
effected. It is noted here that arrays IA and JA have the same -definitions as 
arrays ISTARTROW and ICOLNUM in Eqs. 10.16, and 10.17, respectively. 

5. After switching row(s) and column(s), the array IA(-) and JA(-) need to be 
constructed, which correspond to the "new" sub-matrix ODNU (thus, the 
"sick" row will always appear as the 1 sl row ofthe "new" coefficient matrix!). 



www.manaraa.com

326 Parallel-Vector Equation Solvers for Finite Element Engineering Applications 

B ( 

---- ---- @~o will row 
ion #1 re,on 

F 
---- !!I!:.! r.!'!! _______ ·sick· UNI 

E D 
t-~-~r.----:;F--t----:~--+-----=I ·sick + I· row 

M 

rth row 

V1hrow 

.. touched region 

u T 

Figure 11.2 Switching row(s) and column(s) during factorization 
(row #r is inside the partially factorized region OQDIH) . 

A 8 ( 

good region #1 

~---- -,ide:- row 

~--~~~~---r--------+~~--~-,ide:+ I-row 

K 
t----+--+-fl,~~------_r~~--_x~hrow 

v1h row 

~---~~---+---~~~~~~rthrow 

u T 

Figure 11.3 Switching row(s) and column(s) during factorization 
(row # r is outside the partially factorized region OQDIH) 



www.manaraa.com

Due T. Nguyen 327 

Case 1: Only need to switch 1 row and 1 column 
This is the case where point Q (on the "sick" row) has a (small) nonzero value 

(see Figure 11.2). Switching row (and column) may not be required if point Q already 
has a relatively large value. When a row (and a column) switching is required, row (and 
column) number (sick + 1) will be switched with row (and column) number (r). As a 
consequence, the maximum value of the "sick" row (such as point F) will be moved to 
the desirable location (such as point Q). 

Case 2: Need to switch 2 rows and columns 
This is the case where point Q (on the "sick" row) has a near zero value. This 

option is needed if case 1 has failed (for example, the maximum value on the "sick" row, 
point F in Fig. 11.2 or in Fig. 11.3, is too small). In this case, one will switch a row (and 
column) number (sick) with row (and column) number (p). Then, row (and column) 
number (sick + 1) will be switched with row (and column) number (r). The objective here 
is to move the maximum value (see point G) of column FGLT (or column FGLJ, due to 
symmetry) to the location Q (on the sick row). It is also preferred to have small, or near 
zero values for the diagonal of row # (sick) and row # (sick + 1). Thus, compromised 
strategies can be enforced to ensure the 2x2 block (= row # "sick," and row # "sick+ 1 ", 
after rows/columns switching occur) will have the following form (for numerical 
stability purpose), as shown in Figure 11.4. 

b a "*> "sick" row 

a b "*> "sick + 1 " row 

a= prefer to be a large number 
b=prefer to be a near zero (small) number 

Figure 11.4 A preferable 2x2 block matrix after rows and columns switching 

The eigenvalues of the 2x2 block matrix, shown in Figure 11.4, can be computed as 
(b-A)2-a 2=O (11.36) 

Ifb is a small (say, near zero) number, then the above equation can be approximated as 
A 2", a2 (11.37) 

or AJ '" + a, and A2 = -a (11.38) 

The 2 eigenvalues of the 2x2 block matrix (see Fig. 11.4), therefore, are 
preferred to have nearly same magnitude, with opposite signs, for numerical stability 
purpose. It is also noticed that the determinant of the 2x2 block is not zero (or not nearly 
zero). 

It should also be mentioned here that compromised strategies (trade off 
between computational time, and solution accuracy) can be used by specifying the 
constraint that the switched rows are preferable to be close to each other. 

Case 3: Switching 1 or 2 rows/columns (#sick, and/or # sick + 1) with 1 or 2 
rows/columns (# j, and/or # k) which are "closest" to row numbers "sick" and 



www.manaraa.com

328 Parallel-Vector Equation Solvers for Finite Element Engineering Applications 

"sick + 1" 

.' 
~l I b b' 

B~l 
~-

c c' 

C .~ d d' 

D ~ e e' 

E,,\ f' 

F~ 
G ~ 

~ 
~ 
~ 

~ - ~ 
~<,-
~ 

"sick" row -= L til row 

'sick + I" row = (L+ l)th row 

kth row, where L+2 ~ k ~ N 

(k +1)" row 

Figure 11.5 Switching rows / columns which are closest to each other 

Considering the kth row, shown in Figure 11.5, a vertical line is then drawn 
from point F. An "If' check is used to see if the 2x2 block matrix FaA is "invertible," 
ifnot, then the 2x2 block matrix FbB, or block matrix FcC, FdD, FeE etc ... are checked. 

Assuming the 2x2 block matrix FdD is invertible, then rows # j and k will be 
switched with rows # Land # L + 1, respectively. 

On the other hand, assuming the 2x2 block FaA is invertible, then in this case, 
one only needs to switch rowlcolumn # k with row/column # (L+ 1). However, if the 2x2 
block FbB is invertible, then in this case, one only needs to switch row/column # k with 
row/column # L. 

If all 2x2 submatrices FaA, FbB, ... , FeE (associated with kth row) are NOT 
invertible, then we'll have to consider the next row (i.e., # row k+ 1), and the same 
process is repeated (i.e., to check and see if there is any 2x2 block Ga' A, or Gb'B, or 
... Gf'F is invertible ... ) 

Since the distance between rows # j and/or # k are closest possible to rows # 
Land/or # L+I, 
one may expect minimum fill-in term will be created due to these row(s)/column(s) 
switching. 

Another strategy has also been considered in our work, which is essentially 
based upon the super node (or master node) idea, presented earlier in Section 10.8.1. 
The "sick" row/column (and/or its next row/column) will be switched with the rth 
row/column (and/or the pth row/column), where we prefer to see the swapped 
rows/columns to have similar non-zero patterns. 

Assuming the "sick" row/column will be switched with the rth row/column, and 
these 2 rows/columns have similar (say 90% or more) non-zero patterns. If this is the 
case, then we can expect the extra "fills" created during the rows/columns switching will 



www.manaraa.com

Due T. Nguyen 329 

be minimized. 

11.6 Simultaneously Performing Symbolic and Numerical Factorization 

For symmetrical and positive definite system of equations, it is relatively simple to 
predict the exact fill-in terms, before actually performing the numerical factorization. In 
this case, one will perform the symbolic factorization phase for the entire matrix, and 
then perform the numerical factorization phase for the whole matrix. For indefinite 
system of equations, however, it is more feasible to adopt the strategy of simultaneously 
performing the symbolic and numerical factorization in a row-by-row fashion. The main 
difficulties are due to the fact that row(s) and column(s) switching may be required at 
any stages during the numerical factorization process for indefinite system of equations. 
The direct consequence is that the fill-in patterns will be changed whenever row(s) and 
column(s) switching occur. 

11. 7 Restart Memory Managements 

The focus of this section is to discuss the memory management schemes, in conjunction 
with the developed 2x2 pivoting strategies for sparse, indefinite system of equations. 
Figures 11.6(a) and 11.6(b) show the memory management schemes, which correspond 
to Figures 11.2 and 11.3, respectively 



www.manaraa.com

330 Parallel-Vector Equation Solvers for Finite Element Engineering Applications 

a) the case corresponds 10 Figure 11.2 

Y e 

B D F H J N PR , X Z f 

t t t t 
UH(HCO[~ AN (HCO[~ .lJ (HCOIJ'2) JA(HCO[F) 

b) the case corresponds 10 Figure 11.3 

ff-I --------- known elmension ---------1/ 

known elmenlion 
fl-I---~/ 

A ( E 

B D F 

Second stw: 
Rowls I of aI~mn Is I switming. 1IIen 
move thi s expanded I ar contrQctedl 

G 

known elmen sion 
1-/ 

Y e 

Z f 

~ untouch region 2 
First ~~~ntouch region I 
Move iii. s untcum 
region I farwcrd 

Figure 11.6 Memory management movements 

Some Remarks About Figures 1l.6(a) and 11.6(b): 
[1] We assume the total dimension (or total incore memory) available for equation 

solution is known. 
[2] The known, fixed dimensions for integer arrays lA, and IU are placed at the 

beginning (see region AEFB) of the total vector (see region AefB). The 
remaining memories (see region EFet) will be divided into 2 segments (see 
segment EFWX, and segment WXet), where the first segment (=EFWX) is 
twice as big as the second segment (=WXet). The reason is because arrays UN 
(NCOEF2) and AN (NCOEF) in the first segment are "real" arrays, while 
arrays JU (NCOEF2) and JA (NCOEF) in the second segment are "integer" 
arrays. 

[3] Arrays AN(NCOEF), and JA (NCOEF) are placed at the end of 1 st segment 
(=segment EFWX), and at the end of 2nd segment (=segment WXet), 
respectively. The dimensions for these 2 arrays are known. In Figure 11.6 (a) 



www.manaraa.com

Due T. Nguyen 331 

and Fig. I1.6(b), the beginning of arrays UN, AN, JU and JA are indicated by 
the lines EF, MN, WX and YZ, respectively. 

[4] In Figure lI.6(b), which corresponds to Figure 11.3, the arrays UN (NCOEF2), 
AN (NCOEF), JU(NCOEF2) and JA(NCOEF) each consists of 3 regions: 

(a) Good region (see region EGHF of Fig. I1.6(b), or region ABCDFQO of Fig 
11.3) consists of rows#I through # (sick-I), which can be factorized in a 
normal row-by-row fashion. 

(b) Partially factorized region (see region GIJH of Fig. I1.6(b), or region OQFDIH 
of Fig. 11.3) consists of rows # (sick+ 1) through #(v). These rows have been 
"partially" factorized by (appropriated) previous rows # 1 through # (sick -1) 

(c) Untouched region (see region SWXT, or region IKLJ in Fig. II.6(b), or region 
HIN in Fig. 11.3) consists of rows #(v+ 1) through #(N). These rows will not 
be influenced by the factorized rows in the good region (see Fig. 11.3). The 
untouched region can be further partitioned into 2 sub-regions, such as shown 
in sub-region STVU (see Fig. II.6(b), or sub-region HIJL (see Fig. 11.3), and 
subregion UVXW (see Fig. I1.6(b), or sub-region UN (see Fig. 11.3) 

[5] Row(s) and column(s) switching may occur anywhere between row # (sick) and 
row # (r). Due to these rows/columns switching, the region GIKUH (see Fig. 
Il.6(b)) may be either enlarged, or shrinked (since the fill-in patterns can be 
changed for better or worse!), and this region (=GHLK, see Fig. 11.6(b)) will 
be moved backward to the region OPVU (see Fig. I1.6(b). The edge KL (of 
region GHLK) should be coincided with the edge UV (of region OPVU) 

[6] The edge OP (of Fig. Il.6(b)) will be the starting location for the new, reduced 
matrix ODNU (shown in Fig. 11.3) 

[7] The memory management schemes presented in Fig. II.6(a) (which 
corresponds to Fig. 11.2, where rth row is inside the partially factorized region 
OQDIH) is quite similar (and more simpler) as compared to Fig. lI.6(b). The 
key difference between Fig. I1.6(a) and Fig. I1.6(b) is from the fact that since 
row(s)/column(s) switching only occur between row #(sick), and row # (r), 
therefore, the entire untouched region HIN (see Fig. 11.2) will not be divided 
into 2 subregions, as mentioned earlier in remark #4(c). 

[8] As the sparse numerical factorization process continues to progress, the "good 
region # 1" (see Fig. I1.6(a), or Fig. I1.6(b) will continue to grow, while the 
region OWXP of array AN (see Fig. 11.6(a), or Fig. 11.6(b), or region ODNU 
of Figs. 11.2 and 11.3 will continue to shrink. 

[9] As the region OWXP (which is part of array AN) continues to shrink (see Fig. 
I1.6(a), or Fig. I1.6(b)). The region MOPN (which is also part of array AN) 
will continue to grow. Furthermore, this region (=MOPN) can be used for the 
expanded array UN. Thus, the unused and growing region MOPN of array AN 
can be re-used (by the expanded array UN) to save the computer memory. 

11.8 Major Step-by-Step Procedures for Mixed Look Forward/Look 
Backward, Sparse LDLT Factorization, Forward and Backward Solution 
with 2x2 Pivoting Strategies 

The row-by-row sparse LDL T factorization can be accomplished based upon either look 
forward, or look backward strategies. In using "Look Forward Factorization" strategies, 



www.manaraa.com

332 Parallel-Vector Equation Solvers for Finite Element Engineering Applications 

upon completing the currently factorized row, such as the wth row (shown in Fig. 11.2), 
the factorized wth row will be used to partially update (or factorize) all appropriately 
remaining rows. Then, the wth row (and all its previous rows) will never be used (or 
referred to) again! In using "Look Backward Factorization" strategies, the currently 
being factorized row, such as the wth row (shown in Fig. 11.2), will have to refer to its 
previously factorized rows. Furthermore, subsequent factorized rows (after wth row) may 
still have to refer to the wth row again. 

Major step-by-step procedures can be summarized in the following paragraphs: 
Step 1: From row #1 until the "sick" row, row-by-row "look backward factorization" 

strategies can be used. Assuming the "sick row" occurs at row 1= 1 0 (refer to 
Table 10.1). Thus, upon completely factorized by its appropriately previous 
rows, the sick row #10 has U IO• 10 = O. Hence, factorizing the next row (say 
row 1=11, see Table 10.1) will have the problem of dividing by zero (or U IO, 

10), unless appropriated pivoting strategies are used. 
Step 2: Check to see if2x2 blocks (consists of "sick" row and "sick+ 1" row) is non

singular (and stable) or not. Ifnecessary, check to see if lxI, or 2x2 pivoting 
strategies are required (see Sections 11.1-11.4) 

Step 3: Using the completely factorized rows [from row #1 until (sick-l)'h row] and 
the "look forward factorization" strategies to partially factorize all remaining 
rows [such as from row #(sick+ 1) until the last row #N] 

Step 4: Performing tht:: appropriated row(s) and column(s) switching operations, and 
memory management operations (as shown in Figures 11.6(a) & 11.6(b» 

Step 5: "New" definitions for arrays lA nelV , JA nelV , ANnelV , etc ... are defined for the 
"new" (& reduced) stiffness matrix ODNU (see Fig. 11.2, or Fig. 11.3). In 
this "new" stiffness matrix, the "sick" row maybe placed at either the first 
row, or at some intermediate row (if the sick row has been switched with 
another row). 

Step 6: Repeat the procedures (until all rows ofthe original stiffness matrix have been 
completely factorize) by returning back to step 1. 

Step 7: Forward and backward substitution phases can be done in a similar fashion as 
explained in Chapter 10, with 2 special attentions: 

(a) When row/column switching occurs during factorization phase, the 
corresponding row switching need be done also for the RHS (Right-Hand
Side) vector 

(b) Operations involved the rotation matrix [R] during factorization need also be 
done for the RHS vector. 

11.9 Numerical Evaluations 

In order to evaluate the performance (in terms of computational time, solution accuracy 
and memory requirements) of the proposed sparse solver with pivoting strategies for 
symmetrical, indefinite system of equations, 5 examples (ranging from 51 to 15,367 
unknown degree-of-freedoms) are used in this study. 

The numerical results are presented in Tables 11.1 and 11.2. The improved 
performance can be achieved by applying the MMD re-ordering algorithm (to minimize 
the fill-in terms) and by moving all zero diagonal terms (of the original stiffness matrix) 
toward the bottom right of the original stiffness matrix. 



www.manaraa.com

Due T. Nguyen 333 

In Table 1l.l, both Cray-YMP (single processor) computer and the IBM
R60001590 workstation are used in this study, and are shown in column 1. The total 
number of equation (NEQ, or the total number of degree-of-freedom), and the total 
number of nonzero coefficients (NCOEF) before factorization are shown in column 2. 

For all 5 structural examples considered in this section, the resulting linear 
system of indefinite equations, shown in Eq. 10.1 can be expressed in the following 
form: 

(11.39) 

In Eq. (11.39), the vector xcan be referred to as the "displacement" vector, 
where as the vector X (which corresponds to the zero diagonal terms of the coefficient 
stiffness matrix) can be referred to as the "Lagrange multiplier" vector. The bottom right 
submatrix of the coefficient stiffness matrix (shown in Eq. 11.39) is a "zero" submatrix. 

The 3'd column of Table 1l.l represents the summation of the (absolute) 
unknown displacement vector x. The maximum (absolute) displacement component is 
printed in column #4. The relative "displacement and Lagrange multiplier" error norm 
can be calculated as (refer to Eq. 10.55, or Eq. 11.39) 

R E N = II KZ-/II 
. .. 11/11 (11.40) 

and is shown in column #6 (of Table 11.1). The 3 controlled parameters ex, p (or 
factored parameter) and y (or tuning parameter) are presented in column #7. Finally, 
memory storage requirements are given in column #8. Impacts of the input controlled 
parameters ex, p and y on the algorithm performance are shown in Table 11.2 (Ncoef2 
represents total number of nonzero coefficients after factorization). 



www.manaraa.com

334 Parallel-Vector Equation Solvers for Finite Element Engineering Applications 

Table 11.1 Comparison of different indefinite sparse solvers 

NEQ SUM (DISPL) MAX DISPLACEMENT CPU TIME RELATIVE ERROR CONTROL 
NCOEF (SECONDS) (DISP +!-) PARAMETER 

a - Factor-
Twin 

BOEING 2.265 *10.2 1.999 * 10" 0.041 7.0 * 10-14 

CRAY 51 2.26499 *10-2 1.999 * 10-' 0.0036 1.152 * 10-" 0.1-1-1 
STRETCH 218 2.2649 *10-2 1.999 * 10-' 0.0 1.8 * 10-15 0.1-1-1 

BOEING 3.1596564 0.15253658 0.245 4.034 * 10-10 

CRAY 247 3.1596564 0.15253658 0.021 1.06757 * 10-9 0.1-1-1 
STRETCH 2009 3.1596564 0.15253658 0.0099~0.01 7.06289 * 10-12 0.1-1-1 

BOEING 29.68462 0.20289318 2.351 3.26 * 10.10 

CRAY 1440 29.68462 0.20289318 0.571 1.184 * 10-9 0.1-1-1 
STRETCH 22137 29.68462 0.20289318 0.299 6.728 * 10-12 0.1-1-1 

BOEING 34.7033 9.31212 * 10-2 7.736 9.97 * 10-11 

CRAY 2430 34.672262 9.3111810* 10.2 6.136 1.2695 * 10-11 0.1-1-1 
STRETCH 75206 34.700716 9.312068 * 10-2 8.389 4.4253 * 10-" 

BOEING 512.35 0.205696 35.77 4.384 * 10-11 

CRAY 15367 N/A N/A 36.62 2.73 *10-9 0.1-1-1 
STRETCH 286044 512.35488 0.2056969 ~76 = I. 70566 * 10-13 0.1-1-1 

Table 11.2 Parameters study for an indefinite sparse solver 

CONTROL NEQ SUM (DISPL) MAX DISPL CPU RELATIVE NUMBER NUMBER Ncoef2 
PARAMETERS NCOEF SECONDS ERROR OF2X2 OFDIAG 

(DISP +!.) PIVOTING INTER-
CHANGE 

0.1-1.-1. 51 2.2649" 10" 1.999· IO'} 0.0 1.8 • 10"1' 

218 

0.1-1.-1. 247 3.159564 0.1525 3658 0.0099 706289 "10'" 
2009 

0.1-.1-.1 1440 29.68462 0.20289318 0.299 6.728 • 10-12 

22157 

0.1-.1-.1 2430 34.700716 9.312068" 10" 8.389 4.4253 " 10"' 
0.01-.1- I 75206 34.698586 9.312042" 10" 7.1599 8.7521 " 10'" 32 134 540109 
0 

0.01-1-1 15367 512.35488 0.2056969 76 sec 9.922983 ·10,12 45 446 6221192 
0.005-.075-.1 286044 512.35488 02056969 1,1545 • 10-11 37 432 6194548 
0.1-1-1 512.35488 0.2056969 1.70566 " 10'" 143 623 6452162 

11.10 Some Remarks on Unsymmetrical-Sparse System of Linear Equations 

For several important engineering and science applications, such as thermal-structural 
analysis, linear programming, computational fluid dynamics etc ... , unsymmetrical-sparse 
system of linear equations can arise very naturally. Parallel-vector algorithms for full, 
banded and variable bandwidths (for unsymmetrical system of equations) have been 
discussed with great details in Chapter 8. Also, algorithms for sparse, symmetrical 



www.manaraa.com

Due T. Nguyen 335 

system of equations (with and without pivoting strategies) have been discussed with 
great details in Chapter 10, (without pivoting), and Sections 11.1 through 11.7 (with 
pivoting strategies). The sparse technologies discussed in Chapter 10 can be directly 
used in conjunction with unsymmetrical-banded algorithms discussed in Chapter 8 for 
designing efficient unsymmetrical-sparse algorithms. The resulting unsymmetrical-sparse 
algorithms will have the following key components: 
(a) The sparse, upper triangular portion of a given unsymmetrical coefficient, matrix 

will be factorized essentially in the same row-by-row fashions as described in 
Chapter 10. 

(b) The sparse lower triangular portion of a given unsymmetrical coefficient matrix 
will be factorized in a column-by-column fashion [as the image, with respect to 
the main diagonal, of step (a) above] 

(c) It is assumed that the given coefficient matrix is unsymmetrical with respect to 
the numerical values, but is still symmetrical with respect to the non-zero 
locations (see Figures 11.7 - 11.8) 

a 0 boo 
ode 0 f 

A c g i ) 0 
o 0 k I 0 
o h 0 0 m 

Figure 11.7 Matrix [A] is symmetrical in locations, 
but unsymmetrical in numerical values 

a 0 • b 0 

ode 0 f 
Beg i ) 0 

o 0 k I 0 
o h 0 0 m 

Figure 11.8 Matrix [B) is unsymmetrical in both locations and numerical values 

(d) The restrictions stated in (c) can be easily removed by sacrificing some 
additional computer memory. For example matrix [B) in Fig. 11.8 can still be 
considered as symmetrical in locations, if we consider the term B I•3 = ., and B4•1 

= 0 as a non-zero term with its numerical value to be equal to zero!! 
(e) The MMD reordering and the symbolic algorithms (discussed in Chapter 10) can 

still be applied to the unsymmetrical (with respect to numerical values only!) 
matrix [A] of the type as shown in Fig. 11.7. However, upon exiting the MMD 
reordering algorithm, special attention need be focused on the movements 
(utilizing the integer array PERM obtained upon exiting from the MMD 
algorithm) of non-zero terms (of the original unsymmetrical matrix [A)) to 
different locations. 

(f) In item (e), the integer array PERM represents the "mapping" between the "old" 
numbering system (before applying MMD algorithm) and the "new" numbering 
system (after exiting MMD algorithm). For example: PERM (i) = j means the 
"old" ilh row/column of [A] becomes the "new") Ih row/column. 
The performance of the unsymmetrical sparse solvers (based on the key ideas 



www.manaraa.com

336 Parallel-Vector Equation Solvers for Finite Element Engineering Applications 

presented in this section) is shown in Table 11.3, for the aircraft HSCT finite element 
model. 

It should be emphasized here that the HSCT finite element model will result in 
system of "symmetrical" simultaneous equations where both unsymmetrical (see Table 
11.3) and symmetrical (see Table 11.4) sparse equation solvers are used. 

As can be expected, the computer core memory and the numerical factorization 
time required by the unsymmetrical sparse solver (refer to Table 11.3) are both higher 
than the ones required by the symmetrical sparse solver (refer to Table 11.4). 

Table 11.3 Performance of "unsymmetrical" sparse solver for HSCT aircraft model 
on IBM- R6000/590 workstation 

Problem Characteristics 
Number of Equations 

Non-Zero before fill in 

Non-Zero after fill in 
Loop Unrolling Level 

Memory 
Total Integer memory 
Total real memory 

Total memory 

Error Norm Check 
MAX ABS DISPL AT DOF 522 

=> 

=> 

=> 

=> 

= 3613667 
= 7114306 

= 10727973 

NEQ 

NCOEF 

NCOEF2 
LOOP 

= 16146 
= 999010 

= 6034566 
=8 

= 0.447440400042149411 

SUMMATION OF ABS DISPLACEMENTS = 301.291343623234013 

THE ABSOLUTE ERROR IS II Ax-b II = 0.192431628765362175E-06 

THE RELATIVE ERROR IS II AX-b II I lib I = 0.136069709614759900E-08 

Timing 
-TIME READ fort. FILES 
-TIME SYMFACT 
-TIME TRANSA 

-TIME SUPNODE before N 
-TIME NUMFA 

-TIME FBE 
-TIME SUPNODE After N 
-TIME MUL TSP A 

-TIME ERROR NORM 

-TIME MMD REORDERING 

= O.OOOOOOOOOOOOOOOOOOE+OO 
= 0.479999989271163940 
= 2.03999995440244675 
= 0.179999995976686478 
= 28.7299993578344584 
= 0.319999992847442627 
= 0.169999996200203896 

= 0.599999986588954926E-0 I 
= O.OOOOOOOOOOOOOOOOOOE+OO 

= 0.1281261444E-Ol 



www.manaraa.com

Due T. Nguyen 337 

Table 11.4 Performance of "symmetrical" sparse solver for HSCT aircraft model on 
IBM-R6000/590 workstation 

I Problem Characteristics 

I 
Number of Equations 

Non-Zero before fill in 
=> NEQ = 16146 

=> NCOEF = 499505 

I
Non-zero after fill in 
Loop Unrolling Level 

=> NCOEF2 = 3017283 

=>LOOP =8 

I 
I MEMORY 

I 
Total Integer Memory 

Total real memory 

Total memory 

ERROR NORM CHECK 

= 3613667 
= 3581372 

= 7195039 

ABS DISPL AT DOF 522 = 0.447440400042149411 

SUMMATION OF ABS DISPLACEMENTS = 301.291343623234013 

THE ABSOLUTE ERROR IS II Ax-b II = 0.1924316228765362175E-06 

THE RELATIVE ERROR IS II AX-b II / II b II = 0.136069709614759900E-08 

TIMING 
-TIME READ fort. FILES 

-TIME SYMF ACT 

-TIME TRANSA 

-TIME SUPNODE Before N 

-TIME NUMFA 

-TIME FBE 

-TIME SUPNODE After N 

-TIME MULTSPA 

-TIME ERROR NORM 

-TIME MMD REORDERING 

= O.OOOOOOOOOOOOOOOOOOE +00 

= 0.479999989271163940 

= 2.06999995373189449 

= 0.169999996200203896 

= 16.8799996227025986 

= 0.309999993070960045 

= 0.169999996200203896 

= 0.399999991 059303284E-0 1 

= O.OOOOOOOOOOOOOOOOOOE+OO 

= 0.2609395981E-Ol 
~--------------~ 

For the complete listing of the FORTRAN source codes, instructions on how to 
incorporate this equation solver package into any existing application software (on any 
specific computer platform), and/or the complete consulting service in conjunction with 
this equation solver etc ... , the readers should contact: 

Prof. Duc T. Nguyen 
Director, Multidisciplinary Parallel-Vector Computation Center 
Civil & Environmental Engineering Dept. 
Old Dominion University 



www.manaraa.com

338 Parallel-Vector Equation Solvers for Finite Element Engineering Applications 

Room 135, Kaufinan Building 
Norfolk, V A 23529 (USA) 

Tel= (757) 683-3761, Fax = (757) 683-5354 
Email= dnguyen@odu.edu 

11.11 Summary 

An alternative formulation and new computational strategies have been developed for 
solving general system of sparse-symmetrical- indefinite, and sparse-unsymmetrical 
equations. Rotational matrix has been used to uncouple the 2x2 block diagonal matrix, 
and therefore, greatly enhance the FORTRAN computer coding implementation. Mixed 
"look backward factorization" and "look forward factorization" strategies have also been 
employed. The computational efficiency, and the solution accuracy have been validated 
by solving 5 indefmite system of equations (ranging from 51 to 15,367 unknown degree
of-freedom). Further numerical performance improvements have been realized by using 
MMD reordering algorithm (to minimize the number offill-in) and by pushing all zero 
diagonal terms of the original stiffness matrix toward the bottom right of the coefficient 
matrix. 

11.12 Exercises 

ILl Given the following system of equations [A] {x} = {b}, where: 

(a) Following the procedure explained m Example 11.1, find the LDLT 
factorization of [A] 

(b) Find the forward and backward solution phases 
11.2 Resolve the previous problem, and by using the rotation matrix [R] (see 

Example 11.2) 
11.3 Resolve the problem 11.1, by using the rotation matrix [R] and following the 

procedure explained in Example 11.3 

11.13 References 

11.1 M.A. Aminpour, 1.B. Ransom, and S.L. McCleruy, "A Coupled Analysis Method for Structures With 
Independently Modelled Finite Element Subdomains," IJNM in Engr., Vol. 38, pp. 3695-3718 (1995). 

11.2 1.B. Ransom, S.L. McCleary, and M.A. Aminpour, "A New Interface Element for Connecting 
Independently Modeled Substructures," AIANASME/ASCE/AHS SDM Conference Proceedings, 
AIAA-93-1503-CP. (1993). 

11.3 1.M Housner, M.A. Aminpour, and S.L. McCleary, "Some Recent Developments In Computational 
Structural Mechanics," Proc. lnt. Conf. Computational Engineering Science, ICES Publications, 
Atlanta, GA, pp. 376-381 (1991). 

11.4 I.S. Duff, and J.K. Reid, "MA47: A Fortran Code for Direct Solution of Indefinite Sparse Symmetric 



www.manaraa.com

Due T. Nguyen 339 

Linear Systems," RAL Report #95-001 (Jan. 1995). 
11.5 Z. Johan, T.J.R. Hughes, K.K. Mathur and S.L. Johnson, "A Data Parallel Finite Element Method For 

Computational Fluid Dynamics On the Connection Machine System," Comput. Methods Appl. Mech. 
Engr. 99,113-134 (1992). 

11.6 J.R. Bunch, and K. Kaufman, "Some Stable Methods for Calculating The Inertia and Solving 
Symmetric Linear System," Math. Comp., 31, pp. 162-179 (1977). 

11.7 I.S. Duff, AM. Erisman, and J.K. Reid, Direct Methods for Sparse Matrices, Monographs On 
Numerical Analysis, Oxford Science Publications (1989). 

11.8 J.A George, and W.H. Liu, Computer Solution of Large Sparse Positive Definite Systems, Prentice
Hall, Englewood Cliffs, N.J. (1981). 

11.9 G.H. Golub, and Charles F. Van Loan, Matrix Computations, 2"" Edition, The Johns Hopkins 
University Press (1989). 

11.10 K.H. Law and D.R. Mackay, "A Parallel Row-Oriented Sparse Solution Method for Finite Element 
Structural Analysis," IJNM in Engr., Vol. 36, 2895-2919 (1993). 

11.11 Esmond G. Ng, and B.W. Peyton, "Block Sparse Choleski Algorithm On Advanced Uniprocessor 
Computer," SIAM J. of Sci. Comput., Volume 14, pp. \034-\056 (1993). 

11.12 D.T. Nguyen, 1. Qin, T.Y.P. Chang, and P. Tong, "Efficient Sparse Equation Solver with Unrolling 
Strategies for Computational Mechanics," CEE Report #96-001, Old Dominion University, Norfolk, 
VA (1996). 

11.13 H. Simon, P. Vu, and C. Yang, "Performance ofa Supermodal General Sparse Solver on The Cray
YMP: 1.68 GFLOPS with Autotasking," Applied Mathematics Technical Report, Boeing Computer 
Services, SCA-TR-117 (March 1989). 

11.14 T. Belytscho, E.J. Plaskacz, J.M. Kennedy and D.M. Greenwell, "Finite Element Analysis on the 
Connection Machine," Computer Methods Appl. Mech. Engr. 81,27-55 (1990). 

11.15 AK. Noor, "Parallel Processing In Finite Element Structural Analysis·, in Parallel Computations and 
Their Impact on Mechanics, ASME, pp. 253-277, AK. Noor (Ed.), (1987). 

11.16 AI. Khan and B.H. V. Topping, "A Transputer Routing Algorithm for Nonlinear or Dynamic Finite 
Element Analysis," Engineering Computations, Vol. II, pp. 549-564 (1994). 

11.17 D.T. Nguyen, 0.0. Storaasli, E.A Carmona, M. AI-Nasra, Y. Zhang, M.A Baddourah and T.K. 
Agarwal, "Parallel-Vector Computation for Linear Structural Analysis and Nonlinear Unconstrained 
Optimization Problems," Computing Systems in Engineering, An Inter. Journal, Vol. 2, No. 2/3, pp. 
175-182 (Sept. 1991). 

11.18 K.N. Chiang and R.E. Fulton, "Structural Dynamic Methods for Concurrent Processing Computer," 
Computers and Structures, 36(6), \031-\037 (1990). 

11.19 D. Zhang and T.Y.P. Chang, "Parallel Cholesky Method on MIMD with Shared Memory," Computers 
and Structures, Vol. 56, No. I, pp. 25-38 (1995). 



www.manaraa.com

Absolute error norm, 129 
Active degree of freedom, 22 
Aerodynamic Influence Matrix, 191 
Aircraft Panel, 69 
Alliant, I 
Arninpour, M.A., 338 
Application software, 136 
Argawal, T.K., 26 
Arithmetic Computations, 103 
Arithmetic Unit, 3 
Assembled, 23 
Automobile, 247 
Auxiliary disk, 148 

Backward Solution, 52 
Baddourah, M., 33, 50 
Banded Matrix, 14 
Bandwidth, 14,91 
Bathe, K.J., 26 
Beam Finite Element, 41,130 
Beguelin, A., 88 
Belegundu, A.D., 26 
Belvin, W.K., 50 
Belytscho, T., 339 
Block rows, 142 
Block Skyline Column storage scheme, 41, 

166 
Block-wise updating, 168 
Boundary Condition, 19 
Buffer-In/Buffer-Out, 141 
Bunch, I.R., 339 

Cache, 244 
Cantilever beam, 235 
Chained List, 256 
Chandrupatla,T.R.,26 
Chien,L.S., 50 
Choleski Factorization, 51, 116 
Coefficient matrix, 52 
Column heights, 18, 74 
Column-by-Column, 15,54 
Column numbers, 16 
Communication, I, 166 
Communication rate, 42, 176 
Complete solution, 109 
Compiler, 5 
Compiler Directive, 6 
Computer Platform, 136 
Concurrently 167, 229 
Constrained, 19 
Contiguous Storage Locations, 68 
Control Structure Interaction, 27, 41 
Convex, I, 158 
Copy, !O3, 201 
Copy Asyn, 201 
Coupling Effect, 29 
CPU Time, 27,160 
Cray-2, I 
Cray-YMP,1 
Cray-C90, 1,27 
Cray-190,27 
Cray-T90,27 

Index 

Cray-SV1,27 
CRECV, 174 
CSEND,174, 
CSM-testbed, 130 
Cuthill-McKee Algorithm, 91 
Cycle Time, 4 
Cyclic Reduction, 217, 221 

Decomposition, 52, 166 
DDOT,171 
Dedicated Computer Environment, 48 
Deflections, 130 
Degree-of-Freedom, 19 
Dependencies, 5 
Diagonal, 14,54,118,147 
Diagonal pointer, 74, 94 
Disk file, 146 
Disk storage, 141 
Distributed Memory, 1, 41, 165 
Divided and Conquered Strategies, 226 
Dongarra, J., 88, 189 
Dot-Product, 7, 108 
Double precision, 241 
Double-send scheme, 174 
Duff, LS., 339 
Dynamics, 51, 247 

Efficiency, 2 
Eigen matrix, 313 
Eigenvalue, 27, 315 
Eigenvectors, 318 
Eight node solid element, 48 
Elapsed Time, 38 
Element Connectivity, 23, 29 
Elementary row operations, 224 
Energy error norm, 129 
Envelope, 96 
Equality conditions, 119 
Error Norm, 129 
Exxon offshore structure, 247 

Factorization, 15 
Factorized matrix, 52 
Fan-in, 184 
Fan-out, 176 
Fast-memory, 167 
File, 142 
Fills-in, 15, 130 
Finite Element, 19 
Fixed support, 19 
Flexible space structure, 27 
Floating point operation, 42 
FORCE (FORtran with Concurrent Extension), 

38 
Force displacement equation, 130 
Forward solution, 52 
Frame Structure, 39, 42 
Free to move, 19 
Free vibration, 27 
Full matrix, 14,55, 109 
Fulton, R.E., 339 
Fuselage centerline, 130 

341 



www.manaraa.com

342 Parallel-Vector Equation Solvers for Finite Element Engineering Applications 

Future row, 257 

Gather, 4 
Gauss elimination, 239 
Gauss method, 99, 115 
GDSUM, 180, 181 
Geist, G.A., 88 
Generalized eigen -problems, 191 
Generation & assembly, 46 
George, A, 26, 339 
Giga arithmetic operations, 165 
GS: Gipspoole-Stockmyer, 252 
Global degree of freedom, 21 
Gray, C.E., Jr., 50 
Gropp, W.D., 88 

Heath, M.T., 189 
Height of each column, 15 
High speed research aircraft, 130 
HSCT: high speed civil transport aircraft, 141 
Hinged cylinder model, 182 
Hockney, R.W., 245 
Housner, J.M., 338 
Hughes, T.1.R., 216 

lBM-SP2, 1 27, 165 
Incomplete, 74, 177 
Ideal speed up, 48 
Identity matrices, 313 
Incore memory, 141 
Indefinite system, 311 
Inner loop, 5 
Innermost do- 100p,lO, 103 
Inner Product, 97 
Input/output, 141 
Intel i860, I 
Intel Delta, 41 
Intel Gamma, 41 
Intel Paragon, 1,27, 191 
Intrinsic function, 7 
iPSC860,42 
lRECV,174 
ISEND,174 
Iterative, 27 

Jordan, H.F., 50 

Khan, AI., 339 
Knight, N.F., 88 

Lagrange multiplier, 333 
Largest record, 150 
Law, K.H., 339 
LDU factorization, 1I5 
Linear, 13 
Liu, W.H., 26, 339 
Load and Store, 9, 103 

Load vector, 82 
Local locks, 29 
Local memory, I 
Look backward, 123,332 
Look forward, 123,332 
Loop unrolling, 8, 113 
Lower triangular matrix, 52 
LU Factorization, 118 
Lusk, E., 88 

Maghami, P.G., 50 
Main memory, 103, 142 
Maker, B.N., 50, 189 
Manchek, R., 88 
Mapping, 17 
Mass matrix, 48 
Massively Parallel, 41, 165 
Master/slave Dof, 282 
Matrix equations, 91 
Matrix factorization, 10, 99 
Matrix times vector, 281 
Mei, C., 50 
Meiko parallel computers, 1,27, 165 
Memory Management, 150 
Mesh, 130 
Message-passing, I 
Message passing rate, 176 
MFLOPS, 2, 130, 239 
Microprocessor, 165 
MIMD,39 
Minimum dofnumber, 24 
MMD: Modified minimum degree, 252 
MPI, 38, 103 
Multiple Processors, 27, I 03 
Multiply factor, 100 
Multipliers, 117 
Multi-user environment, 141 

NAS user guide, 164 
N-CUBE, I 
ND: Nested dissection, 252 
Nested Do-Loops, 10,72 
Ng., E.G., 339 
Nguyen, D.T., 26, 33,41, 139 
Nodal displacement, 13 
Nodal load, 13 
Node connectivity, 30 
Node-by-node parallel generation, 29 
Non-linear, 27, 41 
Non-zero terms, 14, 162 
Noor, AK., 339 
Normalized, 315 
Number of processors, 48 

Off-diagonal, 16,55,255 
One dimensional array, 14 
Operands, 3 
Optimization, 41 



www.manaraa.com

Duc T. Nguyen 

Ortega, J., 188 
Outer-loop, 103 
Outermost do-loop, 10 
Out-of-Core, 141 
Overhead, 4 
Overlapping, 31 

Panel flutter, 191 
Panel stiffness matrix, 92 
Paragon computer, 302 
Parallel computers, 1 
Parallel-vector, 23 
Partial answer, 8 
Partially computed, 73 
Partially factorized, 100, 147 
Partitioned, 31, 230 
Performance utilities, 130 
Peyton, B.W., 339 
Pin support, 19 
Pipe lining, 3 
Pivoting strategies, 211 
Pivot row, 227 
Plate structure, 40 
Portability, 49 
Positive definite, 13, 28, 96 
Prescheduled, 103 
Private, 103 
Processor, 146 
Produce, 103,201 
"Pseudo" FORTRAN coding, 23 
PVM,38,103 
PVS: Paral1el Vector Solver, 103 

Qin, J.,41 
Quadrilateral shel1 elements, 130 

RCM: Reversed Cuthill-McKee, 252 
Read/write, 144 
Real words, 26 
Receive, 174 
Record length, 141 
Reordering algorithms, 254 
Records, 142 
Rectangular element, 19,208 
Rectangular matrix, 14 
Redundant computation, 48 
Register-to-register, 4 
Reid, J.K., 339 
Relative error norm, 301 
Reorders, 91 
Residuals, 130 
Restart Memory Management, 329 
Retrieval speed, 68 
Right-hand-side vector, 52, 117 
Ring sending message, 175 
Rotation Matrix, 313, 318 
Rotational, 19 
Row length, 95, 99 

Row operations, 116 
Row-by-Row Fashion, 14,54 
Row-by-row storage scheme, 114 

Saxpy-operations, 8, 91 
Scalable, 37 
Scalar Variable, 7 
Scaling, 119 
Scatter, 4 
Segmentations, 3, 68 
Semi-bandwidth, 130 
Separators, 229 
Sequent, 1 
Sequential send, 174 

343 

Sequential Skyline Choleski factorization, 55 
Shared, 103 
Shared Memory, 1,41 
Sick row, 318 
Simon, H.P., 140 
Simultaneous, 13 
Single send, 174 
Skelaton FORTRAN, 99 
Skyline equation solver, 25 
Skyline matrix, 15 
Solid rocket booster, 84, 129 
Space shuttle, 84 
Sparse, 13 
Sparse equation solver, 25, 247 
Sparse matrix, 4 
Speed-up factor, 2 
SSD: solid state disk, 149 
Starting locations of the first non-zero, 16 
Statics, 27, 51 
Stiffness, 13 
Storaasli, 0.0., 26 
Storage scheme, 13 
Stride, 9, 110 
Structural engineering, 13 
Structural optimization, 27 
Structural stiffness matrix, 22 
Sub-Matrix, 127 
Substructure, 29 
Sun, C.T., 50 
Sunderam, V., 88 
Supercomputer, 48 
Switching Row, 230 
Symbolic factorization, 247 
Symmetrical, 13,28 
Synchronization, 29, 61 
System, 13 

Third-order piston theory, 191 
Three bar truss, 27 
Topping, B.H.V., 339 
Transient response, 27 
Translational motions, 19 
Transposed, 269 
Triangular element, 34, 130 



www.manaraa.com

344 ParaJlel-Vector Equation Solvers for Finite Element Engineering Applications 

Triangular systems, 72 
Tridiagonal matrix, 165,220 
Tridiagonal solver, 217 
Twice block-wise factorization, 170 
Two-by-two (2x2) pivoting, 323, 332 
Two-dimensional array, 14 

Uncouple, 229, 318 
Unordered Matrix, 269 
Unrolling, 108 
Unsymmetrical, 240 
Unsymmetrical equation solver, 191 
Updated column height, 25 
Upper Triangular, 14,28,96 
UTU Factorization, 115 

Variable Banded, 14 
Variable Bandwidth equation solver, 25, 91 
Variable row length, 147 
Vector capabilities, 1 
Vector Choleski factorization, 63 
Vector Length, 6 
Vector Registers, 4,103 
Vector Speed, 102, 146 
Vector Start-up Time, 4 
Vector Unrolling, 7,66 
Voigt, R. G., 188 
Vorst, H.A., 188 
Vu, P., 140 

Wall Clock, 38 
WCT: Wall clock time, 160 
Wing tip, 130 
Words of memory, 14 
Work-Balancing, 32 

Yang, C. , 140 
Young modulus, 241 

Zhang, Y., 50 



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /ARA <FEFF0633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F006200650020005000440046002006450646062706330628062900200644063906310636002006480637062806270639062900200648062B06270626064200200627064406230639064506270644002E00200020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644062A064A0020062A0645002006250646063406270626064706270020062806270633062A062E062F062706450020004100630072006F00620061007400200648002000410064006F00620065002000520065006100640065007200200036002E00300020064806450627002006280639062F0647002E>
    /BGR <FEFF04180437043F043E043B043704320430043904420435002004420435043704380020043D0430044104420440043E0439043A0438002C00200437043000200434043000200441044A0437043404300432043004420435002000410064006F00620065002000500044004600200434043E043A0443043C0435043D04420438002C0020043F043E04340445043E0434044F044904380020043704300020043D04300434043504360434043D043E00200440043004370433043B0435043604340430043D0435002004380020043F04350447043004420430043D04350020043D04300020043104380437043D0435044100200434043E043A0443043C0435043D04420438002E00200421044A04370434043004340435043D043804420435002000500044004600200434043E043A0443043C0435043D044204380020043C043E0433043004420020043404300020044104350020043E0442043204300440044F0442002004410020004100630072006F00620061007400200438002000410064006F00620065002000520065006100640065007200200036002E0030002004380020043F043E002D043D043E043204380020043204350440044104380438002E>
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /CZE <FEFF0054006f0074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002000760068006f0064006e00fd006300680020006b0065002000730070006f006c00650068006c0069007600e9006d0075002000700072006f0068006c00ed017e0065006e00ed002000610020007400690073006b00750020006f006200630068006f0064006e00ed0063006800200064006f006b0075006d0065006e0074016f002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e0074007900200050004400460020006c007a00650020006f007400650076015900ed007400200076002000610070006c0069006b0061006300ed006300680020004100630072006f006200610074002000610020004100630072006f006200610074002000520065006100640065007200200036002e0030002000610020006e006f0076011b006a016100ed00630068002e>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200036002e00300020006f00670020006e0079006500720065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200036002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200036002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e400740074006500690064002c0020006500740020006c0075007500610020005000440046002d0064006f006b0075006d0065006e00740065002c0020006d0069007300200073006f00620069007600610064002000e4007200690064006f006b0075006d0065006e00740069006400650020007500730061006c006400750073007600e400e4007200730065006b0073002000760061006100740061006d006900730065006b00730020006a00610020007000720069006e00740069006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e0074006500200073006100610062002000610076006100640061002000760061006900640020004100630072006f0062006100740020006a0061002000410064006f00620065002000520065006100640065007200200036002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200036002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /GRE <FEFF03A703C103B703C303B903BC03BF03C003BF03B903AE03C303C403B5002003B103C503C403AD03C2002003C403B903C2002003C103C503B803BC03AF03C303B503B903C2002003B303B903B1002003BD03B1002003B403B703BC03B903BF03C503C103B303AE03C303B503C403B5002003AD03B303B303C103B103C603B1002000410064006F006200650020005000440046002003BA03B103C403AC03BB03BB03B703BB03B1002003B303B903B1002003B103BE03B903CC03C003B903C303C403B7002003C003C103BF03B203BF03BB03AE002003BA03B103B9002003B503BA03C403CD03C003C903C303B7002003B503C003B103B303B303B503BB03BC03B103C403B903BA03CE03BD002003B503B303B303C103AC03C603C903BD002E0020002003A403B1002003AD03B303B303C103B103C603B10020005000440046002003C003BF03C5002003B803B1002003B403B703BC03B903BF03C503C103B303B703B803BF03CD03BD002003B103BD03BF03AF03B303BF03C503BD002003BC03B50020004100630072006F006200610074002003BA03B103B9002000410064006F00620065002000520065006100640065007200200036002E0030002003BA03B103B9002003BD03B503CC03C403B503C103B503C2002003B503BA03B403CC03C303B503B903C2002E>
    /HEB <FEFF05D405E905EA05DE05E905D5002005D105E705D105D905E205D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05EA05D005D905DE05D905DD002005DC05EA05E605D505D205D4002005D505DC05D405D305E405E105D4002005D005DE05D905E005D505EA002005E905DC002005DE05E105DE05DB05D905DD002005E205E105E705D905D905DD002E0020002005E005D905EA05DF002005DC05E405EA05D505D7002005E705D505D105E605D90020005000440046002005D1002D0020004100630072006F006200610074002005D505D1002D002000410064006F006200650020005200650061006400650072002005DE05D205E805E105D400200036002E0030002005D505DE05E205DC05D4002E>
    /HRV <FEFF004F0076006500200070006F0073007400610076006B00650020006B006F00720069007300740069007400650020006B0061006B006F0020006200690073007400650020007300740076006F00720069006C0069002000410064006F00620065002000500044004600200064006F006B0075006D0065006E007400650020006B006F006A00690020007300750020007000720069006B006C00610064006E00690020007A006100200070006F0075007A00640061006E00200070007200650067006C006500640020006900200069007300700069007300200070006F0073006C006F0076006E0069006800200064006F006B0075006D0065006E006100740061002E0020005300740076006F00720065006E0069002000500044004600200064006F006B0075006D0065006E007400690020006D006F006700750020007300650020006F00740076006F007200690074006900200075002000700072006F006700720061006D0069006D00610020004100630072006F00620061007400200069002000410064006F00620065002000520065006100640065007200200036002E0030002000690020006E006F00760069006A0069006D0020007600650072007A0069006A0061006D0061002E>
    /HUN <FEFF0045007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c002000fc007a006c00650074006900200064006f006b0075006d0065006e00740075006d006f006b0020006d00650067006200ed007a00680061007400f30020006d00650067006a0065006c0065006e00ed007400e9007300e900720065002000e900730020006e0079006f006d00740061007400e1007300e10072006100200061006c006b0061006c006d00610073002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740075006d006f006b006100740020006b00e90073007a00ed0074006800650074002e002000200041007a002000ed006700790020006c00e90074007200650068006f007a006f007400740020005000440046002d0064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200036002c0030002d0073002000e900730020006b00e9007301510062006200690020007600650072007a006900f3006900760061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 6.0 e versioni successive.)
    /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200036002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200036002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d0069002000730075006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c002000740069006e006b0061006d0075007300200076006500720073006c006f00200064006f006b0075006d0065006e00740061006d00730020006b006f006b0079006200690161006b006100690020007000650072017e0069016b007201170074006900200069007200200073007000610075007300640069006e00740069002e002000530075006b00750072007400750073002000500044004600200064006f006b0075006d0065006e007400750073002000670061006c0069006d006100200061007400690064006100720079007400690020007300750020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200036002e00300020006200650069002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
    /LVI <FEFF004c006900650074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200069007a0076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020007000690065006d01130072006f00740069002000640072006f01610061006900200075007a01460113006d0075006d006100200064006f006b0075006d0065006e0074007500200073006b00610074012b01610061006e0061006900200075006e0020006400720075006b010101610061006e00610069002e00200049007a0076006500690064006f0074006f0073002000500044004600200064006f006b0075006d0065006e00740075007300200076006100720020006100740076011300720074002c00200069007a006d0061006e0074006f006a006f0074002000700072006f006700720061006d006d00750020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200036002e003000200076006100690020006a00610075006e0101006b0075002000760065007200730069006a0075002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 6.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200036002e003000200065006c006c00650072002e>
    /POL <FEFF004b006f0072007a0079007300740061006a010500630020007a00200074007900630068002000750073007400610077006900650144002c0020006d006f017c006e0061002000740077006f0072007a0079010700200064006f006b0075006d0065006e00740079002000410064006f00620065002000500044004600200070006f007a00770061006c0061006a01050063006500200077002000730070006f007300f300620020006e00690065007a00610077006f0064006e0079002000770079015b0077006900650074006c00610107002000690020006400720075006b006f00770061010700200064006f006b0075006d0065006e007400790020006600690072006d006f00770065002e00200020005500740077006f0072007a006f006e006500200064006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d0061006300680020004100630072006f00620061007400200069002000410064006f0062006500200052006500610064006500720020007700200077006500720073006a006900200036002e00300020006f00720061007a002000770020006e006f00770073007a00790063006800200077006500720073006a00610063006800200074007900630068002000700072006f006700720061006d00f30077002e004b006f0072007a0079007300740061006a010500630020007a00200074007900630068002000750073007400610077006900650144002c0020006d006f017c006e0061002000740077006f0072007a0079010700200064006f006b0075006d0065006e00740079002000410064006f00620065002000500044004600200070006f007a00770061006c0061006a01050063006500200077002000730070006f007300f300620020006e00690065007a00610077006f0064006e0079002000770079015b0077006900650074006c00610107002000690020006400720075006b006f00770061010700200064006f006b0075006d0065006e007400790020006600690072006d006f00770065002e00200020005500740077006f0072007a006f006e006500200064006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d0061006300680020004100630072006f00620061007400200069002000410064006f0062006500200052006500610064006500720020007700200077006500720073006a006900200036002e00300020006f00720061007a002000770020006e006f00770073007a00790063006800200077006500720073006a00610063006800200074007900630068002000700072006f006700720061006d00f30077002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200036002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /RUM <FEFF005500740069006C0069007A00610163006900200061006300650073007400650020007300650074010300720069002000700065006E007400720075002000610020006300720065006100200064006F00630075006D0065006E00740065002000410064006F006200650020005000440046002000610064006500630076006100740065002000700065006E007400720075002000760069007A00750061006C0069007A006100720065002000640065002000EE006E00630072006500640065007200650020015F0069002000700065006E00740072007500200069006D007000720069006D006100720065006100200064006F00630075006D0065006E00740065006C006F007200200064006500200061006600610063006500720069002E00200044006F00630075006D0065006E00740065006C00650020005000440046002000630072006500610074006500200070006F00740020006600690020006400650073006300680069007300650020006300750020004100630072006F0062006100740020015F0069002000410064006F00620065002000520065006100640065007200200036002E003000200073006100750020007600650072007300690075006E006900200075006C0074006500720069006F006100720065002E>
    /RUS <FEFF04180441043F043E043B044C043704430439044204350020044D044204380020043F043004400430043C043504420440044B0020043F0440043800200441043E043704340430043D0438043800200434043E043A0443043C0435043D0442043E0432002000410064006F006200650020005000440046002C0020043F043E04340445043E0434044F04490438044500200434043B044F0020043D0430043404350436043D043E0433043E0020043F0440043E0441043C043E044204400430002004380020043F043504470430044204380020043104380437043D04350441002D0434043E043A0443043C0435043D0442043E0432002E00200421043E043704340430043D043D044B043500200434043E043A0443043C0435043D0442044B00200050004400460020043C043E0436043D043E0020043E0442043A0440044B0442044C002C002004380441043F043E043B044C04370443044F0020004100630072006F00620061007400200438002000410064006F00620065002000520065006100640065007200200036002E00300020043B04380431043E00200438044500200431043E043B043504350020043F043E04370434043D043804350020043204350440044104380438002E>
    /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200073006c00fa017e006900610020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f007600200076006f00200066006f0072006d00e100740065002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300fa002000760068006f0064006e00e90020006e0061002000730070006f013e00610068006c0069007600e90020007a006f006200720061007a006f00760061006e006900650020006100200074006c0061010d0020006f006200630068006f0064006e00fd0063006800200064006f006b0075006d0065006e0074006f0076002e002000200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e0074007900200076006f00200066006f0072006d00e10074006500200050004400460020006a00650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d00650020004100630072006f0062006100740020006100200076002000700072006f006700720061006d0065002000410064006f006200650020005200650061006400650072002c0020007600650072007a0069006900200036002e003000200061006c00650062006f0020006e006f007601610065006a002e>
    /SLV <FEFF005400650020006E006100730074006100760069007400760065002000750070006F0072006100620069007400650020007A00610020007500730074007600610072006A0061006E006A006500200064006F006B0075006D0065006E0074006F0076002000410064006F006200650020005000440046002C0020007000720069006D00650072006E006900680020007A00610020007A0061006E00650073006C006A006900760020006F0067006C0065006400200069006E0020007400690073006B0061006E006A006500200070006F0073006C006F0076006E0069006800200064006F006B0075006D0065006E0074006F0076002E0020005500730074007600610072006A0065006E006500200064006F006B0075006D0065006E0074006500200050004400460020006A00650020006D006F0067006F010D00650020006F00640070007200650074006900200073002000700072006F006700720061006D006F006D00610020004100630072006F00620061007400200069006E002000410064006F00620065002000520065006100640065007200200036002E003000200074006500720020006E006F00760065006A01610069006D0069002E>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200036002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200036002e00300020006f00630068002000730065006e006100720065002e>
    /TUR <FEFF0130015f006c006500200069006c00670069006c0069002000620065006c00670065006c006500720069006e0020006700fc00760065006e0069006c0069007200200062006900e70069006d006400650020006700f6007200fc006e007400fc006c0065006e006d006500730069006e0065002000760065002000790061007a0064013100720131006c006d006100730131006e006100200075007900670075006e002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e0020004f006c0075015f0074007500720075006c0061006e002000500044004600200064006f007300790061006c0061007201310020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200036002e003000200076006500200073006f006e00720061006b00690020007300fc007200fc006d006c0065007200690079006c00650020006100e70131006c006100620069006c00690072002e>
    /UKR <FEFF04120438043A043E0440043804410442043E043204430439044204350020044604560020043F043004400430043C043504420440043800200434043B044F0020044104420432043E04400435043D043D044F00200434043E043A0443043C0435043D044204560432002000410064006F006200650020005000440046002C0020043F044004380437043D043004470435043D0438044500200434043B044F0020043D0430043404560439043D043E0433043E0020043F0435044004350433043B044F04340443002004560020043404400443043A0443002004340456043B043E04320438044500200434043E043A0443043C0435043D044204560432002E0020042104420432043E04400435043D04560020005000440046002D0434043E043A0443043C0435043D044204380020043C043E0436043D04300020043204560434043A04400438043204300442043800200437043000200434043E043F043E043C043E0433043E044E0020043F0440043E043304400430043C04380020004100630072006F00620061007400200456002000410064006F00620065002000520065006100640065007200200036002E00300020044204300020043F04560437043D04560448043804450020043204350440044104560439002E>
    /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200039002000280039002e0033002e00310029002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice




